..
Suche
Hinweise zum Einsatz der Google Suche
Personensuchezur unisono Personensuche
Veranstaltungssuchezur unisono Veranstaltungssuche
Katalog plus

Timo Simnacher

Timo Simnacher PhD student

Room: B-111

Phone:

Preprints

See also arxiv

Xiao-Dong Yu, Timo Simnacher, H. Chau Nguyen and Otfried Gühne
Quantum-inspired hierarchy for rank-constrained optimization
arXiv:2012.00554

Many problems in information theory can be reduced to optimizations over matrices, where the rank of the matrices is constrained. We establish a link between rank-constrained optimization and the theory of quantum entanglement. More precisely, we prove that a large class of rank-constrained semidefinite programs can be written as a convex optimization over separable quantum states, and consequently, we construct a complete hierarchy of semidefinite programs for solving the original problem. This hierarchy not only provides a sequence of certified bounds for the rank-constrained optimization problem, but also gives pretty good and often exact values in practice when the lowest level of the hierarchy is considered. We demonstrate that our approach can be used for relevant problems in quantum information processing, such as the optimization over pure states, the characterization of mixed unitary channels and faithful entanglement, and quantum contextuality, as well as in classical information theory including the maximum cut problem, pseudo-Boolean optimization, and the orthonormal representation of graphs. Finally, we show that our ideas can be extended to rank-constrained quadratic and higher-order programming.

Xiao-Dong Yu, Timo Simnacher, Nikolai Wyderka, H. Chau Nguyen and Otfried Gühne
Complete hierarchy for the quantum marginal problem
arXiv:2008.02124

Clarifying the relation between the whole and its parts is crucial for many problems in science. In quantum mechanics, this question manifests itself in the quantum marginal problem, which asks whether there is a global pure quantum state for some given marginals. This problem arises in many contexts, ranging from quantum chemistry to entanglement theory and quantum error correcting codes. In this paper, we prove a correspondence of the marginal problem to the separability problem. Based on this, we describe a sequence of semidefinite programs which can decide whether some given marginals are compatible with some pure global quantum state. As an application, we prove that the existence of multiparticle absolutely maximally entangled states for a given dimension is equivalent to the separability of an explicitly given two-party quantum state. Finally, we show that the existence of quantum codes with given parameters can also be interpreted as a marginal problem, hence, our complete hierarchy can also be used.

Publications

Timo Simnacher, Nikolai Wyderka, René Schwonnek and Otfried Gühne
Entanglement detection with scrambled data
Phys. Rev. A 99, 062339 (2019), arXiv:1901.07946

In the usual entanglement detection scenario the possible measurements and the corresponding data are assumed to be fully characterized. We consider the situation where the measurements are known, but the data is scrambled, meaning the assignment of the probabilities to the measurement outcomes is unknown. We investigate in detail the two-qubit scenario with local measurements in two mutually unbiased bases. First, we discuss the use of entropies to detect entanglement from scrambled data, showing that Tsallis- and R\'enyi entropies can detect entanglement in our scenario, while the Shannon entropy cannot. Then, we introduce and discuss scrambling-invariant families of entanglement witnesses. Finally, we show that the set of non-detectable states in our scenario is non-convex and therefore in general hard to characterize.

Timo Simnacher, Nikolai Wyderka, Cornelia Spee, Xiao-Dong Yu and Otfried Gühne
Certifying quantum memories with coherence
Phys. Rev. A 99, 062319 (2019), arXiv:1809.03403

Quantum memories are an important building block for quantum information processing. Ideally, these memories preserve the quantum properties of the input. We present general criteria for measures to evaluate the quality of quantum memories. Then, we introduce a quality measure based on coherence satisfying these criteria, which we characterize in detail for the qubit case. The measure can be estimated from sparse experimental data and may be generalized to characterize other building blocks, such as quantum gates and teleportation schemes.

 
 
Suche
Hinweise zum Einsatz der Google Suche