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Exercise 10: Shannon entropy (2+2+2)

Show that the Shannon entropy fulfills the following properties:

a) For any probability distribution P = (p1, . . . , pN) there exsists the upper bound
S(P) ≤ log(N). The bound is saturated for P being the equal distribution;

b) The Shannon entropy is concave;

c) The Shannon entropy is additive, i.e. S(P) = S(Q)+S(R), whereQ = (q1, . . . , qn)
and R = (r1, . . . , rm) are probability distributions and
P = (p11, p12, . . . , p1m, p21, p22 . . . , pnm) for pij = qirj.

Exercise 11: Uncertainty relations (6+3)

a) Derive the uncertainty relation

S(A) + S(B) ≥ −2 log(c),

for the following examples.
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iii) A =


1 0 0 0
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0 0 0 3

,B =
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b) For each example, find the state such that the bound is optimal.

Please turn!



Exercise 12: Gaussian wave packet

Show that a Gaussian wave packet Ψ(x) = Ne−µx
2+νx, where N is a normalisation

constant, µ > 0 and ν ∈ C, is a state of minimal position-momentum uncertainty.
Hints:
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for a > 0.


