Quantum Information Theory Exercise sheet 3

Lecture: Prof. Dr. Otfried Gühne Exercise: Costantino Budroni

Lecture: Tuesday, 10-12, Room D 120 Exercise: Monday, 15-17, Room B 107

7. The GHZ argument

- (a) Verify that the GHZ state $|\text{GHZ}\rangle = (|000\rangle + |111\rangle)/\sqrt{2}$ is an eigenstate of the operators $\sigma_x \otimes \sigma_y \otimes \sigma_y \otimes \sigma_y \otimes \sigma_x \otimes \sigma_y \otimes \sigma_x \otimes \sigma_x \otimes \sigma_x$. What are the respective eigenvalues?
- (b) Suppose that Alice, Bob and Charlie each have one qubit of the GHZ state. If one of them measures σ_x and the other two measure σ_y simultaneously, what does (a) imply for the measurement results? What if they all measure σ_x ?
- (c) From a local realistic viewpoint, the values of the local observables σ_x and σ_y are independent of any measurement carried out on the other qubits. Show that this assumption leads to a contradiction. (Hint: Calculate the product of the first three operators in (a)).
- (d) What are the local hidden variable bound and the maximal quantum mechanical violation of the Mermin inequality

 $\langle \sigma_x \otimes \sigma_x \otimes \sigma_x \rangle - \langle \sigma_x \otimes \sigma_y \otimes \sigma_y \rangle - \langle \sigma_y \otimes \sigma_x \otimes \sigma_y \rangle - \langle \sigma_y \otimes \sigma_x \otimes \sigma_x \rangle$?

8. Teleportation with a non-maximally entangled state

Alice wishes to teleport a one-qubit state $|\varphi_A\rangle$ to Bob, but instead of a Bell state they share only the non-maximally entangled state $\cos \theta |01\rangle - \sin \theta |10\rangle$. For a given, but unknown input state $|\varphi_A\rangle$, calculate the average fidelity of the teleportation (that is, the squared overlap $|\langle \varphi_A | \varphi_B \rangle|^2$ of the input state $|\varphi_A\rangle$ with the result of the teleportation $|\varphi_B\rangle$).

9. Classical teleportation

Alice tries to teleport a one-qubit quantum state $|\varphi_A\rangle$ to Bob classically in the following way: She measures σ_z on the state $|\varphi_A\rangle$ and sends the result to Bob, who then prepares the state $|\varphi_B\rangle = |0\rangle$ or $|\varphi_B\rangle = |1\rangle$, according to Alice's result.

- (a) What is the average fidelity $|\langle \varphi_A | \varphi_B \rangle|^2$ of this protocol for a given state $|\varphi_A\rangle$?
- (b) What is this fidelity, averaged over all pure one-qubit states $|\varphi_A\rangle$?

(The half-angle formulas $\sin(\theta/2) = \pm \sqrt{\frac{1}{2}(1-\cos\theta)}$ and $\cos(\theta/2) = \pm \sqrt{\frac{1}{2}(1+\cos\theta)}$ may be helpful to solve the integral.)