Statistical Physics Assignment 1

Lecture: Prof. Dr. Otfried Gühne Tutorial: Leonardo Novo, Tobias Moroder, Fri 8–10, Room: D115

Due to: Tue, 17.04

1. **Density matrices** (4 Points) Consider the following family of matrices:

$$\varrho_{\rm AB}(x_1, x_2, x_3) = \frac{1}{17} \begin{pmatrix} 5 & 0 & 0 & x_2 \\ 0 & x_1 & -x_3/127 & 0 \\ 0 & 1 & 3 & 0 \\ x_2 & 0 & 0 & 7 \end{pmatrix}.$$
(1)

- (a) For which parameters $x_i \in \mathbb{C}$ does $\rho_{AB}(x_1, x_2, x_3)$ represent a density operators?
- (b) Compute the reduced matrices $\rho_A(x_1, x_2, x_3)$, $\rho_B(x_1, x_2, x_3)$ and re-examine which parameters $x_i \in \mathbb{C}$ form valid density operators.

2. Superposition and mixture (3 Points)

Consider the density matrix $\rho = |\psi^-\rangle\langle\psi^-|$ of the singlet state $(|\psi^-\rangle = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}$ and the density matrix $\rho' = (|\uparrow\downarrow\rangle\langle\uparrow\downarrow| + |\downarrow\uparrow\rangle\langle\downarrow\uparrow|)/2$ of the statistical mixture of $|\uparrow\downarrow\rangle$ and $|\downarrow\uparrow\rangle$.

- (a) Show that there exists no unitary U which satisfies $\rho = U \rho' U^{\dagger}$.
- (b) Can one discriminate between ρ and ρ' based on one of the expectation values of $\sigma_x \otimes \sigma_x$, $\sigma_y \otimes \sigma_y$ or $\sigma_z \otimes \sigma_z$?

3. Decomposition of density matrices*

A density matrix ρ with $rank(\rho) = n$ given in its spectral decomposition

$$\varrho = \sum_{i=1}^{n} \lambda_i |e_i\rangle \langle e_i|, \qquad (2)$$

can be interpreted as the statistical mixture of pure states $|e_i\rangle$ according to probabilities λ_i . However, the same density operator ρ can also be interpreted as the mixture of other pure states $|\psi_i\rangle$ and different probabilities p_i if and only if it holds

$$\sqrt{p_i}|\psi_i\rangle = \sum_{j=1}^n U_{ij}\sqrt{\lambda_j}|e_j\rangle \tag{3}$$

with U being a unitary.

- (a) Show that if Eq. (3) holds and U is unitary then ρ as given in Eq. (2) can also be written as $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|.$
- (b) Equation (3) can be employed to prove that there always exists an ensemble with uniform distribution, *i.e.*, $p_i = \frac{1}{n}$. Prove this statement explicitly for the state

$$\varrho = \lambda |\uparrow\rangle \langle\uparrow| + (1 - \lambda)|\downarrow\rangle \langle\downarrow| \tag{4}$$

with $\lambda \in (0, 1)$. That means find the corresponding states $|\psi_i\rangle$ such that

$$\rho = \frac{1}{2} \left(|\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2| \right) \tag{5}$$

(Remark: U can be taken to be real and det(U) = 1 in this case.)