Sheet 8 —	SS 2019		Due: Tue., 11.06.2019
-----------	---------	--	-----------------------

Exercise 22: Simple Hardy-like proof of quantum contextuality (4+5)

Consider five boxes. The probability, that box i is empty and box j is filled is given by p(01|ij). The system is prepared in such a way that

$$p(01|12) + p(01|23) = 1, (1)$$

and

$$p(01|34) + p(01|45) = 1.$$
 (2)

These conditions can be rewritten as

$$p(11|12) = p(00|23) = 0 \tag{3}$$

and

$$p(11|34) = p(00|45) = 0.$$
 (4)

a) Assuming non-contextuality, argue that

$$p(01|51) = 0 \tag{5}$$

must hold.

b) Show that in the following scenario Eq. (1) and (2) are satisfied, whereas Eq. (5) is violated.

Consider the state $|\eta\rangle = \frac{1}{\sqrt{3}}(1,1,1)^T$. Opening the box *i* is represented by measuring $\{P_0 = \mathbb{1} - |v_i\rangle\langle v_i|$, $P_1 = |v_i\rangle\langle v_i|\}$, where P_0 corresponds to 0 and P_1 corresponds to 1 and the vectors $|v_i\rangle$ are given by:

$$|v_1\rangle = \frac{1}{\sqrt{3}}(1, -1, 1)^T$$
$$|v_2\rangle = \frac{1}{\sqrt{2}}(1, 1, 0)^T$$
$$|v_3\rangle = (0, 0, 1)^T$$
$$|v_4\rangle = (1, 0, 0)^T$$
$$|v_5\rangle = \frac{1}{\sqrt{2}}(0, 1, 1)^T$$

Please turn!

Exercise 23: Joint measurability and steering (4+4)

A set of measurements $\{A_{a|x}\}$, where *a* labels the outcomes and *x* labels the measurement setting, is jointly measurable if $A_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

- a) Show that, if Alice performs jointly measurable POVMs $\{A_{a|x}\}$ on any state ρ_{AB} she cannot steer the state of Bob. *Hint:* Calculate the conditional states on Bobs side and compare that to the definition of unsteerability, i.e. the existence of a local hidden state model $\rho_{a|x} = \sum_{\lambda} p(a|x,\lambda)p(\lambda)\hat{\sigma}_{\lambda}$, where $\hat{\sigma}_{\lambda}$ is normalized.
- b) Show that, if Alice performs incompatible POVMs $\{A_{a|x}\}$ there exists a state which demonstrates steering. *Hint:* You might want to use one of the results from the last exercise sheet.