Quantum theory of light

Lecturer: Matthias Kleinmann (Tue 14:15, Room B030) Exercises: Chau Nguyen (Mon 16:15, Room D120)	Sheet 5
Hand in: Tue 19.11.2019 (questions marked as $*$ are optional) Discussion date: Mon 25.11.2019 Recall that the characteristic functions of a state ρ are defined by	
$C_{\rm W}(\lambda) = \operatorname{Tr}(\rho e^{\lambda a^{\dagger} - \lambda^* a})$ (Wigner),	(1)
$C_{\rm N}(\lambda) = \operatorname{Tr}(\rho e^{\lambda a^{\dagger}} e^{-\lambda^* a}) \text{ (normally ordered)}$	(2)
$C_{\rm A}(\lambda) = \operatorname{Tr}(\rho e^{-\lambda^* a} e^{\lambda a^{\dagger}})$ (antinormally ordered)	(3)
Then the three (quasi)-probability distributions are given by	
$Q(lpha) \;\; = \;\; rac{1}{\pi^2} \int \mathrm{d}\lambda e^{\lambda^st lpha - \lambda lpha^st} C_\mathrm{A}(\lambda)$	(4)
$P(lpha) \;\; = \;\; rac{1}{\pi^2} \int \mathrm{d}\lambda e^{\lambda^st lpha - \lambda lpha^st} C_\mathrm{N}(\lambda)$	(5)
$W(lpha) \;\; = \;\; rac{1}{\pi^2} \int \mathrm{d}\lambda e^{\lambda^st lpha - \lambda lpha^st} C_\mathrm{W}(\lambda)$	(6)
From the above definitions, one can show that	

$$\rho = \int d\alpha P(\alpha) |\alpha\rangle \langle \alpha|, \ Q(\alpha) = \langle \alpha|\rho|\alpha\rangle /\pi, \tag{7}$$

and

$$W(q,p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \mathrm{d}x \left\langle q + \frac{x}{2} |\rho| q - \frac{x}{2} \right\rangle e^{ipx/\hbar},\tag{8}$$

where q and p are the position and momentum operators, and $|q \pm x\rangle$ are the eigenstates of the position operator.

12. Examples of the phase space representations

- (a) [5pts] Compute the Q-function and P-function for the single mode thermal state $\rho = [1 e^{-\hbar\omega/kT}]e^{-\hbar\omega a^{\dagger}a/kT}$.
- (b) [10pts] The squeezed state is given by $|\alpha, \xi\rangle = D(\alpha)S(\xi) |0\rangle$, where $S(\xi) = \exp\left[\frac{1}{2}(\xi^*a^2 \xi a^{\dagger^2})\right]$ (squeeze operator) and $D(\alpha) = \exp(\alpha a^{\dagger} - \alpha^* a)$ (displacement operator). Compute the Wigner function for the squeezed state $|\alpha, \xi\rangle$ for the case $\xi = r$ is purely real. Describe how it evolves over time.

13. The squeezed state

- (a) [5pts] Compute the Wigner function for the statistical mixture of two coherent states $\rho = \frac{1}{2} (|\alpha\rangle \langle \alpha| + |-\alpha\rangle \langle -\alpha|)$. Describe how it evolves over time.
- (b) [10pts] Compute the Wigner functions for the optical cat states $|\text{Meow}_{\pm}\rangle = 1/N_{\pm}(|\alpha\rangle \pm |-\alpha\rangle)$. Describe how they evolve over time.
- (c) [*,5pts] Plot the Wigner functions obtained in (a) and (b) by a suitable computer program of your choice. Sketch the outcomes on your sheet. What are the difference between the two.