Katalog der UB Siegen

Quantum Simulations

Analog Quantum Simulation of (1+1)D Lattice QED with Trapped Ions

References: [QIS49]

The prospect of quantum simulating lattice gauge theories opens exciting possibilities for understanding fundamental forms of matter. Here, we show that trapped ions represent a promising platform in this context when simultaneously exploiting internal pseudo-spins and external phonon vibrations. We illustrate our ideas with two complementary proposals for simulating lattice-regularized quantum electrodynamics (QED) in (1+1) space-time dimensions. The first scheme replaces the gauge fields by local vibrations with a high occupation number. By numerical finite-size scaling, we demonstrate that this model recovers Wilson's lattice gauge theory in a controlled way. Its implementation can be scaled up to tens of ions in an array of micro-traps. The second scheme represents the gauge fields by spins 1/2, and thus simulates a quantum link model. As we show, this allows the fermionic matter to be replaced by bosonic degrees of freedom, permitting small-scale implementations in a linear Paul trap. Both schemes work on energy scales significantly larger than typical decoherence rates in experiments, thus enabling the investigation of phenomena such as string breaking, Coleman's quantum phase transition, and false-vacuum decay. The underlying ideas of the proposed analog simulation schemes may also be adapted to other platforms, such as superconducting qubits.

Adiabatic quantum simulation with a segmented ion trap: Application to long-distance entanglement in quantum spin systems

References: [QIS35]

We investigate theoretically systems of ions in segmented linear Paul traps for the quantum simulation of quantum spin models with tunable interactions. The scheme is entirely general and can be applied to the realization of arbitrary spin-spin interactions. As a specific application we discuss in detail the quantum simulation of models that exhibit long-distance entanglement in the ground state. We show how tailoring of the axial trapping potential allows for generating spin-spin coupling patterns that are suitable to create long-distance entanglement. We discuss how suitable sequences of microwave pulses can implement Trotter expansions and realize various kinds of effective spin-spin interactions. The corresponding Hamiltonians can be varied on adjustable time scales, thereby allowing the controlled adiabatic preparation of their ground states.