Quantum effects and quantum paradoxes Exercise sheet 9

Lecture: PD. Dr. M. Kleinmann Exercises: Jan Bönsel

Due: Thursday, 13.01.2022

1. Change of the wave function under canonical transformations (10 + 10)

- (a) We consider a solution $\psi(x,t)$ of the free Hamiltonian $H = \frac{\hat{p}^2}{2m}$. Carry out the canonical transformation which maps $\hat{p} \mapsto -\hat{x}$ and $\hat{x} \mapsto \hat{p}$. How does the wave function $\psi(x,t)$ change?
- (b) Consider a particle in an electromagnetic field, which is described by the Schrödinger equation

$$\left[\frac{1}{2m}(-i\hbar\boldsymbol{\nabla} - e\mathbf{A}(\vec{x},t))^2 + e\Phi(\vec{x},t)\right]\psi(\vec{x},t) = i\hbar\partial_t\psi(\vec{x},t).$$
(1)

A gauge transformation changes the potentials such that

 $\mathbf{A} \mapsto \mathbf{A}' = \mathbf{A} + \nabla \chi$ and $\Phi \mapsto \Phi' = \Phi - \partial_t \chi$.

Determine the effect of the gauge transformation on the wave function. Hint: Start by multiplying the Schrödinger equation in Eq. (1) with $e^{\frac{i\epsilon}{\hbar}\chi(\vec{x},t)}$ from the left.

Merry Christmas and a happy New Year!