Quantum effects and quantum paradoxes Exercise sheet 7

Lecture: PD. Dr. M. Kleinmann Exercises: Jan Bönsel

Due: Thursday, 09.12.2021

1. Purification (5 + 2 + 8)

In the lecture the partial trace has been introduced. One may ask whether the partial trace can be inverted. To be precise, the question is whether every mixed state ρ_A of a system A can be seen as a reduced state of a composite system AB, i.e. $\rho_A = \text{tr}_B(|\psi\rangle\langle\psi|_{AB})$. The state $|\psi\rangle_{AB}$ is called purification of ρ_A . Every density operator can be decomposed in its eigenstates, i.e. $\rho_A = \sum_i p_i |i\rangle\langle i|_A$. Then, a purification of ρ_A is given by

$$\left|\psi\right\rangle_{AB} = \sum_{i} \sqrt{p_{i}} \left|i\right\rangle_{A} \otimes \left|i\right\rangle_{B},$$

where the states $|i\rangle_B$ are from an orthonormal basis of \mathcal{H}_B .

- (a) Show that the state $|\psi\rangle_{AB}$ is indeed a purification of ρ_A , i.e. $\rho_A = \operatorname{tr}_B(|\psi\rangle\langle\psi|_{AB})$ holds.
- (b) What is the minimal dimension the Hilbert space \mathcal{H}_B has to have such that a purification $|\psi\rangle_{AB}$ exists?
- (c) The purification is not unique. Show that two purifications $|\psi\rangle_{AB}$ and $|\phi\rangle_{AB}$ of a state ϱ_A are connected by a unitary transformation which acts in the Hilbert space \mathcal{H}_B , i.e. there exists a unitary U_B such that

$$|\psi\rangle_{AB} = (\mathbb{1}_A \otimes U_B) |\phi\rangle_{AB}.$$

Hint: You may use the relation that if for same matrices A, B it holds $AA^{\dagger} = BB^{\dagger}$ then there exists a unitary transformation U such that A = BU.

2. Heuristic model of a fluorescence measurement (5+5+5)An atom with four internal states $|0\rangle$, $|1\rangle$, $|2\rangle$, and $|e\rangle$ is initially in the state

but internal states
$$|0\rangle$$
, $|1\rangle$, $|2\rangle$, and $|e\rangle$ is initially in the

$$\left|\psi\right\rangle = \alpha_{0}\left|0\right\rangle + \alpha_{1}\left|1\right\rangle + \alpha_{2}\left|2\right\rangle$$

The exited state $|e\rangle$ decays almost instantly into the ground state $|0\rangle$. In this process, a photon is emitted. Thus, the 'pointer' of the measurement is the emitted photon. We distinguish between no photon $|\gamma_0\rangle$ and at least one emitted photon $|\gamma_1\rangle$.

The model works as follows: At first the state of the atom evolves for time τ according to the Hamiltonian $H_D = \eta(|0\rangle\langle e| + |e\rangle\langle 0|)$. This results in a unitary transformation $|0\rangle \leftrightarrow |e\rangle$. Afterwards, the excited state decays according to the (non-unitary) transformation $R = |0\rangle\langle e|_S \otimes |\gamma_1\rangle\langle\gamma_0| + \sum_{i=0}^2 |i\rangle\langle i| \otimes |\gamma_0\rangle\langle\gamma_0|$.

- (a) Calculate the state of the composite system (atom and pointer) after the measurement.
- (b) Determine the state of the atom after the measurement for the two cases that one photon or no photon is detected.
- (c) Compare your result with the generalized map for a measurement

$$\Phi: \rho \mapsto \sqrt{P}\rho\sqrt{P}.$$

(See also exercise 2 on sheet 6.)