Theoretische Physik: Quantenmechanik Übungsblatt 10

Vorlesung: Otfried Gühne Übungen: Andreas Ketterer, Christina Ritz, Timo Simnacher Vorlesung: Di. 10-12 (B030) und Fr. 14-16 (D115) Übungen: Di. 8:30-10:00 (B030) und Di. 12:30-14:00 (B030)

Zu bearbeiten bis 22.12.2017

1. Delta Potential (6 Punkte)

Das Potential $V(x) = -K\delta(x)$, mit K > 0, sei gegeben. Zeigen Sie, dass für dieses Potential nur ein gebundener Zustand existiert, finden Sie den Zustand und den zugehörigen Eigenwert. Tipp: Eine mögliche Herangehensweise an dieses Problem besteht darin das Potential als unendlich tiefen und schmalen Potentialtopf anzusehen.

2. Quantisierung (2+2+2 Punkte)

In dieser Übungsaufgabe werden wir einige Eigenschaften von hermiteschen Operatoren und Quantisierung diskutieren.

• Ein hermitescher Operator A erfüllt folgende Relation:

$$\int_{-\infty}^{\infty} dx [A\psi(x)]^* \psi(x) = \int_{-\infty}^{\infty} dx \psi(x)^* [A\psi(x)]. \tag{1}$$

Warum? Zeigen Sie, dass für vernünftige Wellenfunktionen $p = (\hbar/i)\partial_x$ hermitesch ist. Ist $q = \partial_x$ auch hermitesch?

• Für die Radialkomponente des Impulsoperators in drei Dimensionen

$$p_r = \hat{r}\vec{p} = \frac{\vec{r}}{r}\vec{p} \tag{2}$$

gibt es drei Kandidaten:

$$X_1 = \hat{r} \cdot \frac{\hbar}{i} \nabla, \quad X_2 = \frac{\hbar}{i} \nabla \cdot \hat{r}, \quad X_S = \frac{X_1 + X_2}{2}.$$
 (3)

Was ist der Unterschied zwischen X_1 und X_2 ? Zeigen Sie, dass

$$X_S = \frac{\hbar}{i} (\partial_r + \frac{1}{r}). \tag{4}$$

An welcher Stelle in der Vorlesung tauchte dieser Operator auf? Tipp: $(\nabla \cdot \hat{r}) = (\partial_r + \frac{2}{r})$.

• Sind X_1 und X_2 hermitesch? Überprüfen Sie die Eigenschaft (1) in drei Dimensionen für eine Wellenfunktion der Form $\psi(r) = (1/r)f(r)$. Unter welchen Bedingungen an f(r) ist X_S hermitesch?

3. Wasserstoff (4 Punkte)

Die Wellenfunktionen des Wasserstoffatoms mit maximaler Quantenzahl $\ell = N-1$ ist durch $|\psi\rangle = (1/r)u_{N,N-1}(r)Y_{N-1,m}(\theta,\phi)$ gegeben, mit

$$u_{N,N-1}(r) = \sqrt{\frac{2Z}{N(2N)!a}} \left(\frac{2Zr}{Na}\right)^N \exp\left(-\frac{Zr}{Na}\right),\tag{5}$$

und dem Bohrradius a. Berechnen Sie den Erwartungswert $\langle r \rangle$ und das Maximum r_{max} der Radialverteilung.