Dr. René Schwonnek, Jonathan Steinberg

Sheet 4 — Hand-Out: Wed, 09.12.2020 — Due: Wed, 23.12	2.2020
---	--------

Exercise 12: Tensor products

Decide if the following states are separable or entangled and write them as vectors in the standard basis:

(a) $|\psi\rangle = \frac{1}{\sqrt{2}}(\alpha|00\rangle + i\beta|11\rangle + i\alpha|01\rangle + \beta|10\rangle)$ with $\alpha, \beta \in \mathbb{C}$ and $|a|^2 + |\beta|^2 = 1$

(b)
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|++\rangle + |--\rangle)$$

(c) $|\psi\rangle = \frac{1}{2}(|000\rangle + |010\rangle - |001\rangle - |011\rangle)$

Write $A \otimes B$ and $B \otimes A$ in the standard basis

(d)
$$A = \alpha \sigma_x + \beta \sigma_y$$
 and $B = \gamma \sigma_z + \mathbb{I}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} , B = \begin{pmatrix} a & \alpha & \beta \\ \alpha^* & b & \gamma \\ \beta^* & \gamma^* & c \end{pmatrix}$$

(f) $A = a |+\rangle \langle +| + b |-\rangle \langle -|$ and $B = \sigma_y \otimes \sigma_y$

(g) Show that $(A \otimes A)|\Psi^-\rangle = \det(A)|\Psi^-\rangle$, where $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ and $A \in M_2(\mathbb{C})$. What does this result imply for the case when $A \in U_2(\mathbb{C})$ is unitary and what is the physical interpretation of this property in that case? Does there exist another two qubit pure state with that property?

Exercise 13: Partial trace

Let $T \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B)$ be a trace class operator and $|\phi\rangle \in \mathcal{H}_A$. Prove the following statements

(a) For every orthonormal basis $\{|\psi_k\rangle\}_k$ of \mathcal{H}_B one has

$$\langle \phi | \mathrm{tr}_B(T) | \phi \rangle = \sum_k \langle \phi \otimes \psi_k | T | \phi \otimes \psi_k \rangle$$

- (b) $\operatorname{tr}(T) = \operatorname{tr}(\operatorname{tr}_A(T)) = \operatorname{tr}(\operatorname{tr}_B(T))$
- (c) $T \ge 0$ implies $\operatorname{tr}_A(T) \ge 0$ and $\operatorname{tr}_B(T) \ge 0$

(d) Compute the partial trace (both tr_A and tr_B) for the following states

(i)
$$\rho = \frac{1}{4} (|00\rangle \langle 00| + |10\rangle \langle 10| + |01\rangle \langle 01| + |11\rangle \langle 11|)$$

(ii) $\rho = \frac{1}{2} (|00\rangle \langle 00| + |11\rangle \langle 11|)$
(iii) $\rho = |\psi\rangle \langle \psi|$ with $|\psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$

Exercise 14:

Let \mathcal{H} be a Hilbert space with dim $(\mathcal{H}) = n < \infty$ and $A, B \in \mathcal{B}(\mathcal{H})$. Show the following:

- (a) $(A \otimes B)^* = A^* \otimes B^*$, $(A \otimes B)^\top = A^\top \otimes B^\top$ and $(A \otimes B)^\dagger = A^\dagger \otimes B^\dagger$
- (b) If $A, B \in U(\mathcal{H})$, then $A \otimes B \in U(\mathcal{H} \otimes \mathcal{H})$
- (c) If A, B hermitian, then $A \otimes B$ hermitian
- (d) If $A, B \ge 0$, then $A \otimes B \ge 0$
- (e) If A, B are projectors, then $A \otimes B$ is a projector

Let A_1, A_2, A_3 be complex Hilbert spaces with $\dim(A_i) = n_i < \infty$ for i = 1, 2, 3. Prove the following

- (f) $A_1 \otimes A_2 \simeq A_2 \otimes A_1$
- (g) $\mathbb{C} \otimes A_1 \simeq A_1$
- (h) $A_1 \otimes (A_2 \otimes A_3) \simeq (A_1 \otimes A_2) \otimes A_3$
- (i) $(A_1 \oplus A_2) \otimes A_3 \simeq (A_1 \otimes A_3) \oplus (A_2 \otimes A_3)$