Quantum Theory of Light (WS17/18)

Exercises 3

(For exercise class on Thu, January 11th 2018.)

Lectures: Matthias Kleinmann, Otfried Gühne, Mondays 8:30 a.m., room B205 Exercise classes: Ana Costa, Thursdays 12:30 p.m., room B019

1. Partial trace.

- (a) Prove, that the eigenvalues of the reduced density matrix $\operatorname{tr}_B |\psi\rangle\langle\psi|$ of an arbitrary bipartite state $|\psi\rangle = \sum_{ij} \Psi_{ij} |ij\rangle$ are the squares of the Schmidt coefficients of $|\psi\rangle$, i.e., the singular values of matrix Ψ .
- (b) Prove, that a purification of a density matrix is not entangled if and only if the density matrix represents a pure state. (Hint: A purification of ρ obeys $\rho = \operatorname{tr}_{\operatorname{aux}} |\psi\rangle\langle\psi|$.)

2. Dilations and embeddings.

- (a) Consider a family of positive semidefinite operators (E_1, \ldots, E_n) on a Hilbert space \mathcal{H} with $\sum_k E_k = \mathbb{1}_{\mathcal{H}}$. Show that there exists some projections (Π_1, \ldots, Π_n) on an appropriate Hilbert space \mathcal{H}' with $\sum_k \Pi_k = \mathbb{1}_{\mathcal{H}'}$, such that $E_k = Q^{\dagger} \Pi_k Q$, where $Q \colon \mathcal{H} \to \mathcal{H}'$ with a linear map obeying $Q^{\dagger}Q = \mathbb{1}_{\mathcal{H}}$. (Hints: First show, that it is sufficient to consider the case where $E_k = |e_k\rangle\langle e_k|$ with unnormalized vectors $|e_k\rangle$. The matrix of Q simply is a dim $(\mathcal{H}') \times \dim(\mathcal{H})$ matrix in which the first dim (\mathcal{H}) rows are the identity matrix and the remaining ones are all 0's.)
- (b) Assume, Λ is a completely positive map. Show, that

$$\chi = \sum_{ij} (\Lambda \otimes \mathrm{id})(|i\rangle \langle j| \otimes |i\rangle \langle j|)$$

is a positive semi-definite matrix, where id: $X \mapsto X$ is the identity map.

(c) Conversely, show, that if χ' is a positive semi-definite matrix, then there exist operators A_k , such that

$$\operatorname{tr}_A\{\chi'(\rho^T\otimes \mathbb{1})\}=\sum A_k\rho A_k^{\dagger},$$

where $\rho^T = \sum_{ij} |i\rangle\langle j|\langle j|\rho|i\rangle$ is the transpose without conjugation. (Hint: Use the spectral decomposition of χ' .)

3. The Clauser–Horne–Shimony–Holt inequality.

Two parties, Alice and Bob, measure a shared (quantum) system. Each of them randomly chooses between two observables 0 and 1, where either of the observables have only outcomes ± 1 . We define

$$S = E(0,0) + E(0,1) + E(1,0) - E(1,1),$$

where E(x, y) is the product of the outcomes of Alice and Bob, if the observables x and y have been measured, respectively.

- (a) Under the assumption that the four observables have fixed values assigned to them, i.e., $E(x, y) = A_x B_y$ with $A_x \in \{+1, -1\}$ and $B_y \in \{+1, -1\}$, compute the maximal value s that S can attain.
- (b) Assume now, that the joint system is described by a global classical variable λ and λ follows the probability distribution $p(\lambda)d\lambda$. How does the maximal value of the average $\langle S \rangle \equiv \int S(\lambda)p(\lambda)d\lambda$ change?
- (c) In quantum theory, $\langle E(x,y)\rangle = \text{tr}\{\rho(\hat{A}_x \otimes \hat{B}_y)\}$. Assume, that the observables \hat{A}_0 and \hat{B}_0 are represented by σ_x and the observables \hat{A}_1 and \hat{B}_1 are represented by σ_z . Find a quantum state ρ with $\langle S \rangle = 2\sqrt{2}$.
- (d) Connect the insights so far to the statements of Bells theorem.
- (e) Show, that according to quantum theory, $\langle S \rangle > 2\sqrt{2}$ is not possible. (Hint: Calculate S_{qm}^2 , where $E_{qm}(x, y) = \hat{A}_x \otimes \hat{B}_y$.)