Quantum theory of light

Lecturer: Matthias Kleinmann (Tue 14:15, Room B030) Exercises: Chau Nguyen (Mon 16:15, Room D120)

Sheet 3

Hand in: Tue 05.11.2019 (questions marked as * are optional) Discussion date: Mon 11.11.2019

6. The thermal state

[5pts] Consider a single mode field of frequency ω in the thermal state at temperature T. Show that the photon statics (probably of detecting n photons when counting) is given by

$$P(n) = \frac{1}{1+\bar{n}} \left(\frac{\bar{n}}{1+\bar{n}}\right)^n,\tag{1}$$

where $\bar{n} = 1/(e^{\hbar\omega/kT} - 1)$ is the mean photon number. This shows that at any temperature, the thermal state is very different from the single photon state of light. Compute the photon fluctuation $\langle n^2 \rangle - \langle n \rangle^2$ for the thermal state.

7. Properties of the displacement operator and coherent states

Recall that the displacement operator is given by $D(\alpha) = \exp(\alpha a^{\dagger} - \alpha^* a)$ and the coherence state is give by $|\alpha\rangle = D(\alpha) |0\rangle$.

- (a) [5pts] Compute $[a, D(\alpha)]$. From the result, deduce that $a |\alpha\rangle = \alpha |\alpha\rangle$.
- (b) [5pts] Compute the mean photon number $\langle n \rangle$, the photon fluctuation $\langle n^2 \rangle \langle n \rangle^2$, and the full photon statistics (probably of detecting *n* photons when counting) for the coherent state $|\alpha\rangle$.
- (c) [*, 5pts] Show that all right-eigenvectors of a are coherent states.
- (d) [5pts] Show that $D(\alpha)D(\beta) = \exp[i \text{Im}(\alpha\beta^*)]D(\alpha + \beta)$.
- (d) [5pts] Show that

$$(-1)^n \left| \alpha \right\rangle = \left| -\alpha \right\rangle \tag{2}$$

where $n = a^{\dagger}a$ is the number operator.

(e) [*, 5pts] Show that

$$a^{\dagger} \left| \alpha \right\rangle \left\langle \alpha \right| = \left(\alpha^* + \frac{\partial}{\partial \alpha} \right) \left| \alpha \right\rangle \left\langle \alpha \right| \tag{3}$$