Quantum Information Theory Exercise sheet 1

Lecture: Prof. Dr. Otfried Gühne Exercise: Costantino Budroni Lecture: Tuesday, 10-12, Room D 120 Exercise: Monday, 15-17, Room B 107

1. Positive semidefinite matrices

Show that for hermitean 2×2 -matrices $A = (a_{ij})$ the following statements are equivalent:

- A has no negative eigenvalues;
- $\langle \psi | A | \psi \rangle \ge 0$ for all vectors $| \psi \rangle$;
- det $A \ge 0$, $a_{11} \ge 0$ and $a_{22} \ge 0$.

2. Bloch vectors

Any single-qubit density matrix ρ can be parameterized in terms of the Pauli matrices by a Bloch vector \vec{a} :

$$\rho = \frac{1}{2} \left(\mathbf{1} + \sum_{i=1}^{3} a_i \sigma_i \right).$$

On the other hand, ρ can be expressed in its eigenbasis as

$$\rho = p |\phi_1\rangle \langle \phi_1 | + (1-p) |\phi_2\rangle \langle \phi_2 |$$

with $0 \le p \le 1$.

- (a) Determine det ρ . Which condition on \vec{a} results from $0 \le p \le 1$? Describe the set of all density matrices geometrically.
- (b) Describe a minimal set of observables, such that from the corresponding mean values \vec{a} and therefore ρ can be reconstructed.
- (c) Determine p as a function of \vec{a} , and compute the eigenvectors $|\phi_i\rangle$ as a function of \vec{a} .

3. Schmidt decomposition

Determine the Schmidt decomposition (in (c) and (d) for all bipartitions) of the following states (this can be done without long computation):

- (a) $(|00\rangle + |01\rangle + |10\rangle |11\rangle)/2$
- (b) $(|00\rangle + |01\rangle + |10\rangle + |11\rangle)/2$
- (c) $(|000\rangle + 2|011\rangle + |110\rangle)/\sqrt{6}$
- (d) $(|000\rangle + i|010\rangle + i|101\rangle |111\rangle)/2$

4. GHZ- and W state

In this excercise we want to investigate two three-qubit states with different entanglement properties: the GHZ state $|\text{GHZ}\rangle = (|000\rangle + |111\rangle)/\sqrt{2}$ and the W state $|W\rangle = (|001\rangle + |010\rangle + |100\rangle)/\sqrt{3}$.

- (a) Determine the reduced two-qubit states. Are they entangled or separable? (Hint: It is known that a two-qubit state ρ is entangled, if its *fidelity* with a Bell state $|BS\rangle$ exceeds 1/2, that is, if $\langle BS | \rho | BS \rangle > 1/2$.)
- (b) Which states arise from $|\text{GHZ}\rangle$ and $|W\rangle$, if σ_z is measured on a single qubit? Note that this depends on the measurement result. Which states arise if σ_x is measured?