Statistical Physics Assignment 9

Lecture: Prof. Dr. Otfried Gühne Tutorial: Leonardo Novo, Tobias Moroder, Fri 8–10, Room: D115

Due to: Tue, 19.06

1. Virial expansion (4 Points)

The classical virial expansion expresses the pressure of a many-particle system in equilibrium as a power series in the density $\rho = N/V$, *i.e.*,

$$P = k_B T \varrho \left(1 + \sum_{n=1}^{\infty} B_n \varrho^n \right), \tag{1}$$

where the virial coefficients $B_n(T)$ are characteristics of the interactions between the particles in the system.

(a) Determine the coefficients for the van-der-Waals gas

$$\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT\tag{2}$$

with $n = N/N_A$, $R = N_A k_B$ and a, b appropriate empirical constants.

(b) Repeat this computation for the Dieterici gas, given by

$$P = \frac{nRT}{V - nb} \exp\left(-\frac{na}{RTV}\right). \tag{3}$$

(c) Compare the virial coefficients and investigate the limit of large temperature T.

2. Spinless fermions (3 Points)

Fermions without interaction can for instance be described by a Hamiltonian of the form

$$H = \sum_{m,n=1}^{N} T_{mn} a_m^{\dagger} a_n, \tag{4}$$

using a Hermitian $N \times N$ matrix T_{mn} and appropriate creation and annihilation operators.

- (a) Verify: For any unitary matrix U_{kl} the operators $c_k = \sum_l U_{kl} a_l$ form a new valid set of annihilation operators.
- (b) Employ this result in order to show that the Hamiltonian can always be written as

$$H = \sum_{n=1}^{N} \epsilon_n c_n^{\dagger} c_n, \tag{5}$$

for appropriate chosen creation and annihilation operators.

3. Fock space *

Discuss the following problems for the bosonic and fermionic case:

(a) Consider the case of N indistinguishable particles, each of which having only two possible states $|0\rangle$, $|1\rangle$. Let $|n_0, N - n_0\rangle$ denote the state where exactly n_0 particles are in state $|0\rangle$, while $N - n_0$ particles are in state $|1\rangle$. Determine the explicit form of these states in the tensor product basis $|0...00\rangle$, $|0...01\rangle$, ..., $|1...11\rangle$.

(b) A single particle operator F can be expressed as

$$F = \sum_{kl} f_{kl} c_k^{\dagger} c_l, \tag{6}$$

while the number operator N is given by

$$N = \sum_{k} c_k^{\dagger} c_k.$$
⁽⁷⁾

Compare the action of $FN|\vec{n}\rangle$ vs. $NF|\vec{n}\rangle$.

(c) Compute the creation and annihilation operator in the Heisenberg picture for the Hamiltonian

$$H = \sum_{n=1}^{N} \epsilon_n c_n^{\dagger} c_n.$$
(8)

Verify that the time-dependent operators $c(t)^{\dagger}, c(t)$ are again valid creation and annihilation operators if they satisfy it at time instance t = 0.