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Technologically important properties of ferroic materials are deter-
mined by their intricate response to external stimuli. This response is
driven by distortions of the crystal structure and/or by domain wall
motion. Experimental separation of these two mechanisms is a
challenging problem which has not been solved so far. Here, we
apply X-ray photon correlation spectroscopy (XPCS) to extract the
contribution of domain wall dynamics to the overall response.
Furthermore, we show how to distinguish the dynamics related to
the passing of domain walls through the periodic (Peierls) potential
of the crystal lattice and through the random potential caused by
lattice defects (pinning centers). The approach involves the statisti-
cal analysis of correlations between X-ray speckle patterns produced
by the interference of coherent synchrotron X-rays scattered from
different nanosize volumes of the crystal and identification of
Poisson-type contribution to the statistics. We find such a contribu-
tion in the thermally driven response of the monoclinic phase of a
ferroelectric PbZr0.55Ti0.45O3 crystal and calculate the number of do-
main wall jumps in the studied microvolume.

domain walls | ferroelectrics | X-ray photon correlation spectroscopy |
speckle patterns | PZT

Many applications of ferroelectric materials are based on the
dynamical properties of domain walls. For example, po-

larization switching in ferroelectric random access memory
(FeRAM) devices proceeds through domain wall motion (1).
This motion can contribute greatly not only to the performance
of FeRAM, but also to that of piezoelectric actuators, sensors,
and dielectric capacitors (2, 3). Domain walls can enhance
electrical conductivity (4, 5), create superconductivity (6), and
trigger multiferroicity (7). Therefore, domain engineering pro-
vides intriguing opportunities for nanoelectronic devices (8).
While the static morphology (structure) of domains on different

(down to atomic) length scales has been studied extensively and
fruitfully using, for example, polarized light (9), electron (10, 11),
confocal Raman (12), or piezoresponse force (13) microscopy, the
experimental characterization of domain wall dynamics has not
been so successful. Ferroelectric and ferroelastic domain wall
displacements can be commonly modeled by a series of stop-and-go
motions (jerks) between the wells of a multiwell energy landscape.
This landscape consists of both periodically located wells (Peierls
“atomic washboard” crystalline potential) originating from the in-
teractions between the wall and the regular crystal lattice (14, 15)
and randomly distributed wells (pinning centers) caused by defects of
crystal structures (16). This picture mainly rests on indirect experi-
mental data such as Barkhausen pulses in switching current (17),
dielectric and piezoelectric nonlinearity in ferroelectrics (18), or
crackling noise in ferroelastics (19) induced by external fields.
Novel ferroelectric materials have emerged recently showing an

extraordinary potential in their respective application fields. The role
of the domain wall dynamics in these materials is currently under
debate. In particular, the highest piezoelectric performance of
relaxor-based ferroelectrics is achieved in the composition range of

the morphotropic phase boundary (MPB), where a complex hier-
archical nanodomain and microdomain structure is observed (20).
The mechanisms of the enhanced piezoelectricity in these materials
have been the subject of intensive investigation, and a number of
microscopic models have been proposed. Among them are models
relating the piezoresponse to extrinsic reasons, in particular to the
displacement of domain walls (21). Alternatively, a giant
piezoresponse could be of intrinsic nature and related to an
energetically favorable, field-induced rotation of spontaneous
polarization (22). Experimental identification, separation, and
characterization of these different mechanisms are challenging
tasks. Accordingly, the underlying mechanisms of the response re-
main unverified. Another example that raises similar problems is the
multiferroic composites where extraordinary magnetoelectric cou-
pling (23) has been found to be mediated by strain (24). However, it
is still not clear whether the strain results from domain wall dis-
placements or from changes in the lattice parameters. Basi-
cally, there are no experimental methods to determine if and
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how the domain walls move under an external (small-signal)
stimulus and thereby contribute to the total response.
Here, we present a successful investigation of the dynamics

of ferroelectric domain walls using X-ray photon correlation
spectroscopy (XPCS). XPCS involves collecting X-ray speckle
patterns—that is, extremely detailed scattering patterns origi-
nating from the interaction of a coherent synchrotron X-ray
beam with the sample (25). It is usually based on the analysis
of the temporal evolution of speckles and has been used for
studying slow dynamics in polymers (26), hydrodynamics of
colloidal suspensions (27), capillary wave dynamics in polymer
films (28), atomic diffusion in metallic alloys (29), nanoscale
domain wall fluctuations in antiferromagnetic crystals (30),
etc. As for ferroelectrics, coherent X-ray scattering speckle
patterns have been studied at temperatures above the Curie
point and related to heterophase fluctuations (31).
We investigate in this work a single crystal of lead zirconate

titanate PbZr1-xTixO3 (PZT) with the composition close to the
MPB (x = 0.45) where the electromechanical, dielectric, and
pyroelectric properties are enhanced (32). Using XPCS, we
confirm that the ferroelectric domain wall motion proceeds via a
series of distinct jumps. Using statistical data analysis, we sepa-
rate the contribution of these jumps to the XPCS correlation
function from other contributions and characterize the domain
wall dynamics quantitatively. In particular, our calculations show
that a 1 K change in temperature may induce ∼20–40 domain
wall jumps over the Peierls potential barriers in a volume of
∼1 μm3 in the monoclinic phase of PZT. This information pro-
vides a valuable input for the theoretical modeling of ferroic
domain wall dynamics in general.

Results
Experimental Details. The experiment was carried out on a (001)-
oriented platelet of a PbZr0.55Ti0.45O3 single crystal, similar to

that studied previously (33). Polarized light microscopy investi-
gations revealed the first phase transition from the paraelectric
phase of cubic symmetry to the ferroelectric tetragonal (T) phase
at TC ∼ 655 K and the second transition to the ferroelectric
monoclinic (M) phase at ∼530 K upon cooling. A sketch of the
XPCS experimental setup is shown in Fig. 1A, while further ex-
perimental details are presented in Materials and Methods.
Fig. 1B shows as an example the speckle pattern collected at

398.0 K. The entire detector covers a reciprocal space segment of
ΔQDET ≈ 0.02 Å−1 = 0.012 reciprocal lattice units (r.l.u., which
are defined relative to the unit cell with a lattice parameter of
∼4.1 Å), and a single pixel covers ΔQPIX ≈ 4 × 10−5 Å−1 = 2.6 ×
10−5 r.l.u. Therefore, the speckle fringes whose period extends
over the entire detector correspond to real space modulations of
ΔlD = 2 · π

ΔQDET
= 32  nm, while the features whose period fits a single

pixel size correspond to real space modulations as large as
ΔlPIX = 2 · π

ΔQPIX
= 16  μm. Because the speckle pattern was fine-

structured at a level down to a few pixels, they represent the mod-
ulations of the domain patterns on the micrometer- and nanometer-
length scales. To avoid the physically meaningless speckle features
corresponding to >3-μm modulations (exceeding the size of the
beam), the intensity of each pixel was averaged over 24 neighbors.

Correlation Analysis of Speckle Patterns. The standard approach in
XPCS experiments is to analyze temporal intensity variations in
speckle patterns while keeping the temperature constant (34).
However, we observed practically static speckle patterns at fixed
temperatures, indicating the absence of significant dynamics on
the relevant length and time scales. Isothermal speckles are
shown in Movies S1–S8. Upon changing the temperature, the
patterns displayed strong fluctuations. Such temperature-driven
changes of the speckle topology are clearly visible in Fig. 1 C–E
and are also presented in Movie S9. To track these fluctuations,

Fig. 1. Sketch of the XPCS experimental setup and some examples of speckles. (A) The coherent X-ray beam is produced at the PETRAIII synchrotron storage ring, in-
cluding the undulator (U), beamline optics, and compound refractive lenses (CRL). TheMAXIPIX 2D pixel detector is fixed at the end of the 5-m-long detector arm, supplied
by an evacuated flight tube. A series of high-resolution speckle patterns at ∼0.5° away from the exact 0 0 1 Bragg position was recorded as the sample temperature
decreased. (B) The intensity distribution over the entire detector at 398 K. (C–E) Zoomed-in images of the selected areas in B showing the evolution of speckles within 2 K
temperature range. The horizontal double arrows in B and C indicate the reciprocal space extension of the relevant detector segments.

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1720991115 Gorfman et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720991115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720991115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1720991115/video-9
www.pnas.org/cgi/doi/10.1073/pnas.1720991115


we used an alternative operational mode: We collected speckle
patterns at ∼11,000 different temperatures in the course of
slowly cooling the sample from 650 to 350 K and then analyzed
the correlations between them.
To quantify these changes, we evaluated the correlation between

pairs of speckle patterns A and B using the following equation:

CðA,BÞ=
P

m

�
Am − �A

��
Bm − �B

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m

�
Am − �A

�2P
m

�
Bm − �B

�2q , [1]

where C(A, B) is the correlation coefficient, Am and Bm are the
intensities recorded in the detector pixel m, �A and �B are the

average intensities of images A and B, respectively, and m
runs over all pixels. This correlation coefficient varied be-
tween 1 (identical images) and 0 (completely uncorrelated
images). Fig. 2A displays the resulting false-color map of the
correlation C(T1, T2) between pairs of speckles taken at the
temperatures T1 and T2, respectively. It portrays the decay of
correlations as the temperature difference ΔT = jT2 − T1j
increases. In the area around the main diagonal where the
ΔT values are small (<1 K), C is close to unity. The value of
the correlation coefficient C is <0.2 for speckle patterns with
temperature differences >30 K. The temperature dependence of
the decorrelation rate is clearly visible in the oscillations of the
correlation map near the main diagonal.

Fig. 2. False-color map of the correlation matrix and examples of the correlation decay. (A) The correlation coefficients, C(T1, T2), between pairs of speckle
patterns collected at temperatures T1 and T2. (B) Zoomed-in section of A for the temperature range between 394.7 and 398.5 K. (C–E) Correlation decays
C(ΔT) = C(T1, T1 + ΔT) for three different starting temperatures T1 (along the lines indicated by arrows in B).
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Fig. 3. Thermally induced correlation decays, averaged over different starting temperature intervals (A) T1 = 410–443 K in themonoclinic (M) phase. (B) T1 = 460–482 K in
the M phase. (C) T1 = 590–650 K in the tetragonal (T) phase. Symbols are experimental results, and solid lines are the fits to Eq. 2 with the best-fit parameters indicated.
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Fig. 2B focuses on a narrower interval of starting tempera-
tures, T1, between 394.7 and 398.5 K. It shows that even a
small variation of T1 significantly changes the correlation
function; three examples are shown in Fig. 2 C–E. While the
C(T1, T1 + ΔT) functions for individual starting temperatures
T1 are irregular and can hardly be described analytically, their
averaged values CðΔTÞ= 1

N

PN
i=1CðT1i +ΔTÞ over a large num-

ber N of starting temperatures, T1i, display a smooth variation
with ΔT. Fig. 3 exemplifies this behavior in three selected in-
tervals of T1.
The temperature-driven changes of the speckle topology

observed in the ferroelectric single crystal may be caused by
the following factors: (i) displacement of the whole sample
due to thermal expansion of the sample holder, (ii) homoge-
neous and inhomogeneous variations of the lattice parame-
ters due to thermal expansion and the spontaneous strain
associated with ferroelectric and ferroelastic phase transi-
tions, and (iii) rearrangement of the complex domain struc-
ture due to the domain wall motion. In the following
discussion, we show that the last mechanism was observed only
in the M phase, and it contributed specifically to the observed
speckle fluctuations.
For the analysis of the speckle correlations in jammed and

glassy soft matter, including colloidal gels, concentrated emul-
sions, surfactant phases, etc. (see ref. 35 for a review), the ex-

pression exp
�
−
�
t
τ

�β�
is widely used to empirically describe the

correlation decay as a function of time t, where τ denotes the
relaxation time and β is the shape parameter characterizing
the degree of deviation from an exponential function. Our attempts
to fit the CðΔTÞ dependences in a wide range of data to a similar
equation with t replaced by ΔT (ΔT is proportional to t in our
experiments) failed: Satisfactory fitting could only be obtained at
sufficiently small ΔT (smaller than ∼1 K). We found, however,

that the dependences can be typically described by a modified
exponential function:

CðΔTÞ= exp

"
−
�

ΔT
E+ΔEΔT

�β
#
, [2]

which contains one additional adjustable (here empirical)
parameter ΔE (Fig. 3). Although the average correlation decay
in the M phase was faster than in the T phase, we could not
clearly distinguish the phases based on the values of E, ΔE, or β.
Therefore, we performed a statistical analysis of the decorrela-
tion functions, ΔC(T1, T1 + ΔT) = 1 − C(T1, T1 + ΔT), based on
the distributions of ΔC with a fixed value of ΔT which are de-
termined in the intervals of starting temperatures T1. Fig. 4 A
and B depicts the decorrelations ΔC(T1, T1 + 0.5 K) as a function
of T1 (see Movie S10 for different ΔT values), while Fig. 4 C–E
plots the histograms describing the probabilities of finding par-
ticular values of ΔC in three different intervals of T1 when ΔT =
0.5 K. The vertical dashed lines in Fig. 4 C–E mark the sample
mean values, μ(ΔT) =〈ΔC(T1, T1 + ΔT)〉, in these temperature
intervals. The animated version of this figure in Movies S11–S13
shows how the histograms change with increasing ΔT.
In the T phase (Fig. 4E), a single bell-shaped peak (mode) was

observed at comparatively small ΔC with the maximum co-
inciding with μ(ΔT). The unimodal character of the histogram
suggested that the decorrelation was likely to be controlled by a
single mechanism. In contrast, the histograms in the M phase
(Fig. 4 C and D) included several overlapping modes, and μ(ΔT)
was located far away from the histogram maxima. Such a
multimode structure was maintained at other values of ΔT
(Movies S11–S13), and with increasing ΔT each mode propa-
gated to larger ΔC. We assigned each mode to a mesoscopic
process in the system corresponding to a particular type of
structural rearrangement and developing at a certain rate. In

Fig. 4. Statistics of the correlation decay. (A and B) Plot of the decorrelation decay, ΔC(T1, T1 + 0.5 K) as a function of starting temperature in the monoclinic
(M) and tetragonal (T) phases. (C–E) The histograms of the values in A and B, for three selected intervals of T1: 360–420 K, 430–480 K, and 590–650 K. The
dashed lines show the sample mean positions. The multimodal character of the histograms in the monoclinic phase is evident. The tick marks on the bottom of
A and B show the temperatures at which the sample was realigned.
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the PbZr0.55Ti0.45O3 crystal, the second-order transition is
observed at TC (36), while the transition between the M and T
phases is of first order (see Materials and Methods for details).
Therefore, the fastest temperature-dependent strain variation
and the largest related ΔC were expected to occur just below
TC (i.e., in the T phase). In contrast, much larger ΔC values
were observed in the M phase of the studied sample (Fig. 4A),
suggesting that an additional correlation decay mechanism
must be switched on in the M phase. Different histogram
modes in this phase might be assigned to the motion of dif-
ferent domain walls. Indeed, the graph in Fig. 4A is reminis-
cent of the so-called crackling noise, which is produced in
ferroic materials by jerky displacements of domain walls and is
detected in macroscopic experiments via observation of acoustic
emission, electric Barkhausen pulses, or heat fluxes (37, 38). In
Statistical Analysis of the Correlation Decay, we perform a detailed
statistical analysis to confirm this assignment.

Statistical Analysis of the Correlation Decay. Different types of
structural responses are expected to follow different statistical
behavior. In particular, passing of domain walls through the
Peierls potential wells makes ΔC a discrete variable. These do-
main wall jumps can be considered as countable independent
events. Countable independent events usually follow the Poisson
probability distribution, and we can expect such behavior for the

wall dynamics, too. In contrast, both thermal expansion and
phase transition-induced lattice distortion are continuous, and
thereby the related ΔC should be continuous as well. Continuous
dynamics usually results in a normal (Gaussian) distribution
of correlations.
The corresponding distribution functions can be mathemati-

cally described as follows. Let k be the number of jumps expe-
rienced by a domain wall or a set of walls during the temperature
change ΔT. Suppose that each jump decorrelates the speckle
pattern by the same amount, s. The corresponding correlation
decay is given by

ΔCðΔTÞ= ks. [3]

The integer values of k for different starting temperatures, T1,
are expected to be randomly distributed according to the Poisson
probability distribution function:

PðkÞ= λk expð−λÞ
k!

, [4]

where P(k) is the probability that a given temperature change ΔT
will cause k jumps, and λ is the expected mean number of jumps
over all T1 temperatures in the studied interval. The value of λ

Fig. 5. Relationship between the sample mean and the SD for the correlation decay in the selected temperature intervals. (A) T1 = 370–400 K in the M phase.
(B) T1 = 455–465 K in the M phase. (C) T1 = 590–650 K in the T phase. The lines are the fits to Eq. 7 with best-fit parameters indicated. Arrows at the top
indicate the corresponding values of ΔT. (D–F) Histograms of ΔC(T1, T1 + 0.4 K) and ΔC(T1, T1 + 1 K) in the same three temperature intervals as in A–C. Dashed
lines show the positions of the sample mean μ. The T phase histogram is unimodal with the mode exponent n = 1. The M-phase 455–465 K histogram is also
unimodal, with n close to 2, while the 370–400 K histogram is multimodal with the mode exponent having an intermediate value.
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evidently increases with increasing ΔT. Inserting k from Eq. 3
into Eq. 4 leads to the probability density function of ΔC:

PðΔCÞ= λΔC=s expð−λÞ
ðΔC=sÞ! . [5]

On the other hand, the Gaussian distribution expected for decorre-
lations that are not related to domain wall jumps can be written as

PðΔCÞ= 1ffiffiffiffiffi
2π

p
σN

exp

 
−
ðΔC− μNÞ2

2σ2N

!
, [6]

where μN is the mean (expected value) and σ2N is the variance of
the Gaussian distribution.
The unique property of the Poisson process is that the mean

value of the distribution λ is equal to the variance σ2λ. Therefore,

in terms of the experimentally observed correlation decay, dis-
tribution [5] should lead to the following relation between the
sample mean μ and the sample SD, σ:

μ=
1

sn−1
σn, [7]

where n = 2, μðΔTÞ= 1
N

PN
i=1ΔCðT1i,ΔTÞ and σðΔTÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i=1ðΔCðT1i,ΔTÞ− μðΔTÞÞ2

q
.

To verify if Eq. 7 applies to our data, we calculated μ(ΔT) and
σ(ΔT) in different intervals of T1 and plotted the μ vs. σ de-
pendences in double-logarithmic scale in Fig. 5 A–C. In Fig. 5
D–F, the histograms at selected ΔT are shown for a visual in-
spection of the analyzed data. Although in the M phase the
histograms are typically multimodal, comparatively small T1 in-
tervals can be selected within which they are unimodal (Fig. 5 B
and E). In the latter case, the μ(σ) dependence can be well fitted
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Fig. 6. Temperature dependence of the mode exponent n found in different (T1, T1 + 10 K) temperature intervals of the M (monoclinic, A) and T (tetragonal,
B) phases.
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to Eq. 7 with n = 2, suggesting that the corresponding mode
represents a single Poisson process. While the T phase histo-
grams are also unimodal, the mode exponent n is close to unity,
suggesting that the mode is not a Poisson process. The in-
termediate value of n = 1.53 in the other M-phase interval in Fig.
5A is justified by the multimodal structure of the histograms,
where the existence of several Poisson modes propagating at
different rates automatically leads to the enhancement of σ and
the corresponding decrease of n.
To illustrate this behavior, Fig. 6 shows the exponent n

obtained by fitting the μ(σ) dependences to Eq. 7 in other 10 K
wide intervals of the starting temperatures T1. It is clear that in
the T phase (Fig. 6B), the values of n remain close to unity and in
the M (Fig. 6A) phase n fluctuates mainly between 1 and 2. The
explanation for this behavior is the following: In relatively rare
temperature intervals where n ≈ 2, a single Poisson mode exists
(like in Fig. 5E), while in other intervals, several Poisson modes
overlap (like in Fig. 5D). To confirm this explanation, we showed
that the complex multimode correlation decay spectra can be
deconvoluted into constituent Poisson processes by using ap-
propriate fitting procedures and that the parameters of each
process can be determined separately.

Characterizing of Histogram Modes. It is known that for large
enough values of λ, the Poisson distribution function can be
approximated by a Gaussian distribution function. Thus, to de-
scribe the Poisson process we can use the Gaussian expression
[6] with an expectation value μN = λs and a constraining re-
lationship between the expectation value and the variance,
according to Eq. 7:

μNðΔTÞ=
1

sn−1
½σNðΔTÞ�n, [8]

with n = 2. Fig. 7 A–C illustrates the example of this histogram
decomposition performed for the interval of starting tempera-
tures of 380–400 K in the M phase, which comprises two decor-
relation modes. Each histogram corresponding to a particular
value ΔT was fitted to the sum of two Gaussian functions [6].
To ensure that these functions approximate the Poisson distri-
bution, the fittings for all ΔT were performed simultaneously,
while the constraint [8] was imposed. We treated s for each mode

and the exponent n as adjustable parameters (see Materials and
Methods for the fitting procedure details). Fig. 7 D–F shows the
result for a different M-phase interval: These spectra contain
three noticeable decorrelation modes, and two of them (the
dominating ones) are fitted. For both intervals, we found the
best-fit values of n very close to 2 (2.09 and 2.04, respectively),
which confirms the Poisson character of all of the modes considered.
To determine the parameter s for each mode, we then repeated
the fitting with a fixed n = 2 and found the best-fit values listed in
Fig. 7 C and F.
While each mode stands for a single Poisson process, the

speckle decorrelation caused by a single wall jump s is different in
two processes analyzed in a particular temperature interval, sug-
gesting that they are related to the different types of domain wall
motion or similar walls moving in different directions. Further-
more, the number of modes and their parameters differ in dif-
ferent temperature intervals (compare Fig. 7C and Fig. 7F). This is
probably because the wall dynamics changes with temperature or
because different walls enter the X-ray illuminated area.
Using the mean values σNm(m = 1,2,...) obtained for each

mode in the fitting procedure, one can find the average corre-
lation coefficient for the mode as Cm(ΔT) = 1 − μNm(ΔT). Fig. 8
shows these coefficients as a function of ΔT. Similar to the be-
havior of the total correlation coefficients (Fig. 3), each of these
dependences can be well fitted to Eq. 2 with individual param-
eters Em, ΔEm, and βm. As discussed above, each mode origi-
nates from the temperature-driven motion of a particular
domain wall or a set of domain walls. The rate of Cm(ΔT) change
is determined by the rate of the Poisson process, Lm = λm/ΔT
(average number of domain wall jumps per decay interval of 1 K)
and the value of sm (average decorrelation per jump). Therefore,
we can estimate the rate of each wall motion in the volume of the
sample irradiated by the X-ray beam as

Lm =
∂CmðΔTÞ

∂ΔT
1
sm
. [9]

These rates are explicitly displayed in Fig. 7. For example, for the
two modes in the interval of T1 = 415–447 K, we find s1 = 0.0013,
L1 ≈ 38 K−1; s2 = 0.0071, L2 ≈ 21 K−1 (i.e., the walls of the
second type are subject to a smaller number of jumps, but each
jump produces a larger decorrelation in the speckle pattern).
Let us now analyze the data at small ΔT values where the

mean number of wall jumps λ is expected to be small. Here, the
Gaussian distribution does not fit the correlation histograms, and
the Poisson distribution [5] is needed. Having determined the
parameters sm, we are now able to construct for each mode the
histograms P(k) describing the probability distribution for k =
ΔC/sm wall jumps and fit them directly to a Poisson distribution
[4]. Fig. 9 A–D shows such histograms and fittings for the first
mode in the T = 415–447 K temperature interval of the M phase.
At comparatively large ΔT values, the Gaussian and Poisson
fitting curves practically coincide, as expected. In contrast, at
small ΔT values where λ is close to unity (Fig. 9A), the Gaussian
is totally unsuitable, as the probability monotonously decreases
with increasing k. The calculated histograms are compatible with
the Poisson distribution. Fig. 9I shows the relation between the
best-fit values of μN and σN obtained from the Gaussian fitting.
At ΔT > 0.4 K where such fitting is adequate, the relation
μN ∼ σ2N points to the Poisson distribution.
The correlation histograms for the T phase are shown in Fig. 9

E–H, for comparison. At all ΔT values, the bell-shaped distribu-
tion is observed. Although slightly asymmetric (positively skewed),
it can, nevertheless, be satisfactorily fitted to the Gaussian. As Fig.
7J shows, the calculated μN vs. σN relation is practically linear, in
agreement with the μ vs. σ dependence shown in Fig. 5C, but in
sharp contrast to the Poisson characteristics. This behavior

0 1 2 3 4
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1 M phase (415 - 447 K)
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Mode2

Fig. 8. The correlation coefficients of the modes in the temperature range
of T1 = 415–447 K. Symbols are the results extracted from the fitting of
experimental data as explained in the text; solid lines are the fits to Eq. 2
with the best-fit parameters indicated. M, monoclinic.
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suggests that in the T phase, the domain walls do not shift with
temperature.

Discussion
The differences between the domain wall dynamics in the M and
T phases can be explained as follows. The position of domain
walls in a ferroelectric crystal is mainly determined by electrical
and mechanical compatibility conditions (39). According to these
conditions, the walls in the tetragonal phase should be parallel at
any temperature to one of the 12 {011} Miller planes (90° walls)
or the〈001〉crystallographic directions (180° walls). In contrast,
some walls in the monoclinic phase [the so-called S walls (39)] lack
a symmetry-related correlation to any particular crystallographic
plane or direction. The orientation of an S-wall is determined by
the relation between the components of the spontaneous strain
tensor and thereby necessarily depends on temperature near the

ferroelastic and ferroelectric phase transitions. The S walls in the
monoclinic PZT crystals have been observed by means of polar-
ized light microscopy in ref. 33 and also in the sample studied in
the present work. Besides, the 180° walls in the monoclinic phase
should be parallel to the spontaneous polarization vector, which
can rotate in the M phase of PZT within the {011} planes when
the temperature changes. Consequently, the temperature-induced
motion of domain walls with respect to the crystal lattice should be
observed in the M phase. In the T phase, however, the domain
structure may remain temperature-independent. The crystallo-
graphic axes corresponding to different twin variants are slightly
tilted with respect to one another. A temperature-induced varia-
tion of the tetragonality changes the tilt angle and induces internal
stress. This stress can generally induce a wall displacement
with respect to the crystal lattice, but not necessarily. Our
results correspond to the case where the internal stresses are

Fig. 9. Fitting of the probability histograms in the monoclinic (M) and tetragonal (T) phases to the Poisson and Gaussian functions. (A–D) Histograms at
selected values of ΔT for the first (slow) mode in the temperature interval of T1 = 415–447 K in the M phase. The histogram bin size is chosen to be equal to s1
so that the histograms represent the probability of k = ΔC/s1 domain wall jumps. Solid blue and dashed red lines are the fits to the Gaussian and Poisson
functions, respectively. (E–H) Decorrelation histograms at selected ΔT values for the temperature interval of T1 = 590–650 K in the T phase. Solid blue lines are
the fits to the Gaussian function. (I and J) Relationships between the best-fit mean and SD of fitted Gaussian function in the M and T phases. The lines are the
fits to Eq. 8 with the best-fit parameters presented. Arrows at the top indicate the values of ΔT for the corresponding data points.
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accommodated without domain wall motion. This consider-
ation validates our results and provides additional indirect con-
firmation of the monoclinic and tetragonal symmetries for the
MPB phases in PZT.
The observed Poisson statistics of the domain wall motion

implies that the wall jumps are similar-sized and independent
events [the corresponding dynamics are sometimes called pop-
ping noise (38)]. This is compatible with the thermally activated
jumping over the potential wells of the periodic Peierls potential.
Theoretically, the wall jumps in such a process are considered as
proceeding via nucleation and growth of atomic layers with a
different alignment of order parameter (17). Experimentally, the
corresponding jumps have been observed and counted in a fer-
romagnetic material with the technique of ballistic Hall micro-
magnetometry (15). However, the limited resolution of known
experimental techniques can hardly allow similar observations in
ferroelectrics and ferroelastics. Another mechanism of domain
wall propagation is known to be active in real materials where
the ideal periodicity is always disturbed by lattice defects. In-
teractions of walls with lattice defects (pinning centers) or
neighboring walls lead to the development of large random-sized
jerks (avalanches), which are known as crackling noise (36, 37).
In contrast to the statistically independent wall jumps over the
Peierls potential barriers, this process is developed due to mul-
tiple interactions between the walls (40). Collective crackling
noise dynamics typically results in a power law-type probability
distribution function of the observed response. The tails in the
histograms of the M phase at ΔC exceeding the peak values
greatly (Figs. 4 C and D and 7) can be well related to the
crackling-noise mechanism. Unfortunately, our dataset is not
large enough to confirm unambiguously that they really obey the
power law expected for crackling noise. Additional measure-
ments are needed to obtain a sufficient statistics.
In conclusion, we have developed an experimental approach

which allows us to separate the contributions of domain wall
motion and crystal lattice distortion to the properties of a fer-
roelectric material by means of deconvolution of the XPCS
spectra. The wall motion in Peierls potential appears in the form
of a temperature-driven decorrelation statistics of Poisson
character. We are able to count the number of domain wall
jumps between the wells of Peierls crystalline potential induced
by the given change of external conditions. XPCS is shown to be
a more powerful tool compared with the existing techniques for
the characterization of domain walls propagation and dynamics
not only because of its much higher spatial resolution, but also
because the X-ray diffraction information can be simultaneously
obtained to characterize the lattice strain.

Materials and Methods
Crystal Growth, Preparation, and Preliminary Characterization. The PbZr0.55Ti0.45O3

crystal was grown by using a top-seeded solution method as described in ref.
33. The crystal platelet with a thickness of 0.2 mm was cut with large faces
(1.4 × 1.4 mm) perpendicular to the pseudocubic [001] direction. The crystal
was mirror-polished and heated up to 820 K to eliminate internal stress. Op-
tical examination of domain structures and phase transitions was performed
by using an Olympus BX60 polarizing microscope combined with a Linkam
THMS600 optical heating and cooling stage and revealed the behavior similar

to that we previously found in PZT crystal with close composition (33). At
comparatively low temperatures, the ferroelectric phase of monoclinic (Cm or
Cc) symmetry was observed, with the structure of fine lamellar domains having
a thickness of 1–3 μm. At higher temperatures, another ferroelectric phase of
tetragonal 4-mm symmetry was found with the domains of submicrometer
size. The transition from the M to the T phase should be classified as a first-
order one, since a temperature hysteresis of ∼35 K was revealed. Significant
spatial inhomogeneity was also observed, namely, the transition temperature
changed from ∼490 K (upon cooling) at one edge of the crystal plate to ∼570 K
at the opposite edge. Such inhomogeneity was shown to be related to the
gradient of Zr/Ti concentration in the bulk of PZT crystals (33) and is typical of
perovskite solid solution crystals (41). At the center of the crystal plate where
the XPCS experiments were performed, the transition temperature was ∼530 K.
No temperature hysteresis of the Curie point TC ∼ 655 K was observed, in
agreement with the reported second-order nature of the tetragonal-cubic phase
transition (36).

Details of the XPCS Experiment. The XPCS experiment was performed at the
coherent X-ray scattering P10 beamline of the PETRA III storage ring with a
photon energy of 7 keV. The sample was mounted into a furnace and aligned
at a Bragg angle of 12.05° corresponding to the position of the 0 0 1 Bragg
reflection. The beam path between the sample and the detector was cov-
ered with an evacuated flight tube. The beam focused on the crystal surface
had a Gaussian intensity shape with FWHM of 3 × 5 μm2. Speckle patterns
were acquired by using a Maxipix area detector (55 × 55 μm2 pixel size, 516 ×
516 pixels per active area) positioned at a two-theta angle of 25.1° at a
distance of 5 m downstream of the sample. The speckle patterns were
recorded at the footsteps of the Bragg reflection (∼0.5° away from the exact
Bragg position) where the pattern covered the whole area of the detector,
while the oversaturation of the detector by the strong Bragg peak compo-
nent was avoided. The crystal was heated up to ∼650 K and then slowly
cooled down to 320 K at the rate of ∼1 K/min. The sample was realigned
each time the speckle moved out of the detector.

Fitting Histograms. The direct least-squares fitting of decorrelation histograms at
fixed ΔT to Poisson distribution [5] is technically cumbersome because it requires
the calculation of the factorials of the ΔC/s values. Therefore, the histograms
should be plotted for which these values are integers. However, the value of s
(i.e., the correlation decay produced by a single wall jump) is not known a priori.
Furthermore, s may differ for different decorrelation modes. To determine the
values of s, we developed MATLAB-based scripts for the least-squares fit of the
histograms. First, we inspected the histograms to assign the temperature in-
terval, [ΔTmin, ΔTmax], where the modes were clearly separated. For both ΔTmin

and ΔTmax, we selected the ranges of correlation decay ΔC for fitting, while the
ranges for other ΔT values were calculated proportionally. In these ranges, the
histograms for all selected ΔT were fitted simultaneously to the sum of K
functions (K is the number of considered modes) of the form:

hðΔC,ΔTÞ= I0 exp

(
−
½ðΔC − μðΔTÞÞ�2

2σðΔTÞ2
)
, μðΔTÞ= ½σðΔTÞ�n

sn−1
,

where the maximum intensity I0, the mean μ(ΔT) and the SD σ(ΔT) were
fitted against the data of individual histograms, while the global parameters
s and n were refined against the entire temperature-dependent dataset.
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