Foundations of Quantum Mechanics

Prof. Dr. O. Gühne, T. Kraft

Sheet 4 —	SS 2019		Due: Mon., 13.05.2019
-----------	---------	--	-----------------------

Exercise 13: Von Neumann entropy (2+2+4)

The von Neumann entropy of a quantum state ρ is defined by $S(\rho) = -\operatorname{tr}[\rho \log(\rho)]$, where $\log(\cdot)$ denotes the matrix logarithm. If ρ is given in terms if its eigenvectors $\rho = \sum_i \lambda_i |\lambda_i\rangle\langle\lambda_i|$ the von Neumann entropy simplifies to $S(\rho) = -\sum_i \lambda_i \log(\lambda_i)$. Show that:

- a) The von Neumann entropy is non-negative and zero if and only if ρ is pure.
- b) In a d-dimensional Hilbert space the entropy is at most $\log(d)$ and the maximum is obtained if and only if the system is in the completely mixed state $\rho = 1/d$.
- c) Now consider a state $\rho = \sum_{i} p_i \rho_i$, where the ρ_i have orthogonal support. Prove that

$$S\left(\sum_{i} p_{i} \varrho_{i}\right) = H(p_{i}) + \sum_{i} p_{i} S(\varrho_{i}), \qquad (1)$$

where $H(p_i)$ is the Shannon entropy.

Exercise 14: Coexistence does not imply Joint Measurability (2+4+2)

Besides joint measurability there exists another notion of when POVMs can be measured together. Two POVMs **A** and **B** are called *coexistent*, if there exists a larger POVM **M** that contains the ranges of **A** and **B**, i.e. $\operatorname{ran}(\mathbf{A}) \cup \operatorname{ran}(\mathbf{B}) \subseteq \operatorname{ran}(\mathbf{M})$. Consider the Hilbert space \mathbb{C}^3 with basis elements $\{|1\rangle, |2\rangle, |3\rangle\}$ and $|\psi\rangle = \frac{1}{\sqrt{3}}(|1\rangle + |2\rangle + |3\rangle)$. We define two POVMs

$$A_{i} = \frac{1}{2}(\mathbb{1} - |i\rangle\langle i|), \quad i = 1, 2, 3$$
⁽²⁾

and

$$B_1 = \frac{1}{2} |\psi\rangle\!\langle\psi|, \quad B_2 = \mathbb{1} - B_1.$$
 (3)

- a) Show that the POVMs $\mathbf{A} = \{A_i\}_i$ and $\mathbf{B} = \{B_1, B_2\}$ are coexistent, so that the ranges of \mathbf{A} and \mathbf{B} are contained in the range of some larger POVM \mathbf{M} .
- b) Now show that these POVMs are not jointly measurable. Hints: Try to prove this by contradiction. Assume the POVMs are jointly measurable. Then use the fact that B_1 is a rank-1 operator and derive conditions on the J_{i1} . Use this to express the A_i in terms of B_1 and compute the overlap $\langle i | A_i | i \rangle$. From this, find a contradiction.

c) Why is joint measurability and coexistance equivalent in the case of two dichotomic POVMs $\mathbf{A} = \{A_1, A_2\}$ and $\mathbf{B} = \{B_1, B_2\}$?