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Abstract
Daemonic Ergotropy quantifies the extractable energy from a state of a system S in an
idealised laboratory with respect to a Hamiltonian if an ancilla A that may be correlated
with S can be measured first [G. Francica et al., NPJ Quantum Information 3, 12 (2017)].

We extend the original definition of daemonic ergotropy to allow for generalised
measurements and provide a multipartite generalisation. We propose a see-saw algorithm
to find an optimal measurement and give analytical results for some classes of states.
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Preface

This work is about energy extraction from quantum systems. Unlike other works [1]
that are closer related to classical thermodynamics the main object under study is not a
system in a heat bath. Instead of dealing with thermalisation, the system is placed in an
idealised laboratory, in which an experimenter has full control over the unitary evolution
of a given state. This sets the frame in which energy extraction is discussed here and
the fundamental quantity is ergotropy [2], which is the maximal energy decrease a state
can experience with respect to a reference Hamiltonian undergoing any arbitrary unitary
evolution [2].

As always in this kind of issues, it is for a daemon to infuse them with just the right
zest. Suppose, a daemon has access to an ancilla, which may be correlated with the
system. Then, the energy it can extract from the system – the daemonic ergotropy –
will be larger than the ergotropy because the daemon can perform a measurement on
the ancilla and in that way learn something about the system before starting to extract
energy [3].

In this work, we focus on the question what the optimal measurement is and how
to find it. We also suggest to allow for generalised measurements in order to exploit
the daemon’s full potential and reinforce this suggestion by providing an example where
the daemon can extract more energy using a generalised measurement than it could
using a projective one. We however also show for two classes of states, pure states and
quantum-classical states, that projective measurements are optimal.

Before addressing these questions, we begin with a brief overview on operational
quantum mechanics in chapter one. Since correlations are key for the daemons ability
to increase energy extraction, we discuss this topic in the second chapter, focusing on
entanglement and discord. In the third chapter, we discuss the two works that introduce
ergotropy and daemonic ergotropy, which provides the basis for our own considerations
in the remaining chapters. In chapter four, we discuss daemonic gain for three-qubit
systems before we address questions about the optimal measurement in the fifth chapter.
We close with discussing a multipartite generalisation of daemonic ergotropy.

The appendix offers a short discussion of semidefinite programming, which we used
in our algorithm to find the optimal measurement.
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Chapter 1

States, Channels and
Measurements

The basic framework in quantum mechanics to describe experiments is given by mainly
three concepts. States describe the objects under study, channels describe how states
can evolve or be manipulated and measurements describe how a measurement result is
obtained from a given state. In this section we are going to discuss these concepts one
after another.

1.1 States
In quantum mechanics, two different mathematical objects can serve as states. The
first one, the state vector, is a unit-length vector in a complete inner product space,
the Hilbert space [4]. Conversely, every unit vector in the Hilbert space is a state of
the system, which gives rise to the superposition of states. This is a concept that is
unknown in classical physics and leads to non-classic features such as entanglement and
discord. If we consider two systems, A and B, with Hilbert spaces HA and HB, then
the joint system has a state in HA ⊗ HB, which is the Hilbert space spanned by the
basis { |i〉A⊗ |j〉B}, where { |i〉A} and { |i〉B} form the bases of HA and HB. If the joint
system is in a product state |Ψ〉AB, which means that there are vectors |φ〉A and |ψ〉B
such that |Ψ〉AB = |φ〉A |ψ〉B, then one can interpret this as system A being in state
|φ〉A and system B being in the state |ψ〉B. However, if system AB is not in a product
state, this interpretation fails. One can then not find vectors in the individual Hilbert
spaces, that would describe the respective subsystem correctly. Thus, the state |Ψ〉AB
is said to be entangled. Since one still needs to find a valid description for subsystems,
the concept of a state needs to be extended.

This extension is found in density operators. Those are self adjoined, positive
semidefinite operators with trace one. From now on, we will refer to density opera-
tors as states and denote the set of states acting on Hilbert space H as S(H). States
that can be described with a state vector |φ〉 are called pure states and their density
operator is the projector on the state vector, |φ〉〈φ|. Any non-pure state is a mixed
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1. States, Channels and Measurements 1.2. Channels

state. The motivation to call states pure or mixed is the fact that any density matrix %
can be diagonalised and as such is a convex combination of pure states % =

∑
i pi|i〉〈i|

which provides a correct description if the system is in one of the pure states |i〉, but
one does not know in which one and therefore assigns probabilities pi to the different
cases. Anyway, this interpretation is not always possible, because mixed states are also
used to describe parts of larger, entangled system in a pure state. If a system consists
of two parts A and B with state spaces S(HA) and S(HB), one can compute the partial
trace to yield the reduced state of system A as %A = TrB (%AB), where %AB is the joint
state. In fact, any mixed state %A =

∑
i pi|i〉〈i| can be expressed as a reduced state from

a pure state |ψ〉AB =
∑
i
√
pi |i〉A ⊗ |i〉B, the purification of %A.

We will later return to discussing state properties in the section about entanglement
right after covering channels and measurements.

1.2 Channels
Channels describe state transformations. Therefore, a channel is a linear map

Λ : S(H)→ S(K). (1.1)

Channels may also capture changes in the dimension of the state space which is why
the Hilbert spaces H and K do not necessarily coincide. Examples for this would be
attaching or detaching an ancilla. Since every output of the mapping is a state again,
channels are positive (map positive operators to positive operators) and trace-preserving.
Mappings that are otherwise identical to channels but map states to subnormalised states
are called operations. In this case, the process described by the operation only happens
with some probability.

In general, a state % =
∑
i pi%i can be decomposed into convex combinations in

different ways and the evolution of the state should be determined by the evolution of
its constituents such that

Λ(%) =
∑
i

piΛ(%i). (1.2)

Here, the linearity of the channel ensures that the resulting state after applying the
channel does not depend on the chosen convex decomposition of the input state.

If a channel Λ is applied only to part of a bigger system, the whole system will
still be in a state after applying the channel. Hence, channels are not only positive but
completely positive which means that any finite dimensional extension Λ ⊗ 1d of the
channel is still positive.

These considerations lead to the definition of a channel in the following way.

Definition 1.1 (Channel [4]). A channel is a linear, completely positive and trace
preserving mapping Λ : S(H)→ S(K).

So far, our notion of a channel is rather abstract. Therefore, we will now present
the Choi-Jamiolkowski isomorphism. To any linear map between a n-dimensional and a
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1. States, Channels and Measurements 1.2. Channels

m-dimensional Hilbert space, for example a channel, this isomorphism assigns a linear
operator on an (n × m)-dimensional Hilbert space, called the Choi matrix[4]. Choi’s
theorem will then allow us to derive the two most popular representations of channels:
The Stinespring dilation and the Kraus form. In the following, we denote the set of
bounded linear operators on a Hilbert space H as L(H).

Definition 1.2 (Choi-Jamiolkowski isomorphism [4]). The Choi-Jamiolkowski isomor-
phism J : φ 7→ Cφ maps a linear map φ : L(Hn)→ L(Hm) to the Choi matrix

Cφ = (1n ⊗ φ)
n∑
i,j

|ii〉〈jj| =
∑
i,j

|i〉〈j| ⊗ φ(|i〉〈j|) (1.3)

for a fixed basis { |i〉} on Hn.

The inverse mapping J−1 : Cφ 7→ φ is [4]

J−1(Cφ)(X) = Tr1
(
(XT ⊗ 1)Cφ

)
(1.4)

where X is the operator the mapping φ would act on and Tr1 () the trace over the first
system. This can be easily shown.

J−1(Cφ)(X) = Tr1
(
(XT ⊗ 1)Cφ

)
(1.5)

= Tr1

∑
i,j

XT |i〉〈j| ⊗ φ(|i〉〈j|)

 (1.6)

=
∑
n,i,j

〈n|XT |i〉|j〉〈n|φ(|i〉〈j|) (1.7)

=
∑
i,j

〈j|XT |i〉φ(|i〉〈j|) (1.8)

=
∑
i,j

Xijφ(|i〉〈j|) (1.9)

= φ(
∑
i,j

Xij |i〉〈j|) = φ(X). (1.10)

Theorem 1.1 (Choi’s Theorem [5]). The following statements concerning a linear map
φ : L(Hn)→ L(Hm) are equivalent:

1. 1n ⊗ φ is a positive map. (φ is n-positive)

2. The Choi matrix of φ, Cφ is positive semidefinite.

3. φ is completely positive.

Proof.
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1. States, Channels and Measurements 1.2. Channels

1. ⇒ 2. The Choi matrix of φ is positive, because φ is n-positive and
∑
ij |ii〉〈jj| up

to a normalisation is a (positive semidefinite) pure state, so it is positive semidefinite as
well.

2. ⇒ 3. We can diagonalise Cφ to write

Cφ =
nm∑
i

|ψi〉〈ψi| (1.11)

in terms of the non-normalised states |ψi〉. Note, that we could only absorb the eigen-
values of Cφ into the definitions of the ψi because Cφ is positive by assumption. If we
now define

Pk = 〈k| n ⊗ 1m, (1.12)

we can compute

PkCφP
†
l = φ( |k〉n〈l| n) =

nm∑
i

Pk|ψi〉〈ψi|P †l . (1.13)

Defining operators Ki such that

Ki |k〉n = Pk |φi〉 (1.14)

then allows us to write

φ( |k〉n〈l| n) =
nm∑
i

Ki |k〉n〈l| nK†i . (1.15)

Because φ is linear, we can represent φ in the above way for any A ∈ L(Hn) it could act
on:

φ(A) = φ(
∑
k,l

Akl|k〉〈l|) (1.16)

=
∑
k,l

Aklφ(|k〉〈l|) (1.17)

=
∑
k,l

Akl
∑
i

Ki|k〉〈l|K†i (1.18)

=
∑
i

KiAK
†
i . (1.19)

This is known as the Kraus form of φ and the operators Ki are called Kraus operators.
From the Kraus form, we can easily deduce that φ is completely positive. Therefore, we
first note that for any positive operator A also (1⊗K)A(1⊗K†) is positive as we can
write

〈ψ| (1⊗K)A(1⊗K†) |ψ〉 = 〈ψ̃|A |ψ̃〉 = 〈ψ̃|A |ψ̃〉 ≥ 0 (1.20)

with |ψ̃〉 being some not necessarily normalised vector. Trivially, sums of positive oper-
ators are positive again, hence any map with a Kraus form is completely positive.
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3. ⇒ 1. This is trivially true.

For a channel, we additionally require the trace to be preserved. Therefore, a map
is a channel, if and only if it has a Kraus form and is trace preserving,

Tr (φ(A)) = Tr
(∑

i

KiAK
†
i

)
= Tr

(
A
∑
i

K†iKi

)
= Tr (A) (1.21)

implying ∑
i

K†iKi = 1. (1.22)

If the trace is not preserved but reduced, the map is an operation.
Another common way of representing a channel is provided by Stinespring’s dilation

theorem. It states that any channel can be modeled by a (joint) unitary transformation
of the system and an environment, which initially are in a product state % ⊗ ξ. The
new state of the system after action of the channel is then recovered by tracing out the
environment.

Theorem 1.2 (Stinespring’s dilation [4]). To every channel Λ acting on a system in
some state % ∈ S(H), there exists a Hilbert space E with a pure state ξ ∈ S(E) and a
unitary acting on H ⊗ E, such that

Λ(%) = TrE
(
U(%⊗ ξ)U †

)
. (1.23)

Proof. A direct proof of a even slightly more general version of the theorem can be found
for example in [6]. We are instead going to use a derivation in [7] and start with the
Kraus form of Λ,

Λ(%) =
∑
i

Ki%K
†
i . (1.24)

Given the Kraus operators, one can always define a unitary U such that

U |φ〉H |i〉E =
∑
m

(Km ⊗ 1) |φ〉H |i+m〉E . (1.25)

One can see that U is indeed unitary by checking that it preserves scalar products [7]

〈φ, 0|U †U |φ, 0〉 =
∑
m,n

〈φ,m| (K†m ⊗ 1)(Kn ⊗ 1) |φ, n〉 (1.26)

=
∑
m,n

〈φ|K†mKn |φ〉 ⊗ 〈m|n〉 (1.27)

= 〈φ|
∑
n

K†nKn |φ〉 (1.28)

= 〈φ|1 |φ〉 (1.29)
= 1. (1.30)
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1. States, Channels and Measurements 1.3. Measurements

Plugging U into equation (1.23) and choosing ξ = |0〉〈0| yields

TrE
(
U(%⊗ |0〉〈0|)U †

)
= TrE

∑
n,l

Kn%K
†
l ⊗ |n〉〈l|

 (1.31)

= TrE

∑
n,l

Kn%K
†
l ⊗ |n〉〈l|

 (1.32)

=
∑
n

Kn%K
†
n, (1.33)

which ends the proof.

One interpretation of Stinespring’s dilation theorem is that channels describe trans-
formations on subsystems of systems that in whole evolve unitarily.

1.3 Measurements
A description of a measurement in quantum mechanics should provide two pieces of
information. First, it should define the probabilities for every measurement outcome
i ∈ Ω in the set of outcomes Ω for a given state. Second, it should define the state of
the system after it has been measured, depending on the measurement outcome. In this
sense, a measurement is a mapping that maps the state that shall be measured to the
post-measurement state. Therefore, if the set of outcomes Ω is discrete, one can define a
measurement operator Mi for each outcome i, such that the state of the system in state
% will be proportional toMi%M

†
i and the probability pi of the outcome i will be encoded

in the normalisation of Mi%M
†
i such that pi = Tr

(
%M †iMi

)
[7].

A measurement is called complete, if one obtains an outcome every time the mea-
surement is performed. Then, the probabilities pi have to sum up to one. Demanding
completeness is not a restriction on the measurement, since one can always treat the
case in which no outcome was obtained as a measurement result by simply introducing
one more outcome label.

If we are only interested in the probabilities pi = Tr
(
%M †iMi

)
for the various out-

comes but not in the post-measurement states, we do not need to know the measurement
operators and it suffices to deal with the effects Ei = M †iMi instead. From the com-
pleteness of the measurement it follows that

∑
iEi = 1 because

∑
i pi =

∑
iTr (%Ei) =

Tr (%
∑
iEi) = 1. An operator is an effect, if it is positive-semidefinite with eigenvalues

lower or equal to one which is fulfilled by the effects Ei.

1.3.1 Positive Operator Valued Measures

If the set of measurement outcomes Ω is not discrete, one can not simply define a
measurement by explicitly assigning an effect to every possible outcome. In this case,
we need a mapping that maps a subset of outcomes to an effect which will then allow

7



1. States, Channels and Measurements 1.3. Measurements

us to compute the probability for the outcome to be in the respective subset. Such a
mapping is called positive operator valued measure (POVM). It is defined as follows:

Definition 1.3 (POVM [4]). A positive operator-valued measure (POVM) is a mapping
P : F → E(H) such that

1. P (∅) = 0,

2. P (Ω) = 1,

3. P (∪iXi) =
∑
i P (Xi), for any sequence {Xi} of disjoint sets in F ,

where F is a sigma-algebra on Ω (collection of subsets of Ω including the empty set and
Ω itself that is closed under countable unions and complement) and E(H) is the set of
effects on the Hilbert-space H.

In the definition, choosing F to be a sigma-algebra ensures that for outcome subsets
of defined probability also the probabilities of their complements and countable unions
are well defined. Lastly, the measurement is required to be complete, so the probability
for the event ’any outcome’ should be one and the probability for the event ’no outcome
at all’ should be zero.

In future discussions when dealing with a discrete set of outcomes we will identify a
POVM P with the sequence {Ei := P (i)} and refer to the effects Ei as elements of the
POVM [4].

Sometimes, it can be of interest to find the optimal POVM for a task. If the objective
function of the POVM is convex, it is helpful to note that POVMs form a convex set
and in d dimensions an extremal POVM contains at most d2 elements [8].

1.3.2 Projection Valued Measures

An important class of POVMs are projection valued measures (PVMs). These are
POVMs with elements that are all projectors. For PVMs the measurement operators
coincide with the effects. This implies that measurements described by PVMs are re-
peatable, which means that if the same PVM measurement is performed a second time,
the post measurement states will not change, since the measurement operators are pro-
jectors.

1.3.3 The Naimark Extension

POVMs and PVMs are related to each other by the following fact: Any POVM can be
completed to a PVM on an extended Hilbert space by a procedure called Naimark exten-
sion [9]. This means that given a projective measurement on a system, the measurement
behaves like a POVM on a reduced system.

Consider a PVM with rank-one elements Pi acting on Hilbert spaceH with dimension
dH . Then, dH orthonormal vectors |wi〉 ∈ H define such a PVM if one sets Pi := |wi〉〈wi|.

Now consider a POVM with N rank-one elements Ai = |ai〉〈ai| acting on H and
N ≥ dH . Since N ≥ dH , the POVM does not refer to a projective measurement. The

8



1. States, Channels and Measurements 1.3. Measurements

Naimark extension now works in the following way: We introduce a second Hilbert space
K with dimension N − dH and then find N orthonormal vectors |wi〉 in the extended
Hilbert space H ⊕K of dimension N , where the projection of any |wi〉 onto H shall be
|ai〉. Hence, we have to find N vectors |bi〉 on K, such that the vectors

|wi〉 = |ai〉 ⊕ |bi〉 (1.34)

form an orthonormal basis of H ⊕K.
If we choose bases for the Hilbert spaces H and K, we can define a matrix α with

column vectors |ai〉 and a matrix β with column vectors |bi〉. Demanding that the
vectors |wi〉 are orthonormal is then equivalent to demanding that the matrix

M =
(
α
β

)
(1.35)

is unitary. This implies

MM † =
(
α
β

)
(α† β†) =

(
αα† αβ†

βα† ββ†

)
!= 1N (1.36)

⇔ αα† = 1dH
, αβ† = βα† = 0, ββ† = 1N−dH

. (1.37)

The first equation (1.37) is automatically satisfied because the elements of a POVM sum
up to identity. The second equation means that the dH row vectors of α are orthogonal
to the N −dH row vectors of β in an N -dimensional space. Such a β can be found, since
the row vectors of α only span a dH -dimensional subspace. One can even find the row
vectors of β such that they are mutually orthonormal, such that the third equation is
satisfied as well. The vectors bi we aimed to in the beginning are then defined by the
column vectors of β and a projective measurement on the extended space is found.

For every POVM P that does not have rank-one elements exclusively, one can define
a second POVM P ′ for which every element of the original POVM has been split up into
rank-one effects. Then, a projective measurement on an extended space can be found
and the original POVM is obtained by assigning the same label to the elements of P ′
that constitute one element of P .

1.3.4 Ozawa’s Theorem

Ozawa’s theorem offers another way of reducing a generalised measurement to a projec-
tive measurement on an extended space. It states that for any generalised measurement
with measurement operators Mm, one can append an ancilla in a pure state |0〉〈0|A
to the system and find a unitary U acting on system and ancilla such that the post-
measurement states

Mm%M
†
m = TrA

(
PmU(%⊗ |0〉〈0|)U †

)
(1.38)

are the same as if one had performed a projective measurement Pm = 1S ⊗ |m〉〈m|A
after the joint unitary evolution U . One can prove this statement in exactly the same
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1. States, Channels and Measurements 1.3. Measurements

way as Stinespring’s dilation theorem by showing that the above equation holds for the
unitary

U |φ〉H |i〉A =
∑
m

(Mm ⊗ 1) |φ〉H |i+m〉A. (1.39)

In case we are only interested in the probabilities pm = Tr
(
Mm%M

†
m

)
of the out-

comes but not in the post-measurement states, the measurement on the system can be
represented by a joint projective measurement on system and ancilla with projectors
U †PmU . This can be seen easily by applying the trace in equation (1.38) and exploiting
that the trace is cyclic afterwards.

10



Chapter 2

Multipartite Systems,
Entanglement and Classicality

2.1 Entanglement
A pure state is entangled, if it is not a product of two states. Mixtures of product states

%sep =
∑
i

pi%
A
i ⊗ %Bi . (2.1)

are called separable. If a state is not separable, it is entangled [10]. In multipartite
systems one distinguishes further between fully separable states, biseparable states and
genuinely multipartite entangled states. Fully separable states are convex combinations
of pure states that are product in every bipartition. Pure states that are a product
regarding one bipartition and convex combinations of such pure states are called bisep-
arable. Note, that the composing states do not need to be products with respect to the
same bipartition. If a state is neither fully separable nor biseparable it is called genuinely
multipartite entangled [10].

In the following we will discuss some ways to find out whether a state is separable
or entangled.

2.1.1 The Positive Partial Transpose Criterion

There are many criteria for separability [10] but we will focus on the two that are used
in this work.

The PPT, or positive partial transpose criterion is based on the observation that for
any separable state

% =
∑
i

pi%
A
i ⊗ %Bi (2.2)

also the partial transpose

%TA =
∑
i

pi(%Ai )T ⊗ %Bi (2.3)

11
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refers to a state, since the transpose is a positive and trace preserving map. However, the
partial transpose of an entangled state is not necessarily a state anymore, as the partial
transpose of the Bell state |ψ〉 = 1/2( |00〉 + |11〉) is not positive. Although the partial
transpose of a state depends on the chosen basis, its spectrum does not, which makes
the PPT criterion basis independent [10]. For qubit-qubit and qubit-qutrit systems, the
PPT criterion is not only a necessary but also a sufficient criterion for separability [11].

2.1.2 Bell Inequalities

Another way of proving a state is entangled is the violation of a Bell inequality. A Bell
inequality establishes bounds on a function of expectation values that are obeyed by any
system that allows for a description with a local hidden variable model (LHV). This is
a model in which two assumptions, namely realism and no-signaling, are met. In the
following, we discuss these assumptions and derive the general form of a bipartite LHV
model. With this, we can reproduce the upper bound of the most famous Bell inequality,
the Clauser-Horne-Shimony-Holt inequality. This inequality can be violated in quantum
mechanics. However, separable states can never violate a Bell inequality, since they can
always be described with a local hidden variable model, which is why Bell inequalities
can be used to detect entanglement.

In the end, we discuss two Bell inequalities for the tripartite case.

Local Hidden Variable Models

Consider a setting with two parties in which Alice and Bob can both choose a measure-
ment from their respective set of local measurements {A1, . . . , AI} and {B1, . . . , BJ}.
Alice and Bob perform measurements at the same time and they evaluate their results
together, so they record one outcome mij = (ai, bj) if Alice obtained ai after perform-
ing measurement Ai and Bob obtained bj after performing measurement Bj . Alice and
Bob can now extrapolate probability distributions p(mij) for their outcomes mij for all
possible values of i and j. If Alice and Bob believe in realism however, they believe that
in every instance of the experiment also combinations of measurements that were not
performed would have obtained a value and thus it should be possible to find a joint
probability distribution p(m11,m12, . . .) that has the probability distributions p(mij) as
marginals [12]. This is equivalent to the belief that for any pair of measurements the
outcome is predetermined by some hidden variable λ, since one can always write

p(m11,m12, . . .) =
∫

dλp(λ)χ(m11,m12, . . . |λ) (2.4)

where χ : RIJ+1 7→ {0, 1} is a deterministic function and we assumed a discrete set
of outcomes. It can be easily understood that this is possible by considering λ uniformly
distributed on the interval [0, 1] and defining

χ(m11,m12, . . . |λ) =
{

1, λ ≤ p(m11,m12, . . .)
0, otherwise.

(2.5)
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2. Multipartite Systems, Entanglement and Classicality 2.1. Entanglement

We can now write down a model for the probability distributions p(mij) by computing
the marginal

p(mij) =
∑

mkl|k 6=i,l 6=j
p(m11,m12, . . .) (2.6)

=
∫

dλp(λ)
∑

mkl|k 6=i,l 6=j
χ(m11,m12, . . . |λ) (2.7)

=
∫

dλp(λ)χ̃(mij |λ), (2.8)

where χ̃(mij |λ) = χ̃((ai, bj)|λ) again only takes values zero and one. Since χ̃ is a valid
probability distribution, it will only take the value 1 for exactly one value of ai and bj
for any given λ. Hence, it can be factorised as

χ̃((ai, bj)|λ) = χ̃Aij(ai|λ)χ̃Bij(bj |λ), (2.9)

where the factors χAij and χBij may still depend on the considered pair of measurements
indicated by the indices i, j. We can now plug this into equation (2.8) to yield a realistic
model for the experimentally quantifiable probability distributions

p(ai, bj) =
∫

dλp(λ)χ̃Aij(ai|λ)χ̃Bij(bj |λ). (2.10)

Since Alice and Bob perform their measurements always at the same time, they will
also assume no-signaling. This means, that Bob’s choice of the measurement setting
cannot affect Alice’s outcome and vice versa such that

p(ai) =
∑
bj

p(ai, bj) ∀j (2.11)

and

p(bj) =
∑
ai

p(ai, bj) ∀i (2.12)

holds. If we now impose this additional restriction on our realistic model stated in
equation (2.10), we directly obtain

χ̃Aij = χ̃Aik ∀j, k (2.13)

and

χ̃Bij = χ̃Bnj ∀i, n (2.14)

which allows us to write down a realistic, non-signaling model

p(ai, bj) =
∫
p(λ)χ̃A(ai|λ)χ̃B(bj |λ) dλ. (2.15)

13



2. Multipartite Systems, Entanglement and Classicality 2.1. Entanglement

This is called a local hidden variable model and is oftentimes stated in the slightly
different notation

p(a, b|i, j) =
∫
p(λ)χ̃A(a|i, λ)χ̃B(b|j, λ) dλ. (2.16)

Sometimes, the functions χ̃A(a|i, λ) and χ̃B(b|j, λ) are not assumed to only take values
zero and one. However, this approach is completely equivalent, since one apply the same
argument as in equation (2.5) on both functions. This generates two additional hidden
variables that can later on be unified to one new hidden variable λ̃ , which results in an
equation of form (2.16) again.

The CHSH Inequality

For a bipartite system the most common Bell inequality is the Clauser-Horne-Shimony-
Holt (CHSH) inequality

〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉 ≤ 2, (2.17)

where A1, A2 are local measurements on the first, B1, B2 are local measurements on
the second system and the outcomes a, b can take on values ±1. In order to verify
the upper bound of 2, we first note that since the probability distribution p(a, b|i, j) is a
convex combination in λ, the left hand side of the CHSH-inequality can never exceed the
maximal value for a fixed λ. In this case, the joint expectation values factorise and the
local expectation values are measurement results, that are obtained with certainty. We
denote these outcomes of the measurements A1, A2, B1, B2 as α1, α2, β1, β2 respectively.
For a fixed local hidden variable, the CHSH inequality then reads

α1β1 + α2β1 + α1β2 − α2β2 ≤ 2. (2.18)

After factorising the bound of the CHSH inequality becomes obvious.
When trying to prove a violation of a Bell inequality experimentally, one also assumes

that the joint expectation values, which are given through the LHV model as

〈AiBj〉 =
∫

dλp(λ)
∑
a,b

χ̃A(a|i, λ)χ̃B(b|j, λ)ab (2.19)

can be estimated by computing the average value of the outcomes for the AiBj mea-
surement. This can fail, if the performed measurement is influenced by the value of the
local hidden variable (freedom of choice loophole [13]), or if the detected events are not
a fair sample (detection loophole).

LHV Model for Separable States

In quantum mechanics, there is always a local hidden variable model for fully separable
states. We can easily see this by evaluating equation (2.16) in a quantum mechanical

14



2. Multipartite Systems, Entanglement and Classicality 2.1. Entanglement

framework. For any measurements with labels i, j we have POVMs Ai, Bi that assign
effects Aia, B

j
b to any outcomes a, b. We can then write

P (a, b|i, j) = Tr
(∑

k

pk%
A
k ⊗ %Bk (Aia ⊗B

j
b )
)

(2.20)

=
∑
k

pk Tr
(
%AkA

i
a

)
︸ ︷︷ ︸
pA(a|i,k)

Tr
(
%Bk B

j
b

)
︸ ︷︷ ︸
pB(b|j,k)

, (2.21)

so the joint probabilities behave according to a local hidden variable model with local
hidden variable k. If any kind of states are allowed, the CHSH inequality can be violated
and the left hand side of the inequality can take on values up to 2

√
2, the Tsirelson bound.

This maximal violation is obtained for the Bell state |ψ〉 = 1/
√

2( |00〉+ |11〉).
Note, that entanglement is no sufficient condition to violate a Bell inequality and

there are in fact entangled states for which a local hidden variable model can be found
[10].

Mermin’s Inequality and Svetlichny’s Inequality

In the discussion of the CHSH inequality, we saw that is sufficient to consider the out-
comes for a optimal value of the local hidden variable. We therefore adopt the notation
where αi, βj , γk denote the outcomes for the measurements Ai, Bj , Ck for the fixed value
of the local hidden variable to derive tripartite Bell inequalities from the CHSH inequal-
ity. One can write down two versions of the CHSH inequality in this notation:

S2 := α1β1 + α1β2 + α2β1 − α2β2 ≤2 (2.22)
S′2 := α2β2 + α2β1 + α1β2 − α1β1 ≤2 (2.23)

where both bounds can be saturated simultaneously. Now we introduce the third system
and write

S3 := S2(γ1 + γ2) + S′2(γ1 − γ2) = 2(α2β1γ1 + α1β2γ1 + α1β1γ2 − α2β2γ2) ≤ 4, (2.24)

which directly yields Mermin’s inequality [14]

〈A2B1C1〉+ 〈A1B2C1〉+ 〈A1B1C2〉 − 〈A2B2C2〉 ≤ 2. (2.25)

The bound will be obtained for extremal values (±2) of S2 and S′2. Mermin’s inequality
in principle captures all kinds of non-local correlations including two party correlations.
In contrast, for deriving Svetlichny’s inequality, one only employs a bipartite local hidden
variable model, treating Alice and Bob as one party and Charlie as the other. Conse-
quently, for a fixed hidden variable the pairs outcomes (αiβj) are fixed as well as the
outcomes γk for Charlie. However, there are not necessarily fixed values for the local
outcomes of Alice and Bob, since these two systems are not described by a local hidden
variable model. Thus, non-local correlations between Alice and Bob only will not lead
to a violation of Svetlichny’s Inequality.
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One can now construct Svetlichny by calculating S2γ1 − S′2γ2. This yields

(α1β1)γ1 + (α1β1)γ2 + (α1β2)γ1 − (α1β2)γ2

+(α2β1)γ1 − (α2β1)γ2 − (α2β2)γ1 − (α2β2)γ2 ≤ 4 (2.26)

and the upper bound is easily verified by rewriting the left-hand side as

((α1β1)− (α2β2))(γ1 + γ2) + ((α1β2) + (α2β1))(γ1 − γ2). (2.27)

Svetlichny’s equality then reads [14]

〈A1B1C1〉+ 〈A1B1C2〉+ 〈A1B2C1〉 − 〈A1B2C2〉
+〈A2B1C1〉 − 〈A2B1C2〉 − 〈A2B2C1〉 − 〈A2B2C2〉 ≤ 4 (2.28)

and since it is symmetric with respect to all three parties any nonlocal correlations that
only concern two of the parties will not lead to a violation of Svetlichny’s equality. Hence,
a violation of Svetlichny’s inequality indicates a genuinely multipartite entangled state.

2.1.3 Entanglement Measures and Maximally Entangled States

Entanglement measures quantify entanglement. There is no unique way to do this, as
many different measures have been proposed, but in order to qualify as an entangle-
ment measure, some requirements have to be met. First, the entanglement of separable
states is zero. Second, local operations and classical communication (LOCC) should
not increase the entanglement of a state. In particular, this implies that entanglement
measures are invariant under local unitary transformations [10].

Due to these conditions, there is only one possible candidate as a unique maximally
entangled state for two qubits. Since entanglement measures are invariant under local
unitaries, the Schmidt decomposition of any state is equivalent to

|ψ〉 =
√
λ |00〉+

√
1− λ |11〉. (2.29)

The invariance under local unitaries ensures symmetry under exchange of λ and 1− λ.
Thus, if there is one maximally entangled state, it must be the Bell state

|ψ〉 = 1√
2

( |00〉+ |11〉). (2.30)

This is motivation to capture the entanglement of a pure state by quantifying the min-
imal amount of superpositions for any decomposition of the state in a product basis.
One way of doing this in the bipartite case is calculating the entropy of the Schmidt
coefficients. For pure states, this is equivalent to the entropy of the reduced density
matrix. This entanglement measure is the entanglement of formation [10]. For mixed
states it is extended using the convex roof construction. Given a state % =

∑
i pi|φi〉〈φi|

the entanglement is then defined as

E(%) = inf
pi, |φi〉

∑
i

piE( |φi〉), (2.31)
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where all possible decompositions of % are considered. This infimum is generally hard
to find but for two qubits an analytical solution involving the concurrence is known.
Concurrence is an entanglement measure, defined as

C( |φ〉) =
√

2(1− Tr
(
%2
A

)
) (2.32)

for pure states and its convex roof for two qubits is

C(%) = max{0, λ1 − λ2 − λ3 − λ4}. (2.33)

The λi are the eigenvalues of the matrix X =
√√

%(σy ⊗ σy)%∗(σy ⊗ σy)
√
% in decreasing

order. Now, the entanglement of formation is

EF (%) = h(1
2(1 +

√
1− C2(%))) (2.34)

with the binary entropy function h(p) = −p log(p)− (1− p) log(1− p) [10].
Another way of creating an entanglement measure is utilising the PPT criterion to

define the negativity as

N(%) = 1
2(‖%TB‖1 − 1) (2.35)

with the trace norm ‖%TB‖1 = Tr
(√

(%TB )†%TB

)
. Diagonalising %TB and using that %TB

has trace one shows that one can rewrite the negativity as

N(%) = 1
2
∑
i

|λi| − λi (2.36)

where λi are the eigenvalues of %TB . This means that the negativity is equal to the sum
of the negative eigenvalues of the partial transpose matrix. Later, when dealing with
three qubits, we will calculate the geometric average of the negativities with respect to
every bipartition and simply refer to this quantity as negativity again.

2.1.4 Three Qubits

We have argued in the previous section, why

|ψ〉 = 1√
2

( |00〉+ |11〉) (2.37)

is the maximally entangled two qubit state. In higher dimensions one cannot recognise
one state as maximally entangled. Instead, entangled states split up into several classes,
so-called SLOCC classes, since states within each class are related to each other via
invertible stochastic local operations and classical communication (SLOCC). It has been
shown in [15] that invertible SLOCCs act as invertible local operators such as

|φ〉 = A⊗B ⊗ . . .⊗N |ψ〉 (2.38)
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with invertible operators A,B, . . . , N on a state. For three qubits pure states can be
divided into states that are completely product, bipartite entangled states and two classes
of genuinely tripartite entangled states: The GHZ-class and the W-class. These classes
are named after their most famous members, the Greenberger-Horne-Zeilinger state,
short GHZ-state

|GHZ〉 = 1√
2

( |000〉+ |111〉) (2.39)

and the W-state

|W 〉 = 1√
3

( |001〉+ |010〉+ |100〉). (2.40)

These states are maximally entangled in a sense that any three-qubit state that is neither
in the GHZ-class nor the W-class can be reached via SLOCC operations from these states.
Under local unitaries, any state can be brought into the form

|ψ〉 = λ0 |000〉+ λ1e
iφ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉. (2.41)

Alternatively, also a decomposition in the form

|ψ〉 = κ0e
iθ |000〉+ κ1 |001〉+ κ2 |010〉+ κ3 |100〉+ κ4 |111〉 (2.42)

which is a superposition of a GHZ-class and a W-class state is also possible [16]. However,
the coefficients κi are not always unique in the second decomposition (equation 2.42).

2.2 State Discrimination
The general task in state discrimination is to find out in which state a system is prepared,
given an ensemble of possible states %k that occur with a priori probabilities pk [17]. For
non-orthogonal states, this task can not be done perfectly [7]. If one can discriminate
between two states, say %0 and %1 perfectly, then there needs to be an effect E, such
that Tr (%0E) = 0 and Tr (%1E) = 1. Since E ≤ 1, Tr (%1E) = 1 implies that E is a
sum of a projector on the range of %1 and an effect acting on the complementary space.
From Tr (%0E) = 0 we can then conclude that %0 is a mixture of states that lie in the
complementary space exclusively and so %0 is orthogonal to %1. For orthogonal states,
an optimal POVM can be chosen to be a PVM and its elements are the projectors acting
on the orthogonal subspaces defined by the ranges of the states.

2.2.1 Unambiguous State Discrimination

If the ensemble contains non-orthogonal states, an unambiguous distinction is in gen-
eral not possible. In (optimal) unambiguous state discrimination one therefore seeks a
measurement that allows unambiguous state discrimination for some outcomes while the
probability for ambiguous outcomes is as low as possible [18].
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Optimal unambiguous state discrimination was an early example for a task that
can be better performed with generalised measurements rather than projective mea-
surements. We therefore discuss the following problem which was first understood by
Ivanovic and Peres [19] [20]. Consider an ensemble consisting of two non-orthogonal
pure states |ψ0〉 and |ψ1〉 occurring with probabilities p0 ≤ p1 without loss of gener-
ality. Then the optimal projective measurement has the elements Π0 = |ψ0〉〈ψ0| and
Π1 = 1 − Π0, where outcome 1 implies that the state |ψ1〉 was present and outcome 0
is inconclusive. The probability of this outcome is

p = Tr (|ψ0〉〈ψ0|[p0|ψ0〉〈ψ0|+ p1|ψ1〉〈ψ1|]) = p0 + p1|〈ψ0|ψ1〉|2. (2.43)

However, if we use a POVM, we can have two conclusive results corresponding to the
elements

E0 = α0(1− |ψ1〉〈ψ1|) (2.44)
E1 = α1(1− |ψ0〉〈ψ0|) (2.45)

that are completed by an element corresponding to an inconclusive result

E2 = 1− E0 − E1 = (1− α0 − α1)1+ α0|ψ1〉〈ψ1|+ α1|ψ0〉〈ψ0|. (2.46)

The factors α0, α1 ∈ [0, 1] are necessary to ensure E2 � 0. Now the probability for an
inconclusive outcome is

p = Tr (E2(p0|ψ0〉〈ψ0|+ p1|ψ1〉〈ψ1|) (2.47)
= 1− (1− |〈ψ0|ψ1〉|2)(α0p0 + α1p1). (2.48)

This is better than what one could achieve with PVMs. To see this, consider the simple
case p0 = p1 = |〈ψ0|ψ1〉|2 = 1/2. For symmetry reasons assume that α0 = α1. We now
want to choose α0, α1 optimal. Therefore, we first calculate the eigenvalues of E0 + E1

λ1,2 = 1
2(α0 + α1)±

√
(α0 + α1)2

4 − α0α1(1− |〈ψ0|ψ1〉|2) (2.49)

and note that for an optimal measurement α0 and α1 will be chosen such that E2 becomes
rank-one and therefore the larger eigenvalue will be 1. Then, E0 + E1 � 1 holds, so E2
is positive semidefinite and α0 = 1/(1+

√
2/2). We can now compute the probabilities of

receiving an inconclusive outcome for the projective measurement and the generalised
measurement to see that using a POVM is indeed advantageous

pPVM = 3
4 > pPOVM = 1√

2
. (2.50)
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2.2.2 Minimum Error Discrimination

The problem of minimum error discrimination is to determine the state of a system that
occurs in one state %n of a set of states {%i} with an associated a priori probability pn by
performing a measurement while minimising the probability of making a wrong guess.
The strategy is to perform a measurement represented by a POVM P with elements Ei
and guessing that the system was in state %i whenever the measurement outcome was i.
The task is then to find the POVM that minimises the expectation value of the error

Pmin
err = min

P

∑
i

∑
j 6=i

pjTr (%jEi) (2.51)

when considering all possible measurement outcomes. This is equivalent to maximising
the probability of getting a correct result [17]

Pcorr = 1− Pmin
err = max

P

∑
i

piTr (%iEi) . (2.52)

We now follow [17] and present the minimum error condition. If a POVM with elements
Ei is optimal, then the respective success probability is higher than for any other POVM
with elements Fi ∑

i

piTr (%iEi) ≥
∑
j

pjTr (%jFj) (2.53)

One can now insert
∑
Fj = 1 to obtain∑

ij

piTr (%iEiFj)− pjTr (%jFj) ≥ 0 (2.54)

⇔
∑
j

Tr
((∑

i

pi%iEi − pj%j

)
Fj

)
≥ 0 (2.55)

which implies that the optimal POVM has been found if∑
i

pi%iEi − pj%j ≥ 0, ∀j (2.56)

because the operators Fj are positive semidefinite. On a computer, one can find the
optimal POVM with software for convex optimisation since equation (2.52) defines a
semidefinite programme. For semidefinite programms, solutions can be found efficiently
and certified [21]. We discuss this in more detail in the appendix.

2.3 Classicality and Discord
Classical theories are fundamentally deterministic and realistic which allows to identify
the state of a system with its properties, i.e. the outcomes that would certainly be
obtained by performing perfect measurements on the system. In classical physics, a
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measurement is perfect if it reveals the measured property without an error and without
changing the state. If two systems are in different states, they differ in at least one
property. The possibility of sharply measuring these properties then makes any two
different classical states perfectly distinguishable.

The quantum mechanical equivalent of this situation is as follows. Given a state |i〉 of
the system, the perfect measurement has to have one outcome i that unambiguously and
with certainty indicates that the system is in state |i〉. Hence, the POVM E representing
the measurement has an element Ei such that Ei |j〉 = δij |j〉. Consequently, the states of
the system have to be orthogonal and the perfect measurement for this system is a rank-
one projective measurement. If the state (in the classical meaning) is not known, we can
account for this by describing the system with the density matrix % =

∑
i pi|i〉〈i|, which

here means that the system is in one of the states |i〉 and one assigns probabilities pi
to the different cases. While the assumptions of determinism and realism automatically
evoke the ignorance interpretation of mixed states, this interpretation is not generally
viable in a more general quantum mechanical setting, since the mixed state could be a
local description of a larger, entangled system in a pure state.

As all states in this classical model have to be orthogonal, there is no superposition
and thus also no entanglement in multipartite systems. In bipartite systems, one makes
the following distinction: A classical-classical state is a state of the form

% =
∑
ij

cij |iAjB〉〈iAjB|, (2.57)

where the states |iA〉 and |jB〉 form an orthonormal basis of their respective Hilbert
spaces, which are the measurement bases. Such a state describes a bipartite classical
system in the above sense and its density matrix is diagonal in the measurement basis.
The lack of off-diagonal terms in a classical model has provoked interest and they have
henceforth been studied under the name coherences [22] [23].

A state of the form

% =
∑
ij

qij |aijB〉〈aijB| (2.58)

=
∑
j

pj %
A
j ⊗ |jB〉〈jB|, (2.59)

where |jB〉 is the preferred basis of system B again and |ai〉 are non-orthogonal states
is called quantum-classical. If we now go on to also drop any restriction on the states of
system B, we obtain the general form of a separable bipartite state.

A measure for the quantumness of the correlations in a bipartite state is quantum
discord [24] [25]. The idea of discord is to quantify the total correlations in the state and
subtract the classical correlations from it [24]. As a measure for the total correlations
mutual information is used. The mutual information of a state is the information of the
state as a whole minus the information that can be inferred from the state about its
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subsystems. In quantum mechanics, the mutual information is

Imut(%AB) = I(%AB)− I(%A)− I(%B) (2.60)

where the information I(%) = −S(%) = Tr (% log %) is the negative von Neumann entropy.
Mutual information can easily be shown to be non-negative and the difference between
the information in the joint state and the information in the reduced states is just the
information about the correlations which is missing in the latter.

In order to discriminate between classical and non-classical correlations, one can
utilise that the perfect measurement does not disturb the classical state and consequently
also does not affect its inherent correlations. Thus, for a bipartite system with parties
A and B that behaves classically on subsystem B such as

% =
∑
i

pi %i ⊗ |i〉〈i| (2.61)

the mutual information equals the additional accessible information about system A
when measuring system B

JA:B(%AB) =
∑
i

piI(%i)− I(%A), (2.62)

where %A = TrB (%) =
∑
i pi%i and %i are the conditional states of systemA if the outcome

of the measurement on B was i. This can be easily seen by calculating I(%) for a state as
given in equation (2.61) and diagonalising the conditional states %i =

∑
j cij |j(i)〉〈j(i)|.

I(%) = Tr
(∑

i

pi%i ⊗ |i〉〈i| log(
∑
l

pl%l ⊗ |l〉〈l|)
)

(2.63)

= Tr

∑
ij

picij |j(i)〉〈j(i)| ⊗ |i〉〈i| log(
∑
lm

plclm|m(l)〉〈m(l)| ⊗ |l〉〈l|)

 (2.64)

=
∑
ij

picij log(picij) (2.65)

=
∑
i

pi log pi +
∑
ij

picij log cij (2.66)

= I(%B) +
∑
i

piI(%i). (2.67)

Plugging this into equation (2.60) then leads to the same expression as in equation (2.62).
It has been shown [25] that for general states the mutual information Imut(%AB) is

always larger or equal to the accessible mutual information JA:B for any measurement,
defined as

JA:B(%AB,P) =
∑
i

piI(%A|i)− I(%A) (2.68)
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with %A|i = TrB(%AB(1⊗Pi))/Tr(%AB(1⊗Pi)) and pi = Tr (%AB(1⊗ Pi)). For the optimal
measurement, the difference between the two is the quantum discord

δA:B(%AB) = Imut(%SA)−max
P

JA:B(%AB,P). (2.69)

While Olliver and Zurek [25] restrict the possible measurements to rank-one projec-
tive measurements, Henderson and Vedral [24] allow for any generalised measurements.
However, it has been shown that at least for two qubits, projective measurements are
optimal for rank-two states and they give the same discord for rank-three and rank-four
states up to small corrections [26]. We have already seen in the above discussion that a
quantum-classical state has zero discord δ(A : B). Indeed, Olliver Zurek additionally to
this showed the converse statement: Vanishing discord δ(A : B) implies that the state
is quantum-classical [25].

Another way to introduce discord is to state a set of rules any measure for classi-
cal correlations should adhere to and claiming that the accessible mutual information
qualifies as such a measure [24]1.

If the discord vanishes for a state, this implies that the density matrix has a block-
diagonal shape in the measurement basis [25]. Hence, demanding vanishing discord
for both parties implies that the state is classical-classical. On the other hand, for
two qubits discord takes its maximum for the Bell state and decreases monotonically
if the Bell state is mixed with white noise. However, the maximal discord for a given
purity can also increase for lower purity, as has been shown in [27] for two qubits. We
reproduce this result in figure (2.1), which shows a plot of discord versus linear entropy
SL = 4/3(1 − Tr

(
%2)) including the upper bound. Maximal discord for a given purity

can be achieved with Werner states % = p|φ+〉〈φ+|+ (1− p)1 in a low purity regime and
with a subset of so-called two-parameter states

%(a, b) = 1
2


a 0 0 a
0 1− a− b 0 0
0 0 1− a+ b 0
a 0 0 a

 (2.70)

for higher purities. Two-parameter states with b = 0 are referred to as α states. In the
transition point for SL ≈ 0.9 states can entail higher discord than more impure but also
slightly purer states.

1The accessible mutual information does in fact not meet the suggested criteria for a measure of
classical correlations as it is not symmetric under exchange of the subsystems.
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Figure 2.1: Discord versus linear entropy SL = 4/3(1−Tr
(
%2)) for two qubits. The plot

is similar to the one provided in [27].
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Chapter 3

Ergotropy, Daemonic Ergotropy
and Daemonic Gain

In this chapter, we discuss energy extraction from states while focusing on three quanti-
ties: ergotropy, daemonic ergotropy and daemonic gain. Ergotropy hereby is the maximal
amount of energy that can be extracted via a unitary channel [2]. Daemonic Ergotropy
is a recent extension to the concept in a bipartite setting, quantifying the extractable
energy on one party after performing a measurement on the other [3]. The maximal gain
from performing a measurement is the daemonic gain [3]. In the following, we will dis-
cuss each quantity in more detail, stating the definition first and collecting some useful
and previously established properties.

3.1 Ergotropy
Consider a system S in a given state %S and a Hamiltonian H acting on this system.
This defines the energy of the state. Now assume, the system is exposed to an additional,
time dependent external potential V (t) for some time, which may in principle induce any
unitary time evolution U [2]. By how much can the energy of the system have decreased
at most through that process? Comparing the energy of the system before the action
of the potential V (t) to the minimal possible energy afterwards directly leads to the
definition of ergotropy.
Definition 3.1 (Ergotropy [2]). The ergotropy for a given density matrix % and Hamil-
tonian H is given by

W (%,H) = Tr (%H)−min
U

Tr
(
U%U †H

)
, (3.1)

where the minimisation runs over all unitary matrices.
Restricting oneself to unitary channels makes sense, as allowing for any type of

channel would reduce the problem to absurdity. Considering the Stinespring dilation

Λ(%) = TrE
(
U(%⊗ |0〉〈0|)U †

)
(3.2)
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clarifies this. One way to minimise the energy of the state would be equivalent to
exchanging it for a pure state by performing a swap

Uswap =
∑
ij

|i〉〈j| ⊗ |j〉〈i| (3.3)

and mapping the pure state to the ground state of the Hamiltonian afterwards, which
both are unitary operations.

3.1.1 Ergotropy Is Sublinear And Convex

For the sake of a later argument, we treat ergotropy as a function of unnormalised
states and note that ergotropy is sublinear in both the state and the Hamiltonian. Since
ergotropy is symmetric in its arguments, it suffices to show the sublinearity in the state.

W (%1 + %2, H) = Tr ((%1 + %2)H)−min
U

Tr
(
U(%1 + %2)U †H

)
(3.4)

≤ Tr (%1H) + Tr (%2H) (3.5)

−min
U

Tr
(
U%1U

†H
)
−min

Ũ
Tr
(
Ũ%2Ũ

†H
)

= W (%1, H) +W (%2, H) (3.6)
W (λ%,H) = λW (%,H). (3.7)

This implies, that ergotropy is also convex in both arguments.

3.1.2 Calculating Ergotropy

Although the definition of ergotropy includes a minimisation, it is actually easy to com-
pute as the minimisation effectively comes down to diagonalising the state and the
Hamiltonian, as was argued in [2]. In the following however, we give a detailed proof.

Theorem 3.1. The ergotropy for a state % =
∑d−1
i=0 ri|ri〉〈ri| with eigenvalues ri+1 ≤ ri

and a Hamiltonian H =
∑d−1
i=0 ei|ei〉〈ei| with eigenvalues ei+1 ≥ ei is

W = Tr (%H)−
d−1∑
i=0

riei (3.8)

and the optimal unitary is

V =
d−1∑
i=0
|ei〉〈ri|. (3.9)

Proof. The theorem directly follows from the trace inequality of John von Neumann
[28]. Alternatively, one can exploit Birkhoff and von Neumann’s theorem about doubly
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stochastic matrices to prove the theorem [29], which we will show here.

min
U∈U

Tr
(
U%U †H

)
= min
U∈U

Tr
(
UV %V †U †H

)
(3.10)

= min
U∈U

Tr

U∑
j

rj |ej〉〈ej |U †
∑
i

ei|ei〉〈ei|

 (3.11)

= min
U∈U

Tr

∑
k,l

ukl|ek〉〈el|
∑
j

rj |ej〉〈ej |
∑
m,n

u∗mn|en〉〈em|
∑
i

ei|ei〉〈ei|


(3.12)

=
∑
i,j

|uij |2eirj , (3.13)

with U =
∑
uij |i〉〈j|. Now, consider the matrix S with elements Sij = |uij |2. Such a

matrix with elements 0 ≤ Sij ≤ 1∀i, j and
∑
i Sij =

∑
j Sij = 1∀i, j is called doubly

stochastic matrix and according to Birkhoff and von Neumann’s theorem is a convex
combination of permutation matrices. Therefore, we can write |uij |2 =

∑
n pnσ

n
ij , with∑

n pn = 1 and σn being permutation matrices. With this, we can write

min
U

Tr
(
UV %V †U †H

)
= min

U

∑
i,j

|uij |2eirj (3.14)

= min
U

∑
n

pn
∑
i,j

σnijeirj (3.15)

= min
σ

∑
i,j

σijeirj (3.16)

=
∑
i

eiri (3.17)

We now show the validity of the last equality. Let εj =
∑
i σijei and σ be a permutation

matrix. If there would exist n,m such that εn − εm =: ε > 0 and rn − rm =: r > 0 then∑
i

εiri =
∑
i 6=n,m

εiri + εnrn + εmrm (3.18)

=
∑
i 6=n,m

εiri + 2εmrm + rεm + εrm + rε (3.19)

>
∑
i 6=n,m

εiri + 2εmrm + rεm + ε > rm. (3.20)

=
∑
i 6=n,m

εiri + rnεm + rmεn (3.21)

Consequently, σ cannot be optimal in this case and for the optimal permutation matrix
the following must be true for all n,m: If rn ≥ rm then also εn ≤ εm. Since we defined
the ri to be decreasing with their index, the above statement is equivalent to: For all
n,m with n ≥ m it must hold true that εn ≤ εm. With this, we can conclude that
εi = ei∀i and therefore σopt

ij = δij , which proves the theorem.
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3.2 Daemonic Ergotropy
Recently, the concept of ergotropy has been extended for systems with an ancilla that
can be measured before extracting the work from the system [3]. The idea is that a
measurement on the ancilla, which in general will be correlated with the system, will
increase the knowledge of the system and thus enhance work extraction. This scenario
is reminiscent of Maxwell’s demon and the ergotropy of the conditional states of the
system – averaged over the measurement outcomes – is called daemonic ergotropy.

Definition 3.2 (Daemonic Ergotropy [3]). Let %SA be a bipartite density matrix con-
sisting of system S and ancilla A, H be a Hamiltonian acting on S and Π a PVM 1 with
elements Πi acting on A. Then, the daemonic ergotropy is defined as

WD(%SA, H,Π) = Tr (%SH)−
∑
i

min
Ui

Tr
(
Ui%S|iU

†
iH
)
, (3.22)

where %S|i = TrA (%SA(1⊗Πi)) is the unnormalised conditional state of the system for
outcome i, pi = TrA

(
%S|i

)
is the probability for this outcome and %S = TrA (%SA) is the

reduced state of the system. The optimisation runs over all unitary matrices.

As Francica et al. show [3], the daemonic ergotropy of a state %SA is always larger
or equal to the ergotropy of the corresponding reduced state %S = TrA (%SA). We now
show this in a different way by exploiting the subadditivity of ergotropy and writing

WD(%SA, H,Π) = Tr (%SH)−
∑
i

min
Ui

Tr
(
Ui%S|iU

†
iH
)

(3.23)

=
∑
i

W (TrA ((1⊗Πi)%SA) , H) (3.24)

≥W (TrA(
∑
i

(1⊗Πi)%SA), H) (3.25)

= W (%S , H). (3.26)

It is natural to ask how much one can gain by measuring the ancilla before work extrac-
tion compared to just ignoring the ancilla all together. This quantity is the daemonic
gain. It is the difference between maximal daemonic ergotropy and the ergotropy for a
given state and Hamiltonian.

Definition 3.3 (Maximal Daemonic Ergotropy [3]). The maximal daemonic ergotropy
is the daemonic ergotropy for the optimal PVM .

WMD(%SA, H) = max
Π

WD(%SA, H,Π) (3.27)

1 The restriction to performing only PVMs on the ancilla and a possible extension of the definition
to POVMs is going to be discussed later.
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Definition 3.4 (Daemonic Gain [3]). The daemonic gain of a density matrix %SA and
a Hamiltonian H is defined as the difference between the maximal daemonic ergotropy
and the ergotropy of the reduced state %S = TrA (%SA)

δW (%SA, H) = WMD(%SA, H)−W (%S , H). (3.28)

We now summarise some previously established results on daemonic ergotropy [3].
For pure states, the daemonic ergotropy takes its maximum for any rank-one projective
measurement, because the conditional states are always pure in this case. Thus, the
daemonic ergotropy for a pure state |ψ〉 is

WD(|ψ〉〈ψ|) = Tr (%SH)− ε0 (3.29)

with %S = TrA (|ψ〉〈ψ|) and a Hamiltonian with non-degenerate lowest energy eigenvalue
ε0. Then, the daemonic gain

δW (|ψ〉〈ψ|) = min
U

(
Tr
(
U †%SUH

))
− ε0 (3.30)

can only be zero, if the reduced state %S is pure, which implies that |ψ〉 is a product
state. Obviously, the daemonic gain vanishes for product states, so the daemonic gain
vanishes for pure states if and only if they are product states [3].

Investigating connections between daemonic gain and correlations in the state fur-
ther, Francica et al. prove that vanishing daemonic gain implies vanishing discord δA:S ,
where the demon measures system A to enhance work extraction on system S but when
calculating discord, system S is the one that is measured. This can be proved by con-
tradiction. Suppose, the discord δA:S of a state

%SA =
∑

cklab|k〉〈l| ⊗ |a〉〈b| (3.31)

is unequal zero. Then, as we discussed earlier, %SA cannot be a classical-quantum state
and thus there must exist indices α, β such that

cklαβ 6= cklαβδkl (3.32)

for any basis on the ancilla system. We now want to show that this implies non-vanishing
daemonic gain and therefore consider the conditional states corresponding to the pro-
jective measurement ΠA with elements |a〉〈a| acting on the second system, A. The
daemonic ergotropy will only equal the ergotropy, if all conditional states are diagonal
in the same basis for all projective measurements. Therefore, if this is not the case for
ΠA, then daemonic ergotropy and ergotropy are not the same and hence the daemonic
gain does not vanish. If α = β, this follows directly from equation (3.32), when choos-
ing the computational basis of the system to be the one in which all conditional states
when performing ΠA shall be diagonal. Then, equation (3.32) implies that in this case
%S|α ∝ TrA (%SA(1⊗ |α〉〈α|)) is not diagonal. The remaining case to discuss is the one
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if α 6= β and all conditional states for ΠA are simultaneously diagonal. In this case, one
can construct another projective measurement Π̃A with elements

Π̃A
a =


|a〉〈a|, a 6= α and a 6= β
1
2( |α〉+ |β〉)(h.c.), a = α
1
2( |α〉 − |β〉)(h.c.), a = β

(3.33)

and show with help of equation (3.32) that the conditional states with respect to this
measurement are not simultaneously diagonal [3].

In the two-qubit case, zero daemonic gain implies both zero entanglement and zero
discord and maximal discord and maximal entanglement both are sufficient conditions
for maximal daemonic gain [3]. An example for states that minimise daemonic gain at
a given concurrence C are the ones locally equivalent to

% =


0 0 0 0
0 x C/2 0
0 C/2 1− x 0
0 0 0 0

 (3.34)

with x = (1±
√

1−C2)/2. Maximal daemonic gain can be achieved for any concurrence for
the states locally equivalent to

% =


1/2 0 0 C/2
0 0 0 0
0 0 0 0
C/2 0 0 1/2

 , (3.35)

which all have δW = 1 if the Hamiltonian is chosen H = −σz.
In the next chapter, we will start with a similar investigation of the three-qubit case.
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Chapter 4

A Case Study in Three Qubits

In the previous chapter, we discussed the work of Francica et al.[3], who invented dae-
monic gain and established connections to entanglement and discord. They also did a
more detailed analysis of the two qubit case. Very much in the same spirit, we will now
investigate how daemonic gain is related to genuine multipartite entanglement for pure,
three qubit states, while keeping the bipartite setting of one system and one ancilla.
This gives rise to two scenarios in which the ancilla either consists of one or two qubits.
We will now first consider the case in which the ancilla consists of a single qubit. We set
the Hamiltonian to be H = diag{−3,−1, 1, 3}. As a measure for genuine multipartite
entanglement we use the geometric average of the bipartite negativities with respect to
every bipartition and refer to this quantity simply as negativity [30]. Figure (4.1) shows
a plot of daemonic gain versus negativity.

We will now first compute the daemonic gain for pure, three qubit states and a
one-qubit ancilla, because this will be helpful for our further analysis.

4.1 Daemonic Gain for Pure, Three Qubit States
Since the states are pure, the daemonic ergotropy takes the simple form (see eq.(3.30))

WD = Tr (%SH)− ε0, (4.1)

where ε0 is the lowest eigenvalue of the Hamiltonian and the daemonic gain becomes

δW = min
U

Tr
(
U †%SUH

)
− ε0. (4.2)

According to Acin et al. [16], any three qubit state is up to local unitaries equivalent to

|k〉 = k0e
iθ |000〉+ k1 |001〉+ k2 |010〉+ k3 |100〉+ k4 |111〉, ki ∈ R. (4.3)

We will from now on omit the complex phase of the first coefficient, as we will later
argue that it is irrelevant for our purpose. With this, we calculate the reduced state of
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the first two qubits

%S =


k2

0 + k2
1 k0k2 k0k3 k1k4

k0k2 k2
2 k2k3 0

k0k3 k2k3 k2
3 0

k1k4 0 0 k2
4

 (4.4)

and its eigenvalues

eig (%S) = (1
2 + 1

2
√
σ,

1
2 −

1
2
√
σ, 0, 0) (4.5)

with

σ =
∑
i

k4
i + 2k2

0(k2
1 + k2

2 + k2
3 − k2

4) (4.6)

+ 2k2
1(−k2

2 − k2
3 + k2

4) + 2k2
2(k2

3 − k2
4)− 2k2

3k
2
4. (4.7)

The daemonic gain is thus

δW =
(1

2 + 1
2
√
σ

)
ε0 +

(1
2 −

1
2
√
σ

)
ε1 − ε0 (4.8)

=
(1

2 −
1
2
√
σ

)
(ε1 − ε0) (4.9)

with a maximum of δW = 1
2(ε1 − ε0).

4.2 Daemonic Gain and Entanglement
In order to relate daemonic gain and entanglement, we will in the following discuss the
plot shown in figure (4.1) of daemonic gain versus negativity in the one-qubit ancilla case.
We thereby set our focus to understanding the bounds that confine the region in the plot
in which states may lie. Especially, we show how to derive an analytic approximation to
the lower right boundary, which is the green line in the plot.
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Figure 4.1: Daemonic gain and negativity for pure states. GHZ-like states |GHZ〉 =√
p |000〉+

√
1− p |111〉 lie on the red line. W-like states |W 〉 = a |100〉+b |010〉+c |001〉

lie in the region that is confined by the purple line to the right. The blue dots refer
to random pure states and lie in a region that is bounded by the orange line which is
approximated by the green line.

In the following, we discuss the states that lie on the boundaries in the plot in figure
4.1, which we refer to as top boundary, left boundary and right and lower boundary.

Top boundary

As can be seen easily in equation (4.9) states with maximum daemonic gain are the ones
with σ = 0. States that lie on the top boundary are for example

|Ψ〉 = 1√
2

( |0α1〉+ |100〉), with (4.10)

|α〉 = cosα |0〉+ sinα |1〉. (4.11)

For α = π
2 the state |Ψ〉 is maximally entangled, since it is locally equivalent to the GHZ-

state, for α = 0 the negativity vanishes because the second qubit can be factorised, so
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there is no entanglement between the second qubit and the other two. At the same time
the reduced density matrix has a doubly degenerate eigenvalue 1/2, which ensures σ = 0
and maximal daemonic gain.

Left boundary

States that lie on the line defined by the negativity being zero are for example

|Ψ〉 = √p |001〉+
√

1− p |100〉. (4.12)

The second qubit can be factorised which ensures the negativity to be zero. At the same
time, the reduced density matrix has two eigenvalues p and 1 − p, so for p ≤ 1

2 the
daemonic gain is δW = p(ε1 − ε0), reaching its maximum for p = 1

2 .

Right and lower boundary

Finding an analytic solution for the right, lower boundary in the plot in figure (4.1)
by calculating the negativity for general pure states (equation 4.3) and optimising over
the parameters shows to be impractical. Therefore, instead of using negativity as en-
tanglement measure, we use the average entanglement of formation with respect to all
bipartitions. For this, we compute the Schmidt coefficients for every bipartition of a
state. For a tripartite state we gain three sets of Schmidt coefficients {λAi }, {λBi }, {λCi }.
Then the average entanglement of formation is

E = −1
3(
∑
i

λAi log(λAi ) +
∑
j

λBj log(λBj ) +
∑
k

λCk log(λCk )). (4.13)

This entanglement measure is easier to compute for pure states and satisfies the re-
quirement that states which maximise negativity at a given daemonic gain will at least
approximately maximise this entanglement measure, too. This is demonstrated in fig-
ure (4.2) and non-trivial as the used version of negativity is a entanglement measure
that captures genuine multipartite entanglement only while the average entanglement of
formation is also sensitive to bipartite entanglement.
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Figure 4.2: Difference between the maximal negativity at a given daemonic gain and
the negativity that is exhibited by the states, which maximise the average entanglement
of formation at given daemonic gain. By construction, this difference must be non-
negative. The deviations from zero in the plot are due to imperfect numerics. The
plot suggests, that up to corrections beyond numerical precision the same states that
maximise negativity also maximise average entanglement of formation.

The Schmidt coefficients for the three qubit states in the symmetric canonical form
(equation 4.3) are

λA1,2 = 1
2 ±

√
1
4 − k

2
4(k2

0 + k2
1 + k2

2)− k2
3(k2

1 + k2
2) (4.14)

λB1,2 = 1
2 ±

√
1
4 − k

2
4(k2

0 + k2
1 + k2

3)− k2
2(k2

1 + k2
3) (4.15)

λC1,2 = 1
2 ±

√
1
4 − k

2
4(k2

0 + k2
2 + k2

3)− k2
1(k2

2 + k2
3). (4.16)

From the formulas of the average entanglement of formation and the daemonic gain one
can see that both are symmetric in the parameters k2 and k3. We now want to maximise
the entanglement while satisfying two constraints: The state must be normalised and
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the daemonic gain must remain constant. Instead of dealing with the complete formula
for daemonic gain, it is sufficient to demand σ to be constant. Numerics show, that the
boundary can still be reached even if k0 is set to zero. This vindicates our choice of
omitting the complex phase in equation (4.3). If we solve this problem with Lagrange
multipliers, this yields the following set of equations

k2
1 + 2k2

2 + k2
4 = 1 [(I) (Normalisation)] (4.17)

(k2
1 + 2k2

2 − k2
4)2 − 4k2

1(2k2
2 − k2

4) = σ [(II) (δW constant)] (4.18)
∂iE − λ1∂i(I)− λ2∂i(II) = 0, (4.19)

where we have set

k2 = k3 (4.20)

and

∂i = ∂

∂(k2
i )
. (4.21)

We can set k2 = k3 because both the normalisation constraint and the δW = const.
constraint are symmetric in both parameters and also the local maximum condition
from equation (4.19) is the same for both parameters. In principle, k2 = k3 could also
be a local extremum, but it turns out not to be one. Since the average entanglement
of formation still seems to be too difficult to find a parametrisation for the states that
maximise negativity, we replace the logarithm by its Taylor expansion up to first order
at 1/2. This, together with the condition k0 = 0 and k2 = k3 yields the much simplified
and approximated formula for the average entropy of formation

E = k4
2 + 2k2

2k
2
1 + 2k2

2k
2
4 + k2

1k
2
4. (4.22)

Solving the equations then gives

k2
0 =0 (4.23)
k2

1 =1− 2k2
2 − k2

4 (4.24)

k2
2 =1

4(1±
√
σ) (4.25)

k2
3 =k2

2 (4.26)

k2
4 =1 + 5k4

2 − 5k2
2

2− 7k2
2

. (4.27)

If one plots the two solutions that arise from the fact that there is an ambiguity in the
solution for k2

2, one easily sees that only states with

k2
2 = 1

4(1−
√
σ) = δW

2∆ε (4.28)
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lie on the boundary. Plotting the daemonic gain against the negativity of these states
results in the green line in figure (4.1).

Figure 4.3: Difference between the negativities of numerical solution for the boundary
and the approximated analytic solution

Figure (4.3) shows the deviation of the negativity exhibited by the states with pa-
rameters given in equations (4.23– 4.27) from the numerically found maximal negativity
at given daemonic gain. This is just the distance of the green line from the orange one in
figure (4.1). Again, due to numerical imperfections, the analytically found states show
greater negativity for small daemonic gain. In contrast, for bigger daemonic gain the
error being made by approximating the logarithm linearly causes the analytically found
states to exhibit up to roughly 0.0023 less negativity than the numerically found optimal
ones.

The Two Qubit Ancilla Case
Now that we discussed the three qubit case with a one-qubit ancilla, we discuss the case
in which S only consists of one qubit and the ancilla A consists of two qubits. Again,
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we demand k2
0 = 0. Calculating the daemonic gain in the most general case then shows

that this time we do not have a symmetry between k2
3 and k2

2 as in the one-qubit ancilla
case but instead one between k2

1 and k2
2. Using this symmetry, both daemonic gain and

entanglement of formation have the same formulas as they did in the one qubit case
except the parameters k1 and k3 are swapped. We can therefore easily reuse the solution
of the lower right boundary in the plot in the one-qubit ancilla case for the two-qubit
case:

k2
0 =0 (4.29)
k2

1 =k2
2 (4.30)

k2
2 =1

4(1±
√
σ) (4.31)

k2
3 =1− 2k2

2 − k2
4 (4.32)

k2
4 =1 + 5k4

2 − 5k2
2

2− 7k2
2

. (4.33)

Note however, that this transition between one-ancilla and two-ancilla case by swapping
k1 and k3 is only possible if k0 = 0.

Daemonic gain and the violation of Mermin’s and Svetlichny’s
inequality
In the previous section we saw in figure (4.2) that exchanging negativity as measure
of entanglement for average entanglement of formation does not affect, which states
maximise entanglement at a given daemonic gain. We now check, whether the same
states also maximally violate Bell inequalities.

Similarly as with negativity, there will not be any violation of Svetlichny’s inequality
as soon as there is one qubit that is classically correlated to the others. In contrast,
Mermin’s inequality can already be violated if there is just one pair of qubits that
share non-classical correlations. In this aspect, the behaviour of Mermin’s inequality is
similar to using average entanglement of formation as in equation (4.13) as entanglement
criterion.

The plot in figure (4.4) shows the daemonic gain and violation of Mermin’s and
Svetlichny’s inequality for random pure states as well as for the states we found to
maximise negativity at given daemonic gain. One can easily see, that these states also
maximise the violation of both Bell inequalities at given daemonic gain.
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Figure 4.4: Normalised violation of Mermin’s and Svetlichny’s inequalities for random
pure states and the states that maximise negativity at given daemonic gain. Due to
faulty numerics, the true maximal violation of the Bell-inequalities is sometimes not
found.
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Chapter 5

Extending and Computing
Daemonic Gain

In this chapter, we first extend the definition of daemonic ergotropy allowing for gener-
alised measurements and then inquire into the problem of finding the optimal measure-
ment that maximises daemonic ergotropy. Such a generalisation is sensible, as this can
increase the amount of extractable energy, as we will see later. From now on, we will
therefore always consider all kinds of POVMs instead of only projective measurements.

In the second chapter, we then suggest a genuine multipartite generalisation of dae-
monic gain and transfer some of our findings from the bipartite to the multipartite case.

5.1 Finding the Optimal Measurement
The optimisation over all possible measurements makes the computation of the daemonic
ergotropy and daemonic gain difficult by hand and computationally costly on a computer.
This is even more true, if we do not only consider projective measurements but also
generalised measurements. We therefore try to reach a better understanding of this
problem.

5.1.1 Two Helpful Observations

In a previous chapter, we showed that ergotropy is sublinear in both arguments (equa-
tions 3.6 and 3.7). Since one can write the daemonic ergotropy of a state % and a
measurement represented by a POVM P as

WD(%SA, P ) =
∑
i

W (TrA (%SA(1⊗ Pi))) (5.1)

this has two immediate implications. First of all, this ensures that one can find an
optimal POVM that has rank-one elements exclusively. If an element Ei of an optimal
POVM E is not rank-one, then this element can split up into several non-negative rank-
one effects Ẽni = pni Πn

i with Ei =
∑
n p

n
i Πn

i . Because of the sublinearity of ergotropy,
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the daemonic ergotropy using the POVM Ẽ with elements Ẽni as defined above

WD(%SA, Ẽ) =
∑
i,n

W
(
TrA

(
%SA(1⊗ Ẽni )

))
(5.2)

≥
∑
i

W
(
trA
(
%SA(1⊗

∑
n

Ẽni )
))

(5.3)

= WD(%SA, E) (5.4)

will still be optimal.
The second implication is, that daemonic ergotropy is convex in the performed mea-

surement. This means, that given two POVMs P and Q with the same number of
elements denoted by Ei and Qj , the daemonic ergotropy for any convex combination
R = λP + (1− λ)Q with elements Ri = λPi + (1− λ)Qi will never exceed the daemonic
ergotropy for the POVMs P or Q. We directly show this by writing

WD(%SA, λP + (1− λ)Q) =
∑
i

W (TrA ([1⊗ (λPi + (1− λ)Qi)]%SA) (5.5)

≤λ
∑
i

W (TrA ([1⊗ Pi]%SA) + (1− λ)
∑
i

W (TrA ([1⊗Qi]%SA)

(5.6)
=λWD(%SA, P ) + (1− λ)WD(%SA, Q). (5.7)

This allows us to restrict our search of optimal measurements to extremal POVMs.
On a system of dimension d, any extremal POVM can at most have d2 outcomes

[8], so we can refine our search to extremal POVMs with d2
A outcomes, if dA is the

dimension of the ancilla. The second observation will now become useful, when we
present an efficient way of finding an optimal POVM.

5.1.2 A See-Saw Algorithm to Compute Daemonic Gain

When calculating the daemonic gain

δW (%SA) = min
V

Tr
(
%SV HV

†
)
−min
{Ei}

∑
i

min
{Ui}

Tr
(
(UiHU †i ⊗ Ei)%SA

)
, (5.8)

we already discussed that evaluating the first term comes down to diagonalising the state
and the Hamiltonian. In the second term however, we are faced with two optimisations
at a time. We can deal with this problem by defining

M :=
∑
i

Tr
(
(UiHU †i ⊗ Ei)%SA

)
(5.9)

and then alternately optimising the measurement and the unitaries in a see-saw algorithm
[31]. Therefore, we first fix the number of outcomes. If we want to find an optimal
POVM, we set the number of outcomes to d2

A. Now, we initialise the unitaries Ui, for
example by generating random unitaries. Then we calculate

σi = TrS
(
(UiHU †i ⊗ 1)%SA

)
, (5.10)
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which allows us to write

M =
∑
i

Tr (σiEi) , (5.11)

and then find the optimal POVM. This is a semidefinite programme and can thus be
efficiently solved 1.

For the found POVM, one can then easily compute the conditional states

%S|i = TrA ((1⊗ Ei)%SA) /Tr ((1⊗ Ei)%SA) (5.12)

and afterwards the optimal unitaries by diagonalising them in the diagonal basis of the
Hamiltonian.

These two steps are then alternately carried out a sufficiently high number of times
or until some desired precision is reached.

M can only decrease or remain constant in every iteration, since it decreases or
remains constant in every step – in the minimisation over POVMs in step one and also
in the minimisation over the unitaries in step two. In this way, the see-saw algorithm
defines a monotonically decreasing series in M for any number of outcomes. Since the
possible values for M are bounded, the algorithm must converge for any number of
outcomes. However, it may converge to a non-optimal solution. For example, every time
two elements Ei, Ej of the POVM are identical or linearly dependent, the algorithm will
find two identical unitaries Ui = Uj which will in turn cause two linearly dependent
effects E′i ∝ E′j . In this scenario, the number of outcomes is effectively reduced by one.
We already argued that the algorithm must still converge in this case. However, the
optimal solution can in general not be found anymore. In practise it happens quite
often that the algorithm finds the optimal solution for projective measurements, even if
a better POVM exists.

5.1.3 Optimal Measurement for Quantum-Classical States

For a quantum-classical state

%SA =
∑
j

σj ⊗ |j〉〈j| (5.13)

one measurement that maximises daemonic gain is the projective measurement P with
elements Pi = |i〉〈i|. We show that the daemonic gain is lower or equal for any POVM
E with elements Ei and an arbitrary number of outcomes. As we already discussed
above, we may without loss of generality assume that all effects Ei are rank one. This
allows us to write Ei = |φi〉〈φi| and we can expand the unnormalised vectors |φi〉 in the
computational basis as

|φi〉 =
∑
k

uki |k〉. (5.14)

1In fact, M is similar to the success probability in minimum error discrimination (equation 2.52). In
minimum error discrimination however, this quantity would be maximised instead of minimised, which
makes this step in the algorithm equivalent to maximum error discrimination.

42



5. Extending and Computing Daemonic Gain 5.1. Finding the Optimal Measurement

Since the elements of the POVM sum up to identity, we have∑
i

ukiu
∗
li = δkl. (5.15)

Due to the basis extension theorem, one can add rows to the matrix U with elements uki
to make it a unitary matrix. This means that the matrix D with elements Dji = ujiu

∗
ji

can be interpreted as part of an extended doubly stochastic matrix. The theorem of
Birkhoff and von Neumann [29] states that any doubly stochastic matrix is a convex
combination of permutation matrices. With this, we can write

Dji = ujiu
∗
ji =

∑
n

pnπ
n
ji (5.16)

with
∑
i π

n
ji = 1,

∑
j π

n
ji ∈ {0, 1} and πnji ∈ {0, 1}.

In order to calculate the daemonic gain, we first compute the unnormalised condi-
tional states

%S|i = TrA

∑
j

σj ⊗ |j〉〈j|(1⊗ Ei)

 (5.17)

= TrA

∑
j

σj ⊗ ukiu∗li|k〉〈l||j〉〈j|

 (5.18)

=
∑
j

σjujiu
∗
ji (5.19)

=
∑
j

σj
∑
n

pnπ
n
ji. (5.20)

With this, we can calculate the daemonic gain

δW (%SA) = min
V

Tr
(
%SV HV

†
)
−min
{Ei}

∑
i

min
{Ui}

Tr
(
U †i %S|iUiH

)
(5.21)

Again, we focus only on the second term, since the first term does not depend on the
performed measurement. We now assume that our POVM E is the optimal one, so we
can omit the optimisation over the measurement and plug in the formula for %S|i that
we derived above (equation 5.20).

∑
i

min
{Ui}

Tr
(
U †i %S|iUiH

)
=
∑
i

min
{Ui}

Tr

U †i ∑
j

σj
∑
n

pnπ
n
jiUiH

 (5.22)

≥
∑
i,j,n

pnπ
n
ji min
{Uijn}

Tr
(
U †ijnσjUijnH

)
(5.23)

=
∑
n

pn
∑
i

πnji
∑
j

min
{Uj}

Tr
(
U †j σjUjH

)
(5.24)

=
∑
j

min
{Uj}

Tr
(
U †j σjUjH

)
. (5.25)
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This is exactly what one obtains if one chooses the projective measurement P with
elements Pi = |i〉〈i|, so this measurement is indeed optimal. In the first step, we obtain
the inequality by allowing for a different unitary for every combination of indices. One
then notices in the second step, that the optimal unitary is independent of the indices i
and n which yields the desired result.

If a state %SA =
∑
ij σij ⊗ |i〉〈j| is quantum-classical in some basis, we can thus find

an analytic solution to the daemonic gain. To this end, one diagonalises the reduced
state %S = TrA (%SA), which yields the unitary to make the state block-diagonal. The
individual blocks are then the optimal conditional states that one needs to compute the
daemonic gain.

5.1.4 Daemonic Ergotropy and Quantum Correlations

The above result links the question for the optimal measurement to the question whether
quantum correlations can be a resource for daemonic ergotropy. If for a state %SA the
optimal measurement is projective, with projectors |i〉〈i| and we write the state as

%SA =
∑
ij

σij ⊗ |i〉〈j| (5.26)

where the ancilla part is written in the basis defined by the optimal projectors, we notice
that all off-block-diagonal terms σij , i 6= j do not contribute to the daemonic ergotropy,
which is thus the same as for the quantum-classical state

%̃SA =
∑
i

σii ⊗ |i〉〈i|. (5.27)

This state can be produced by performing the optimal measurement and preparing a
pure state on the ancilla accordingly. This procedure destroys all the entanglement
and discord δS:A while the daemonic ergotropy remains unchanged. Entanglement and
discord δS:A are thus not useful, if the optimal measurement is projective.

The following example also questions the usefulness of entanglement in this context.
Consider the classical-classical state with a qutrit system and a qubit ancilla

% = 1
3(|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|+ |2〉〈2| ⊗ |1〉〈1|). (5.28)

For a Hamiltonian with eigenvalues ε0 ≤ ε1 ≤ ε2 one easily calculates the daemonic gain

δW (%) = 1
3(ε2 − ε0). (5.29)

On the other hand, entanglement is maximised for pure states and for any pure state we
have

δW ( |Ψ〉) ≤ 1
2(ε1 − ε0) (5.30)

which is smaller than the daemonic gain of % for a suitably chosen Hamiltonian.
In the next section, we will see that projective measurements are not always optimal,

when we calculate the daemonic gain of a classical quantum state.
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5.1.5 Enhancing Daemonic Gain with Generalised Measurements

In the original definition of daemonic gain [3] the possible measurements to be performed
on the ancilla are restricted to projective measurements. However, we are going to pro-
vide an example where the daemonic gain that can be achieved when using an exemplary
POVM is higher than it would be with any projective measurement. The state used in
this example is the 3× 2 classical-quantum state

%SA = 1
3

2∑
i=0
|i〉〈i| ⊗ Pi (5.31)

with

Pi = Π
(2πi

3 , 0
)

(5.32)

and

Π(α, β) = 1
2

(
1− cos(α) sin(α) · exp (iβ)

sin(α) · exp (−iβ) 1 + cos(α)

)
. (5.33)

The Hamiltonian is H =
∑
i εi|εi〉〈εi| with increasing energy eigenvalues. We shall now

first compute the daemonic gain, restricting ourselves to projective measurements. Since
daemonic gain is convex, the effects of any POVM are either all rank one or can be
split up into rank one effects without changing the daemonic gain. Therefore, we can
compute the maximal daemonic gain for projective measurements by computing it for
the measurement Π = (Π(α, β),Π(α+ π, β)) and optimize over the angles α and β
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afterwards.

%S =1
3(|0〉〈0|+ |1〉〈1|+ |2〉〈2|) (5.34)

pα%S|α =Tr (%SA(1⊗Π(α, β))) (5.35)

=1
3(|0〉〈0|Tr (P0Π(α, β)) + |1〉〈1|Tr (P1Π(α, β)) + |2〉〈2|Tr (P2Π(α, β))

(5.36)

=1
3

[
|0〉〈0|12(1 + cos(α))

+ |1〉〈1|
(

1
2 −

1
4 cos(α) +

√
3

4 sin(α) cos(β)
)

+ |2〉〈2|
(

1
2 −

1
4 cos(α)−

√
3

4 sin(α) cos(β)
)

] (5.37)

pα+π%S|α+π =Tr (%SA(1⊗Π(α+ π, β))) (5.38)

=1
3(|0〉〈0|Tr (P0Π(α+ π, β))

+ |1〉〈1|Tr (P1Π(α+ π, β))
+ |2〉〈2|Tr (P2Π(α+ π, β)) (5.39)

=1
3

[
|0〉〈0|12(1− cos(α))

+ |1〉〈1|
(

1
2 + 1

4 cos(α)−
√

3
4 sin(α) cos(β)

)

+ |2〉〈2|
(

1
2 + 1

4 cos(α) +
√

3
4 sin(α) cos(β)

)
] (5.40)

From the definition of ergotropy it is already obvious that the ergotropy of the conditional
states %S|α and %S|α+π will be maximal for cos(β) = 1. Consider the state

% = a|0〉〈0|+ (b+ c)|1〉〈1|+ (b− c)|2〉〈2| (5.41)

where a, b, c ∈ R and c ≥ 0. Let the Hamiltonian be

H = e0|e0〉〈e0|+ e1|e1〉〈e1|+ e2|e2〉〈e2| (5.42)

without demanding any particular ordering of the energy eigenvalues. Then, the er-
gotropy without loss of generality can be written as

W = Tr (%H)−min
U

Tr
(
U%U †H

)
= Tr (%H)− (e0a+ e1(b+ c) + e2(b− c)) (5.43)

= Tr (%H)− (ae0 + b(e1 + e2) + c(e1 − e2)). (5.44)
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Note, that e1 ≤ e2 since (b+ c) ≥ (b− c). Consequently, W increases with c and we can
set β = 0 in the above calculation. Exploiting addition theorems, we can now write

pα%S|α =1
6

[
|0〉〈0|(1 + cosα) + |1〉〈1|

(
1 + cos

(
α− 2π

3

))
+ |2〉〈2|

(
1 + cos

(
α+ 2π

3

))]
(5.45)

pα+π%S|α+π =1
6

[
|0〉〈0|(1− cosα) + |1〉〈1|

(
1− cos

(
α− 2π

3

))
+ |2〉〈2|

(
1− cos

(
α+ 2π

3

))]
.

(5.46)

As one can easily see, an optimal value of α is not unique, as shifting its value by 2π
3 can

be compensated by relabeling the states, which does not affect the daemonic gain. We
now aim to find the optimal α in the interval [−π

3 ,
π
3 ). When calculating the ergotropy

of the conditional states we need to know the ordering of their eigenvalues.

α ∈
[
−π3 , 0

)
⇒ cosα ≥ cos

(
α+ 2π

3

)
≥ cos

(
α− 2π

3

)
(5.47)

α ∈
(

0, π3

)
⇒ cosα ≥ cos

(
α− 2π

3

)
≥ cos

(
α+ 2π

3

)
(5.48)

In the following calculation, the upper sign will refer to the negative and the lower sign
will refer to the positive interval.

δW (%SA, H,Π) = WD(%SA, H,Π)−W (%S , H) (5.49)

= Tr (%SH)−min
Π

∑
k

Tr
(
%SA(U †kHUk ⊗Πk)

)
−
[
Tr (%SH)−min

U
Tr
(
%SU

†HU
)]
(5.50)

= min
U

Tr
(
%SU

†HU
)
−min

Π

∑
k

Tr
(
%SA(U †kHUk ⊗Πk)

)
(5.51)

= max
α
{ 1

3(ε0 + ε1 + ε2)− 1
6(ε0(1 + cosα)

+ ε1

(
1 + cos

(
α± 2π

3

))
+ ε2

(
1 + cos

(
α∓ 2π

3

))
+ ε0

(
1− cos

(
α∓ 2π

3

))
+ ε1

(
1− cos

(
α± 2π

3

))
+ ε2(1− cosα) } (5.52)

= 1
6(ε2 − ε0) max

α

(
cosα− cos

(
α∓ 2π

3

))
= ε2 − ε0

2
√

3
(5.53)

Now, that we computed the maximal daemonic gain for projective measurements, we
compare this with the daemonic gain that can be achieved by using the POVM P,
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consisting of the effects 2
3Pi, as defined in 5.32.

p0%S|P0 = 1
3

2
3

(
|0〉〈0|+ 1

4 |1〉〈1|+
1
4 |2〉〈2|

)
(5.54)

p1%S|P1 = 1
3

2
3

(1
4 |0〉〈0|+ |1〉〈1|+

1
4 |2〉〈2|

)
(5.55)

p2%S|P2 = 1
3

2
3

(1
4 |0〉〈0|+

1
4 |1〉〈1|+ |2〉〈2|

)
(5.56)

Given the conditional states, we can now compute the daemonic gain.

δW =ε0(1
3 −

2
3) + ε1(1

3 −
1
6) + ε2(1

3 − 16) (5.57)

=− 1
3ε0 + 1

6(ε1 + ε2) (5.58)

Choosing a Hamiltonian H = |ε1〉〈ε1|+ |ε2〉〈ε2| provides an example where the maximal
daemonic gain can not be achieved by using projective measurements because

δWproj = 1
2
√

3
< δWP = 1

3 . (5.59)

The following plot shows the daemonic gain for the state considered here as defined in
equation 5.31 and the Hamiltonian H = |1〉〈1|+ ε2|2〉〈2|.

Figure 5.1: Daemonic gain for the state defined in equation 5.31 and the Hamiltonian
H = |1〉〈1| + ε2|2〉〈2| for the Mercedes-star POVM (green dashed line), the optimal
POVM (solid green line) and the optimal projective measurement (red line).
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5.2 Multipartite Daemonic Ergotropy
In chapter four, we already studied daemonic ergotropy for three qubits. Anyway, dae-
monic ergotropy still remained a bipartite quantity, since we grouped two qubits to form
either the ancilla or the system. Now, we extend daemonic ergotropy to the multipartite
case.

In bipartite daemonic ergotropy one considers a system S and an ancilla A which
both play fundamentally different roles. From S one extracts energy while the ancilla can
only be measured. This asymmetry should prevail in a multipartite context. Maintain-
ing the division into systems and ancillas, there are two extremal cases of multipartite
generalisations to study. In one case, there are several systems from which energy is
extracted via local unitaries and a single ancilla. In the other case, there is only one
system but several ancillas on which measurements may be performed locally. In the
most general case, one would then be confronted with several systems and ancillas. This
is illustrated in figure (5.2).

S2 SnS1
... ...A1 A2 Am

U1 U2 Un

Wd,1 +Wd,2+...+Wd,n

Figure 5.2: Energy extraction scheme for multipartite daemonic ergotropy

If we are concerned with several systems, we first need to specify a multipartite
generalisation of ergotropy. We demand the total energy of all systems to equal the
sum of the energies in the individual systems. Therefore, with the local Hamiltonians
Hi acting on system i, the total Hamiltonian should be H =

∑
iHi, where we write Hi

short for 11 ⊗ . . . ⊗ 1i−1 ⊗ Hi ⊗ 1i+1 ⊗ . . . ⊗ 1n if there are n systems. With this, we
can write the multipartite ergotropy as

Wn(%S , H) = Tr (%SH)−min
U

Tr
(
%SUHU

†
)
, (5.60)

where the minimisation takes only product unitaries U = U1 ⊗ . . . ⊗ Un into account
and %S is the joint state of all systems. With the definition of the Hamiltonian and the
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product unitaries, we can rewrite the multipartite ergotropy as

Wn(%S , H) =
n∑
i=1

Tr (%iHi)−
∑
i

min
Ui

Tr
(
%iU

†
iHiUi

)
(5.61)

=
∑
i

W (%i, Hi), (5.62)

where %i is the reduced state of the ith system. Since the minimisation is restricted
to product unitaries, multipartite ergotropy is bounded from above by the single party
ergotropy W (%S , H).

In the bipartite setting one can express the daemonic ergotropy as

WD(%SA, H,E) =
∑
µ

W (%µ, H). (5.63)

where %µ = TrA(%SA(1 ⊗ Eµ)) is the unnormalised conditional state of the system for
outcome µ.

In the same fashion, we can write the daemonic ergotropy in the n-system setting as

Wn
D(%SA, H,E) =

∑
µ

Wn(%µS , H) (5.64)

=
∑
µ,i

W (%µi , Hi) (5.65)

where %µi is the unnormalised reduced conditional state of system i if the measurement
outcome was µ.

Note, that if we are dealing with several systems, it is sufficient to consider pure
states in our analysis since considering a mixed state is equivalent to appending another
system with a completely degenerate local Hamiltonian and considering the purification
of the state, such that tracing over the appended system will yield back the original
state.

In the case of several ancillas and one system, the multipartite generalisation does not
change the situation for pure states because every projective measurement with rank-one
projectors is optimal, including projectors on a product basis, which the multipartite
version of daemonic ergotropy allows. Thus, it is only interesting to consider mixed
states, which is then equivalent to a pure state scenario with many ancillas and many
systems.

Therefore, we first aim to gain a better understanding of the problem with many
systems, only one ancilla and pure states.

5.2.1 Optimal Measurement for Pure States

We first note that in contrast to the bipartite case, in the multipartite case projective
measurements do in general not even suffice for pure states. One directly sees this from
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the example considered in section (5.1.5). First, we diagonalise the classical-quantum
state from the example and write

%SA =
∑
i

pi|i〉〈i|SA. (5.66)

Now, we append another system S2 and consider the purification

|Ψ〉 =
∑
i

√
pi |i〉SA ⊗ |i〉S2 . (5.67)

For system S2 we choose a completely degenerate Hamiltonian H2 = h1. Using equation
(5.65) we can write

Wn
D( |Ψ〉, H,E) =

∑
µ

W (%µS , HS) +
∑
µ

W (%µS2
, H2). (5.68)

SinceH2 is completely degenerate, the second term is a constant. The first term is exactly
the bipartite daemonic ergotropy as considered in section (5.1.5) which was maximised
for a generalised measurement. Thus, also the multipartite daemonic ergotropy for the
pure state |Ψ〉 is maximised for the same generalised measurement, which proves the
claim.

For GHZ states

|GHZ〉 = 1√
2

( |0S1 . . . 0Sn0A1 . . . 0Am〉+ |1S1 . . . 1Sn1A1 . . . 1Am〉) (5.69)

however, the local projective measurements on |0〉 and |1〉 are optimal, since the condi-
tional state of all systems is a pure product state independently of the outcome and its
energy can thus be minimised using local unitaries.

We now investigate the multipartite daemonic ergotropy for W-like states

|W 〉 = cosφ sin θ |1S10S20A〉+ sinφ sin θ |0S11S20A〉+ cos θ |0S10S21A〉 (5.70)

where the local Hamiltonians for the systems S1 and S2 are both H = |1〉〈1|. The results
for multipartite ergotropy, multipartite daemonic ergotropy and multipartite daemonic
gain are shown in the plots below. Since all quantities have a periodicity of π/2 in φ, the
range of φ has been reduced accordingly.
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Figure 5.3: Multipartite ergotropy for |W 〉 as defined in equation (5.70)

Figure 5.4: Multipartite daemonic ergotropy for |W 〉 as defined in equation (5.70)
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Figure 5.5: Multipartite daemonic gain for |W 〉 as defined in equation (5.70)

Numerics show that a possible advantage when using generalised measurements is
smaller than numerical precision in this case.

5.2.2 Optimal Measurement for Quantum-Classical States

If the global state of all systems S1, . . . , Sn and the ancilla A is in a quantum-classical
state

%S1...SnA =
∑
i

σiS1...Sn
⊗ |i〉〈i|A (5.71)

we can repeat the proof presented in section (5.1.3) to show that the projective mea-
surement with projectors |i〉〈i| is still optimal. This of course is still true for the special
case in which the ancilla is divided into multiple subsystems and the state is

%S1...SnA1...Am =
∑
i

σiS1...Sn
⊗ |i〉〈i|A1 ⊗ . . . |i〉〈i|Am , (5.72)

for which the optimal measurement consists of the local projective measurements with
elements |i〉〈i|Ak

.
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Conclusion

In this work, we generalised daemonic ergotropy in two ways, by extending the class of
considered measurements and suggesting a genuine multipartite generalisation.

As groundwork, we examined the relation between multipartite entanglement and
bipartite daemonic ergotropy for three qubit systems. We analytically found states
that maximise daemonic gain at a given value of multipartite negativity and found a
good analytic approximation of states that minimise daemonic gain at a given value of
multipartite negativity. We showed numerically that the found states are not specific to
the used entanglement measure but also turn out to be optimal for a variety of other
entanglement measures. Exploiting symmetries of daemonic gain and entanglement of
formation in the state parameters, we transfer our results of the two-qubit system case
to the two-qubit ancilla case.

Then, we extend the definition of daemonic ergotropy to allow for generalised mea-
surements and present a see-saw algorithm to find the optimal measurement and cal-
culate the daemonic ergotropy. We argue that for pure states, any rank-one projective
measurement is optimal in the bipartite setting. Thereafter, we prove that an optimal
measurement for the quantum-classical state

%SA =
∑
i

σSi ⊗ |i〉〈i|A (5.73)

is the projective measurement with effects |i〉〈i|A. This result then shows that entangle-
ment and discord δS:A (but not δA:S) are not useful for energy extraction if a projective
measurement is optimal.

Subsequently, we consider a classical-quantum state and show that using generalised
measurements to measure the ancilla can give an advantage that depends on the Hamil-
tonian.

Afterwards, we suggest a multipartite generalisation of daemonic ergotropy. By con-
sidering the purification of the previous example, we show that for pure states, projective
measurements are in general no longer optimal. For |GHZ〉 states however, we argue
that projective measurements are always optimal and go on to compute the daemonic
gain of W-like states

|W 〉S1S2A ∝ a |100〉+ b |010〉+ c |001〉 (5.74)

for identical Hamiltonians on the first and the second system and note that in this case
projective measurements are also optimal. This rises the question, how the Hamilto-
nian determines the optimal measurement and whether generalised measurements still
perform better in multipartite systems with identical local Hamiltonians.

In the end, we remark that also in the multipartite setting, one optimal measurement
for the quantum-classical state

%SA =
∑
i

σiS1...Sn
⊗ |i〉〈i|A1 ⊗ . . .⊗ |i〉〈i|Am (5.75)

is given by the projectors on |iA1jA2 . . . kAm〉.
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Appendix A

Semidefinite Programming

Semidefinite programmes (SDPs) form a subclass of convex optimisation problems. A
convex optimisation problem is a problem of the form

min f(x)
subject to gi(x) ≤ 0 i ∈ {1, . . . ,m} (A.1)

where both the objective function f and the constraint functions gi are convex functions
[32]. A semidefinite programm is a convex optimisation problem on the cone of positive
semidefinite matrices with a linear objective function and affine constraints.

One way to state a semidefinite programme is thus

min
X∈Sn

〈C,X〉Sn

subject to 〈Ak, X〉Sn = ak, k = 1, . . . ,m
X � 0, (A.2)

which is called the conic form of the SDP [21]. By Sn, we denote the class of (real)
symmetric n × n matrices, � is the Loewner order and ak ∈ R and Ak are n × n-
matrices. Note, that SDPs also cover inequality constraints such as

〈Bl, X〉Sn ≤ bl, l = 1, . . . , s. (A.3)

Those can, however, be transformed into equality constraints by introducing unknown
but positive slack variables ck in the following way

〈Bl, X〉Sn = bl − cl, cl ≥ 0. (A.4)

Conversely, equality constraints are just a special case of inequality constraints in which
the slack variables are fixed. This is why one can slim down the definition of semidefinite
programmes by only choosing one way of representing constraints.
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The Dual Problem

To every SDP there is a dual SDP which for problem A.2 is defined as

max
y∈Rm

〈a, y〉Rm

subject to
m∑
i=1

yiAi � C. (A.5)

The dual SDP is another SDP, that is related to the original, also called primal SDP
through the optimal values of their objective functions. Specifically, the achieved min-
imum in the primal SDP is always greater or equal than the maximum that can be
achieved in the dual problem. This is called weak duality and the difference between the
two optima is called duality gap. Oftentimes, the duality gap closes, in which case the
duality between the primal and the dual SDP is called strong duality. We will now first
show that the dual SDP as written above is indeed a proper SDP by showing that it can
be converted into the conic form and discuss duality afterwards.

In order to do this, we first introduce a slack variable S

min
y∈Rm

〈−a, y〉Rm

subject to
m∑
i=1

yiAi + S = C

S � 0. (A.6)

Now that the third line matches the one in equation A.2, we rewrite the first line by
defining a matrix G0 that satisfies

〈G0, Ai〉 = ai, i = 1, . . . ,m. (A.7)

This allows us to write

−
∑
i

yiai = −
∑
i

yi〈G0, Ai〉 (A.8)

= −〈G0,
∑
i

yiAi〉 (A.9)

= −〈G0, C − S〉 (A.10)
= 〈G0, S〉 − 〈G0, C〉. (A.11)

Since G0 and C are fixed, minimising 〈−a, y〉Rm is equivalent to minimising 〈G0, S〉 over
all possible S. For any given SDP, the set of possible values of S is determined by the
m parameters ym as S = C −

∑
i yiAi. This allows us to characterise the set of possible

values of S as the set of symmetric matrices that obey n(n+1)/2 −m linear constraints.
This is, because symmetric matrices have n(n + 1)/2 free parameters, which leaves m
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free parameters after imposing n(n+1)/2−m constraints. We can write these constraints
in matrix form by introducing matrices Gi that fulfil

〈Gi, S〉 = di, i = 1, . . . , n(n+ 1)
2 −m (A.12)

for some real numbers di [21]. We can now write the original problem A.6 in the conic
form as

min
S∈Sn
〈G0, S〉Sn

subject to 〈Gi, S〉Sn = di, i = 1, . . . , n(n+ 1)
2 −m

S � 0. (A.13)

The optimal value of the primal SDP is always greater or equal than the optimal
value of its dual. This is called weak duality and it can be easily shown by simply
computing the duality gap [32]

〈C,X〉 − 〈a, y〉 = 〈C,X〉 −
m∑
i=1

yiai (A.14)

= 〈C,X〉 −
∑
i

yi〈Ai, X〉 (A.15)

= 〈C −
∑
i

yiAi, X〉 ≥ 0. (A.16)

The final inequality holds, because both S = C−
∑
i yiAi and X are positive semidefinite

matrices.
If the primal objective is bounded below and the problem is strictly feasible, which

in our formulation of the primal problem means that there is a positive definite operator
X̄ that satisfies 〈Ak, X〉 = ak, then there is an optimal solution to the dual problem and
the duality gap closes. In complete analogy, if the dual problem is bounded above and
strictly feasible, this is there exists a vector y that satisfies

∑
i yiAi � C, then there is

an optimal solution to the primal problem and the duality gap closes. These conditions
are called Slater conditions[32].

One can also directly a semidefinite programme in complex variables. In this case,
the primal problem is

max 〈A,X〉 (A.17)
subject to Φ(X) = B (A.18)

X � 0 (A.19)

and its dual problem is

min 〈B, Y 〉 (A.20)
subject to Φ∗(Y ) � A (A.21)

Y hermitian (A.22)
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where Φ is a hermiticity preserving map [33]. Many software packages do however not
accept to pose the problem in this form. In this case one needs to convert the complex
problem into a real one. This can for example be done [34] by converting a hermitian
matrix % into a real, symmetric matrix

σ =
(

Re(%) Im(%)
−Im(%) Re(%)

)
. (A.23)

Karush-Kuhn-Tucker Conditions
The Karush-Kuhn-Tucker Conditions (KKT conditions) are a set of sufficient conditions
for an optimal solution x̄ of a convex optimisation problem. For a convex optimisation
problem as stated in the very beginning in equation (A.1), the KKT conditions state
that if x̄ is optimal, then there must exist multpliers λi, such that [32]

∇f(x̄) +
m∑
i=1

λi∇gi(x̄) = 0 (A.24)

gi(x̄) ≤ 0 (A.25)
λigi(x̄) = 0 (A.26)

λi ≥ 0 (A.27)

hold for all i ∈ {1, . . . ,m}. One can easily proove that if x̄ satisfies the above conditions,
it must be optimal. Since f and gi are convex functions, we have

f(x)− f(x̄) ≥ (x− x̄)T∇f(x̄) (A.28)
gi(x)− gi(x̄) ≥ (x− x̄)T∇gi(x̄), (A.29)

where the second equation implies∑
i

λigi(x)−
∑
i

λigi(x̄) ≥ (x− x̄)T
∑
i

λi∇gi(x̄). (A.30)

Due to the third KKT condition, the second term on the left hand side vanishes and the
fourth KKT condition together with the feasibility condition implies that the first term
is smaller or equal zero. Now, we can sum up this inequality and the inequality (A.28)
to yield

f(x)− f(x̄) +
∑
i

λigi(x) ≥ (x− x̄)T [∇f(x̄) +
∑
i

λi∇gi(x̄)]. (A.31)

From the first KKT condition, we know that the term in square brackets must be zero
and since the sum on the left hand side must be non-positive, x̄ must indeed be a global
minimum [32].

58



Bibliography

[1] John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk.
The role of quantum information in thermodynamics—a topical review. Journal of
Physics A: Mathematical and Theoretical, 49(14):143001, 2016.

[2] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen. Maximal work extrac-
tion from finite quantum systems. EPL (Europhysics Letters), 67(4):565, 2004.

[3] Gianluca Francica, John Goold, Francesco Plastina, and Mauro Paternostro. Dae-
monic ergotropy: enhanced work extraction from quantum correlations. Nature,
2017.

[4] Teiko Heinosaari and Mário Ziman. The Mathematical Language of Quantum The-
ory: From Uncertainty to Entanglement. Cambridge University Press, 2011.

[5] Man-Duen Choi. Completely positive linear maps on complex matrices. 10:285–290,
06 1975.

[6] Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2003.

[7] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge Series on Information and the Natural Sciences. Cambridge University
Press, 2000.

[8] Giulio Chiribella, Giacomo Mauro D’Ariano, and Dirk Schlingemann. How contin-
uous quantum measurements in finite dimensions are actually discrete. Phys. Rev.
Lett., 98:190403, May 2007.

[9] Asher Peres. Quantum Theory: Concepts and Methods. 1995.

[10] Otfried Gühne and Géza Tóth. Entanglement detection. 2009.

[11] Michał Horodecki, Paweł Horodeckib, and Ryszard Horodecki. Physics Letters A,
223:1–8, 1996.

[12] Private communication with Otfried Guehne and Chau Nguyen.

59



Bibliography Bibliography

[13] Thomas Scheidl, Rupert Ursin, Johannes Kofler, Sven Ramelow, Xiao-Song Ma,
Thomas Herbst, Lothar Ratschbacher, Alessandro Fedrizzi, Nathan K. Langford,
Thomas Jennewein, and Anton Zeilinger. Violation of local realism with freedom
of choice. Proceedings of the National Academy of Sciences, 2010.

[14] J Lavoie, R Kaltenbaek, and K J Resch. Experimental violation of svetlichny’s
inequality. New Journal of Physics, 11(7):073051, 2009.

[15] W Dür, G Vidal, and J I. Cirac. Three qubits can be entangled in two inequivalent
ways. 62, 05 2000.

[16] A Acín, A Andrianov, E Jané, and R Tarrach. Three-qubit pure-state canonical
forms. Journal of Physics A: Mathematical and General, 34(35):6725, 2001.

[17] Stephen M. Barnett and Sarah Croke. Quantum state discrimination. Adv. Opt.
Photon., 1(2):238–278, Apr 2009.

[18] Ulrike Herzog and János A. Bergou. Distinguishing mixed quantum states:
Minimum-error discrimination versus optimum unambiguous discrimination. Phys.
Rev. A, 70:022302, Aug 2004.

[19] I.D. Ivanovic. How to differentiate between non-orthogonal states. Physics Letters
A, 123(6):257 – 259, 1987.

[20] Asher Peres. How to differentiate between non-orthogonal states. Physics Letters
A, 128(1):19, 1988.

[21] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of Semidef-
inite Programming: Theory, Algorithms, and Applications. International Series in
Operations Research and Management Science. Springer, 2000.

[22] Maximilian Schlosshauer. Decoherence, the measurement problem, and interpreta-
tions of quantum mechanics. Rev. Mod. Phys., 76:1267–1305, Feb 2005.

[23] Quantum coherence. 453(7198):1003–1049.

[24] L Henderson and V Vedral. Classical, quantum and total correlations. Journal of
Physics A: Mathematical and General, 34(35):6899, 2001.

[25] Harold Ollivier and Wojciech H. Zurek. Quantum discord: A measure of the quan-
tumness of correlations. Phys. Rev. Lett., 88:017901, Dec 2001.

[26] F. Galve, G. L. Giorgi, and R. Zambrini. Orthogonal measurements are almost suf-
ficient for quantum discord of two qubits. EPL (Europhysics Letters), 96(4):40005,
2011.

[27] Asma Al Qasimi and Daniel F. V. James. Comparison of the attempts of quantum
discord and quantum entanglement to capture quantum correlations. Phys. Rev. A,
83:032101, Mar 2011.

60



Bibliography Bibliography

[28] L. Mirsky. A trace inequality of John von Neumann. Monatshefte für Mathematik,
79(4):303–306, Dec 1975.

[29] A. Lenard. Thermodynamical proof of the Gibbs formula for elementary quantum
systems. Journal of Statistical Physics, 19(6):575–586, Dec 1978.

[30] Private communication with Mauro Paternostro.

[31] Private communication with Roope Uola.

[32] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[33] John Watrous. Theory of Quantum Information. 2011.

[34] Private communication with Matthias Kleinmann.

61



Erklärung

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate und Ergeb-
nisse Anderer kenntlich gemacht habe.

.......................................................... ..........................................................
(Ort) (Datum) (Unterschrift)

62


	Preface
	States, Channels and Measurements
	States
	Channels
	Measurements
	Positive Operator Valued Measures
	Projection Valued Measures
	The Naimark Extension
	Ozawa's Theorem


	Multipartite Systems, Entanglement and Classicality
	Entanglement
	The Positive Partial Transpose Criterion
	Bell Inequalities
	Entanglement Measures and Maximally Entangled States
	Three Qubits

	State Discrimination
	Unambiguous State Discrimination
	Minimum Error Discrimination

	Classicality and Discord

	Ergotropy, Daemonic Ergotropy and Daemonic Gain
	Ergotropy
	Ergotropy Is Sublinear And Convex
	Calculating Ergotropy

	Daemonic Ergotropy

	A Case Study in Three Qubits
	Daemonic Gain for Pure, Three Qubit States
	Daemonic Gain and Entanglement

	Extending and Computing Daemonic Gain
	Finding the Optimal Measurement
	Two Helpful Observations
	A See-Saw Algorithm to Compute Daemonic Gain
	Optimal Measurement for Quantum-Classical States 
	Daemonic Ergotropy and Quantum Correlations
	Enhancing Daemonic Gain with Generalised Measurements 

	Multipartite Daemonic Ergotropy
	Optimal Measurement for Pure States
	Optimal Measurement for Quantum-Classical States


	Conclusion
	Semidefinite Programming

