Exercise 5: Completeness of normed spaces

(a) Let $I:=[a, b] \subset \mathbb{R}$ an interval with $a<b$ and consider the family of vector spaces

$$
\text { Poly }_{n}:=\{f: I \rightarrow \mathbb{R} \mid f \text { is polynomial with } \operatorname{deg}(f) \leq n\}
$$

Show that $\mathcal{P}:=\cup_{n \in \mathbb{N}}$ Poly $_{n}$ becomes by virtue of

$$
\|f\|_{\infty}:=\sup _{x \in I}|f(x)|
$$

a normed space which is not complete.
(b) Let $(X,\|\cdot\|)$ be a normed space ${ }^{1}$.
(i) If $(X,\|\cdot\|)$ is complete and $Y \subset X$ closed, then also $(Y,\|\cdot\|)$ is a complete normed space. In short: a closed subset of an complete normed space inherits the completeness from the ambient space.
(ii) If $Y \subset X$ and $(Y,\|\cdot\|)$ is complete, then Y is closed in X

Exercise 6: Completeness of function spaces

Let $S \subset \mathbb{R}^{n}$ and $(Y,\|\cdot\|)$ a Banach space. For $0<\alpha \leq 1$ and $f: S \rightarrow Y$ we define

$$
H_{\alpha}(f, S):=\sup \left\{\left.\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \right\rvert\, x, y \in S, x \neq y\right\} \in[0, \infty]
$$

If $\Omega \subset \mathbb{R}^{n}$ open and bounded we define for $m \geq 0$ the function spaces

$$
C^{m, \alpha}(\bar{\Omega}, Y):=\left\{f \in C^{m}(\bar{\Omega}, Y) \mid H_{\alpha}\left(\partial^{s} f, \bar{\Omega}\right)<\infty \text { for }|s|=m\right\}
$$

Prove that $\left(C^{m, \alpha}(\bar{\Omega}, Y),\|\cdot\|_{C^{m, \alpha}(\bar{\Omega})}\right)$ is a Banach space when

$$
\|f\|_{C^{m, \alpha}(\bar{\Omega})}:=\sum_{|s| \leq m}\left\|\partial^{s} f\right\|_{C^{0}(\bar{\Omega})}+\sum_{|s|=m} H_{\alpha}\left(\partial^{s} f, \bar{\Omega}\right)
$$

[^0]
Exercise 7: POVM

As you have already learned in the lecture the qubit state space can be seen as a 3 -dimensional unit ball and thus any state can be parametrized by two variables, i.e., $|\psi\rangle=|\psi(\theta, \varphi)\rangle$.
(a) Show that the set of effects $\mathcal{M}=\left\{E_{0}, E_{1}, E_{2}\right\}$ is a valid POVM if $\varphi_{k}=\frac{\pi}{2}$ for all $k=0,1,2$ and

$$
E_{k}=\frac{2}{3}\left|\psi_{k}\left(\theta_{k}, \varphi_{k}\right)\right\rangle\left\langle\psi_{k}\left(\theta_{k}, \varphi_{k}\right)\right| \text { with } \theta_{k}=\frac{2 \pi k}{3} \text { for } k=0,1,2
$$

(b) Compute the probability distribution for the outcomes of the measurement \mathcal{M} if the states are given by

$$
\rho_{1}=\frac{1}{2} \mathbb{I}_{2}, \rho_{2}=\frac{1}{3}|+\rangle\langle+|+\frac{2}{3}|1\rangle\langle 1|, \quad \rho_{3}=\left|\psi\left(\frac{\pi}{2}, 0\right)\right\rangle\left\langle\psi\left(\frac{\pi}{2}, 0\right)\right|
$$

Exercise 8: Geometric properties of Hilbert spaces

Let X be a complex vector space, $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{C}$ a positive semidefinite hermitian form and $\|x\|:=\sqrt{\langle x, x\rangle}$.
(a) For $x, y \in X$ and $\alpha \in \mathbb{C}$ prove the following statements:
(1) $\|\alpha x\|=|\alpha|\|x\|$
(2) $|\langle x, y\rangle| \leq\|x\|\|y\|$
(3) $\|x+y\| \leq\|x\|+\|y\|$
(4) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$
(b) For $x, y \in X$ prove the polarisation identity

$$
\langle x, y\rangle=\sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2}
$$

(c) Show that if $(X,\|\cdot\|)$ is a normed space and (a4) holds then there exists an inner product $\langle\cdot, \cdot\rangle$ on X such that for all $x \in X$ we have $\|x\|^{2}=\langle x, x\rangle$.

[^0]: ${ }^{1}$ The claims remain true also if one replaces the normed space by an metric space

