
University of Siegen Department of Physics

Quantum theory of light

Lecturer: Matthias Kleinmann (Tue 14:15, Room B030)
Exercises: Chau Nguyen (Mon 16:15, Room D120) Sheet 2

Hand in: Tue 29.10.2019 (questions marked as ∗ are optional)
Discussion date: Mon 04.11.2019

3. Einstein’s argument for the Planck distribution

In a paper in 1917 (thus before the quantum mechanical theory of electrons and photons),
Einstein gave a derivation of the Planck distribution law for equilibrium radiation. It is actually
a nice one! Here is a simplified version of his argument. Consider a two-level system (without
any other degree of freedom) with energies E1 and E0 in equilibrium with the radiation described
by energy density per frequency ρ(ω). If the atom is in the ground state E0, it can absorb a
photon ~ω = E1−E0 to make the transition to state E1. The rate of this transition is ρ(ω)B0→1,
with some factor B0→1. If the atom is in the excited state E1, there are two possibilities. It can
spontaneously decay with rate A1→0 to state E0, emitting a photon ~ω = E1 − E0. Here is the
great insight from Einstein: the present radiation can also induce a transition from E1 to E0,
say with rate ρ(ω)B1→0.

(a) [5pts] The atom in equilibrium follows the Boltzman distribution, p(Ei) ∝ e−Ei/kT , where
T is the temperature and k is the Boltzman constant. Show that the balance of the
transition probabilities leads to

ρ(ω)B0→1 = [ρ(ω)B1→0 +A1→0]e
− ~ω

kT . (1)

Note that the Einstein coefficients A1→0, B1→0 and B0→1 can depend explicitly on the
frequency ω, but not the temperature T .

(b) [5pts] Now (following Einstein), consider the limit T → ∞. What do you expect ρ(ω) to
be in this limit? Show that B0→1 = B1→0.

Remark: This may come as a surprise! The radiation can fallicitate the transition between
the two levels somewhat equally in both ways. Note that Einstein arrived at this before
any formal development of QED.

(c) [5pts] It is also well-known at the time that for the short wavelength limit, the distribution
follows the Wein’s law

ρ(ω) ∝ ω3e−
~ω
kT . (2)

From this, derive Plack’s law

ρ(ω) ∝ ω3

e
~ω
kT − 1

. (3)

4. Useful operator identities

(a) [5pts] Suppose [X,Y ] commutes with both X and Y , show that

esXY e−sX = Y + s[X,Y ]. (4)

(b) [5pts] Suppose [X,Y ] commutes with both X and Y , show that

eXeY = eX+Y+ 1
2
[X,Y ]. (5)
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Hint: Derive a differential equation for G(s) = esXesY , make proper use of question (a) and
solve it.

(c) [5pts] For a and a† being the bosonic anihilator and creator, show that

[a†, F (a)] = −F ′(a) and a†F (aa†) = F (a†a)a†, (6)

for analytic (operator) function F .

5. Regularisation in the Casimir effect

(a) [∗5pts] Familiarize yourself with the Euler–Maclaurin formula in your favourite analysis
book. To which functions can it be applied?

(b) [∗5pts] Assume that g(n) is an appropriate function with g(n) ≈ 1 for small n and g(n) ≈ 0
for large n. Show that, independent of the details of g(n),

u∑
n=0

ng(n)−
∫ u

0
ng(n)dn ≈ −1/12

as u→∞. What properties does g(n) need to have for this to work? Does a function like
g(x) = 1− 1/[exp((x0 − x)/ε) + 1] work?
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