Exercise 9: Duals of quotient spaces

Let X be a normed space and $V \leq X$ a subspace of X. Prove the following statements:
(a) $(X / V)^{*} \simeq V^{\perp}$
(b) $V^{*} \simeq X^{*} / V^{\perp}$

Exercise 10: Positive operators and product spaces

(a) Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. Show that the following statements are equivalent:
(1) $A=A^{*}$ and $\sigma(A) \subset \mathbb{R}_{+}$
(2) $\langle\varphi| A|\varphi\rangle \geq 0 \forall \varphi \in \mathcal{H}$
(3) $\exists X \in \mathcal{B}(\mathcal{H})$ such that $A=X^{*} X$
(b) Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let $X_{1}, X_{2} \leq X$ be closed subspaces such that $X=X_{1} \oplus X_{2}$. Prove that there exists a continuous linear isomorphism between X and $X_{1} \times X_{2}$ with a continuous inverse. Note that the product space $X_{1} \times X_{2}$ is equipped with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|x_{1}\right\|_{X}+\left\|x_{2}\right\|_{X}$

Hint: Here the best way to prove that there is such a map $\varphi: X_{1} \times X_{2} \rightarrow X$ is by explicit construction.

Exercise 11: A basis for $\mathbf{L}^{2}([0,1))$

Consider the set $\mathcal{J}_{0}:=\{[0,1)\}$, which consists of the half-open interval $[0,1)$. Further we recursively define for any $k \in \mathbb{N}$ the sets \mathcal{J}_{k} as the collection of those intervals obtained from splitting each interval in \mathcal{J}_{k-1} in half, i.e.,

$$
\begin{equation*}
\mathcal{J}_{2}:=\left\{\left[0, \frac{1}{2}\right),\left[\frac{1}{2}, 1\right)\right\}, \mathcal{J}_{3}:=\left\{\left[0, \frac{1}{4}\right),\left[\frac{1}{4}, \frac{1}{2}\right),\left[\frac{1}{2}, \frac{3}{4}\right),\left[\frac{3}{4}, 1\right)\right\} \tag{1}
\end{equation*}
$$

and we set $\mathcal{J}:=\cup_{k \in \mathcal{N}} \mathcal{J}_{k}$. For each interval $I \in \mathcal{J}$ we denote its left half by I_{+}and its right half by I_{-}.
(a) Show that for $I, J \in \mathcal{J}$ with $I \neq J$ we have either $I \cap J=\emptyset, I \subset J$ or $J \subset I$. Further if $I \subset J$ show that we have either $I \subset J_{+}$or $I \subset J_{-}$.

In addition we define for each $I \in \mathcal{J}$ the function

$$
\begin{equation*}
h_{I}:=\frac{1}{\lambda^{1}(I)^{\frac{1}{2}}}\left(\chi_{I_{+}}-\chi_{I_{-}}\right) \tag{2}
\end{equation*}
$$

where λ^{1} is the 1-dimensional Lebesgue measure and $\chi_{I_{+}}, \chi_{I_{-}}$are the respective indicator functions of the intervals I_{+}, I_{-}. Finally set $h_{0}=\chi_{[0,1)}$ and define $\mathcal{F}:=$ $\left\{h_{I} \mid I \in \mathcal{J}\right\} \cup\left\{h_{0}\right\}$.
(b) Let $h, g \in \mathcal{F}$. Show that

$$
\langle h \mid g\rangle= \begin{cases}1 & \text { if } h \neq g \tag{3}\\ 0 & \text { if } h=g\end{cases}
$$

where $\langle\cdot \mid \cdot\rangle: \mathrm{L}^{2}([0,1)) \rightarrow \mathbb{C}$ is the standard inner product on $\mathrm{L}^{2}([0,1))$.
(c) Let $I \in \mathcal{J}$. Show $\chi_{I} \in \operatorname{span}(\mathcal{F})$.
(d) Let $0 \leq a<b \leq 1$. Show that $\chi_{[a, b)} \in \operatorname{span}(\mathcal{F})$.
(e) Conclude that the span of \mathcal{F} is dense in $L^{2}([0,1))$. You can use the fact that the span of indicator functions $\chi_{[a, b)}$ where $0 \leq a<b \leq 1$ is dense in $L^{2}([a, b))$.

