Dr. René Schwonnek, Jonathan Steinberg

Sheet $3 - $	Hand-Out: Wed, 02.12.2020		Due: Wee	d, 09.12.2020
--------------	---------------------------	--	----------	---------------

Exercise 9: Duals of quotient spaces

Let X be a normed space and $V \leq X$ a subspace of X. Prove the following statements:

- (a) $(X/V)^* \simeq V^{\perp}$
- (b) $V^* \simeq X^* / V^{\perp}$

Exercise 10: Positive operators and product spaces

- (a) Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. Show that the following statements are equivalent:
 - (1) $A = A^*$ and $\sigma(A) \subset \mathbb{R}_+$
 - (2) $\langle \varphi | A | \varphi \rangle \ge 0 \ \forall \varphi \in \mathcal{H}$
 - (3) $\exists X \in \mathcal{B}(\mathcal{H})$ such that $A = X^*X$
- (b) Let $(X, || \cdot ||_X)$ be a Banach space and let $X_1, X_2 \leq X$ be closed subspaces such that $X = X_1 \oplus X_2$. Prove that there exists a continuous linear isomorphism between X and $X_1 \times X_2$ with a continuous inverse. Note that the product space $X_1 \times X_2$ is equipped with the norm $||(x_1, x_2)|| = ||x_1||_X + ||x_2||_X$

Hint: Here the best way to prove that there is such a map $\varphi : X_1 \times X_2 \to X$ is by explicit construction.

Exercise 11: A basis for $L^2([0,1))$

Consider the set $\mathcal{J}_0 := \{[0,1)\}$, which consists of the half-open interval [0,1). Further we recursively define for any $k \in \mathbb{N}$ the sets \mathcal{J}_k as the collection of those intervals obtained from splitting each interval in \mathcal{J}_{k-1} in half, i.e.,

$$\mathcal{J}_2 := \{ [0, \frac{1}{2}), [\frac{1}{2}, 1) \} , \ \mathcal{J}_3 := \{ [0, \frac{1}{4}), [\frac{1}{4}, \frac{1}{2}), [\frac{1}{2}, \frac{3}{4}), [\frac{3}{4}, 1) \}$$
(1)

and we set $\mathcal{J} := \bigcup_{k \in \mathcal{N}} \mathcal{J}_k$. For each interval $I \in \mathcal{J}$ we denote its left half by I_+ and its right half by I_- .

(a) Show that for $I, J \in \mathcal{J}$ with $I \neq J$ we have either $I \cap J = \emptyset$, $I \subset J$ or $J \subset I$. Further if $I \subset J$ show that we have either $I \subset J_+$ or $I \subset J_-$. In addition we define for each $I \in \mathcal{J}$ the function

$$h_I := \frac{1}{\lambda^1(I)^{\frac{1}{2}}} (\chi_{I_+} - \chi_{I_-})$$
(2)

where λ^1 is the 1-dimensional Lebesgue measure and χ_{I_+} , χ_{I_-} are the respective indicator functions of the intervals I_+ , I_- . Finally set $h_0 = \chi_{[0,1)}$ and define $\mathcal{F} := \{h_I \mid I \in \mathcal{J}\} \cup \{h_0\}.$

(b) Let $h, g \in \mathcal{F}$. Show that

$$\langle h|g\rangle = \begin{cases} 1 & \text{if } h \neq g \\ 0 & \text{if } h = g \end{cases}$$
(3)

where $\langle \cdot | \cdot \rangle : L^2([0,1)) \to \mathbb{C}$ is the standard inner product on $L^2([0,1))$.

- (c) Let $I \in \mathcal{J}$. Show $\chi_I \in \text{span}(\mathcal{F})$.
- (d) Let $0 \le a < b \le 1$. Show that $\chi_{[a,b)} \in \operatorname{span}(\mathcal{F})$.
- (e) Conclude that the span of \mathcal{F} is dense in $L^2([0,1))$. You can use the fact that the span of indicator functions $\chi_{[a,b)}$ where $0 \le a < b \le 1$ is dense in $L^2([a,b))$.