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Abstract

This thesis is devoted to different aspects of the detection and characterization of quan-
tum correlations in multiparticle systems. These include the statistical verification of
non-locality and entanglement in experiments, a versatile approach for the detection of
genuine multipartite entanglement that will be applied to different classes of states and
the characterization of entanglement using a multipartite hidden-variable theory.

We start by investigating statistical effects on the confidence with which one can ensure
that a multipartite state is non-local and therefore entangled. It turns out that for the
standard photonic error model, the statistical significance of a non-locality test with
comparably low violation, the so-called Mermin inequality, can exceed the significance
of a test with high violation, namely of the Ardehali inequality. We also report about
an experiment with four photons that verifies this behavior. Moreover, we also find that
the range of white noise in which the Mermin inequality achieves a higher statistical
significance grows exponentially with an increasing number of particles.

Then, we pass on to the detection of genuine multipartite entanglement given the
density matrix of a state. Using supersets of the sets of separable states, we intro-
duce a criterion for genuine multipartite entanglement that can be implemented as a
semidefinite program and test its performance on several example cases. Furthermore,
this criterion naturally leads to an entanglement monotone that generalizes the bipartite
negativity.

Subsequently, the criterion is applied to the class of graph states. In this way, we
obtain analytical construction methods for entanglement criteria, so-called entanglement
witnesses, for many different graph states and an arbitrary number of qubits. These
witnesses turn out to be strong, as their white noise tolerance converges to the maximum
possible value, namely one, for a growing number of qubits. At the same time, the
additional experimental effort in terms of settings to be measured, stays constant.

Furthermore, as the criterion performs so well on graph states, we consider the question
whether it can provide necessary and sufficient criteria for entanglement. We show that
this is indeed the case for some special graph-diagonal states. In addition, our line of
argument also provides deeper insights into the properties of our criterion and methods
to construct biseparable graph-diagonal states.

Finally, we turn to the characterization of quantum mechanical correlations given by
the bipartite non-local model introduced by A. Leggett. We present different ways of
extending this model to the case of many particles and also derive an inequality that
shows the imcompatibility of such multipartite Leggett models with quantum mechanics.





Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Nachweis und der Charakterisierung von quan-
tenmechanischen Korrelationen in Systemen, die aus mehreren Teilchen bestehen. Dies
beinhaltet die statistische Verifizierung von Nichtlokalität und Verschränkung im Experi-
ment, eine vielseitige Methode zum Nachweis echter multipartiter Verschränkung, welche
auf verschiedene Zustandsklassen angewandt wird, und die Charakterisierung von Ver-
schränkung unter Zuhilfenahme einer multipartiten Theorie mit versteckten Variablen.

Zuerst untersuchen wir den Einfluss statistischer Effekte auf die Konfidenz, das heißt
auf die Sicherheit, dass ein multipartiter Zustand wirklich nicht-lokal und damit ver-
schränkt ist. Es zeigt sich, dass die statistische Signifikanz eines Lokalitätstests mit ver-
gleichsweise niedriger Verletzung, der sogenannten Mermin-Ungleichung, die Signifikanz
eines Tests mit hoher Verletzung, in diesem Fall der Ardehali-Ungleichung, übertreffen
kann, wenn man das Fehlermodell für Photonenexperimente betrachtet. Wir berichten
von einem Experiment mit vier Photonen, das diesen Effekt nachweist. Außerdem zeigen
wir, dass der Bereich, in dem die Mermin-Ungleichung im Falle von weißem Rauschen
eine höhere statistische Signifikanz aufweist, exponentiell mit der Teilchenzahl anwächst.

Wir gehen dann zum Nachweis echter multipartiter Verschränkung bei gegebener
Dichtematrix über. Indem wir Übermengen der separablen Zustände benutzen, führen
wir ein Verschränkungskriterium für echte multipartite Verschränkung ein, das als semi-
definites Programm implementiert werden kann und testen seine Effizienz anhand meh-
rerer Beispiele. Weiters führt das Kriterium natürlicherweise zu einem Verschränkungs-
monoton, das eine Verallgemeinerung der Negativität im Zwei-Teilchen-Fall darstellt.

Zusätzlich wenden wir unser Kriterium auf Graphenzustände an. Auf diese Weise
erhalten wir analytische Konstruktionsmethoden für Verschränkungstests, sogenannte
Verschränkungszeugen, für viele verschiedene Graphenzustände und eine beliebige An-
zahl von Qubits. Diese Verschränkungszeugen stellen sich als robust heraus, insofern die
Menge an weißem Rauschen, die sie tolerieren können, für große Teilchenzahlen gegen
den maximal möglichen Wert, nämlich eins, strebt. Zugleich bleibt der zusätzlich nötige
experimentelle Aufwand konstant was die Anzahl der nötigen Messeinstellungen betrifft.

Da das Kriterium im Falle von Graphenzuständen gut funktioniert, untersuchen wir,
ob man mit ihm notwendig und hinreichende Verschränkungskriterien finden kann. Dies
ist für einige spezielle, graphendiagonale Zustände tatsächlich der Fall. Unsere Argu-
mentation erlaubt ein besseres Verständnis der Eigenschaften unseres Kriteriums und
motiviert Methoden zur Konstruktion biseparabler, graphendiagonaler Zustände.

Schließlich wenden wir uns der Charakterisierung quantenmechanischer Korrelationen
anhand des bipartiten, nicht-lokalen Modells von A. Leggett zu. Wir zeigen verschiedene
Möglichkeiten auf, es auf viele Teilchen zu erweitern, und zeigen seine Inkompatibilität
mit quantenmechanischen Korrelationen anhand einer Ungleichung, die wir herleiten.
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1 Introduction

In the early years of quantum mechanics, physicists felt that there was something coun-
terintuitive about quantum mechanics. This skepticism was phrased, most famously,
by Einstein, Podolsky and Rosen [1], who believed that quantum mechanics is not a
complete description of reality. In 1964, Bell showed that quantum mechanics possesses
properties substantially different from classical theories by proving that such intuitively
expected properties as locality and realism are incompatible with quantum mechanics [2].
These incompatibilities arise from the phenomenon of entanglement which was first de-
scribed by Schrödinger in 1935 [3]. However, it was not until 1989, when the definition
of entanglement was made precise [4].

At that time, the field of quantum information started to develop and a second aspect
of entanglement came into focus: It can be used as a resource which permits tasks like
entanglement-based quantum cryptography [5], teleportation [6] and measurement-based
quantum computation [7,8]. The evolution of quantum information was boosted further
when quantum algorithms were discovered that could perform certain tasks faster than
any classical algorithm known. Shor’s algorithm is exponentially faster than the best
known classical algorithm for prime factorization [9], while Grover’s algorithm outper-
forms classical algorithms for search in an unsorted database [10].

However, the connection of entanglement and a computational speed-up is not yet
clear, and only few quantitative statements can be made. For example, if, in a quantum
algorithm using only pure states, the maximal amount of entanglement present during
the computation grows at most logarithmically in the number of qubits, the algorithm
can be simulated classically using only a polynomial amount of time and memory [11].
It should also be mentioned that quantum discord [12], another measure of correlations,
is discussed as a resource in some specialized quantum computational tasks involving
totally mixed states [13]. Nevertheless, entanglement is necessary for teleportation, for
the violation of a Bell inequality and plays a crucial role in measurement-based quantum
computation and quantum metrology [14].

Due to its central role, entanglement has been under intense research in the last
two decades. On one hand, its theoretical characterization received a lot of attention
[15–19]. It turned out that, compared to a system of two particles, the characterization
of entanglement for three or more particles is far more complex [20–23].

On the other hand, experimentalists have made substantial progress and are nowadays
able to manipulate up to 14 qubits in experiments with trapped ions [24] and 10 qubits in
photonic experiments [25]. Also, experiments using super-conducting qubits are making
considerable progress [26,27].

In this thesis, we consider three different facets of quantum correlations in multipartite
systems: We analyze their detection in experiment, develop tools for their theoretical
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1 Introduction

verification and investigate their characterization.
For the first aspect, we will ask the question how sure one can be that a state in

experiment is really entangled. This question will be tackled at the example of multi-
partite Bell inequalities whose violation — and thus also the fact that the used state
is entangled — is to be confirmed in a photonic experiment. To this end, one needs to
take into account statistical effects. We find that these statistical effects play an impor-
tant role and that different Bell inequalities can exhibit very different behavior when one
tries to confirm the presence of quantum correlations in experiment with large statistical
significance.

Moreover, we will then proceed to the task of determining whether a multipartite
state is genuinely multipartite entangled given its density matrix. A large part of this
thesis is devoted to introducing and applying a criterion that enables one to both detect
and quantify multipartite entanglement and is strongly connected to a certain class of
witnesses. We evaluate the criterion numerically and illustrate its main properties, such
as the fact that it detects any three-qubit permutation invariant state, can be applied
in the case of incomplete information and provides a way to quantify entanglement.
Then, we apply it to a certain class of states, namely graph states, for which we find
analytical construction methods for tools that detect entanglement, so-called entangle-
ment witnesses. As a given entanglement witness only supplies a sufficient criterion for
entanglement, we will then proceed to the question whether our approach helps to find
necessary and sufficient criteria for entanglement. We present some classes of graph
diagonal states in which this is the case.

Finally, we turn to the characterization of quantum correlations and extend a class of
hidden-variable models, namely Leggett models, from the bipartite to the multipartite
case [28]. Instead of the assumption of locality as in a Bell inequality, Leggett inequalities
basically assume that locally, all expectation values seem to come from pure states. We
provide an inequality that holds for a certain class of the presented multipartite Leggett
models. Then, we show that quantum mechanics violates this inequality and therefore
the assumptions of the considered hidden-variable model.

This thesis is structured as follows: First, in Sec. 2, we lay out the basic notions
and definitions used in this work. In Sec. 3, we investigate the statistical behavior
of multipartite Bell inequalities in photonic experiments. Section 4 then introduces a
criterion and a monotone for genuine multipartite entanglement and illustrates the idea
behind the criterion and its main properties. Then, we analytically apply this criterion
the class of graph states in Sec. 5. Section 6 then asks whether our approach leads to
necessary and sufficient conditions for entanglement in graph states and presents cases
in which it does. Finally, Sec. 7 covers the generalization of Leggett models to the
multipartite case. Section 8 then presents a summary of the results of this thesis.

In the following chapter, we will start by laying the foundations and presenting the
definitions of the notions mentioned before.
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2 Setting the stage

This chapter is devoted to the definitions which later will be used in this thesis.

2.1 Characterization of entanglement

In the first section, we will learn the definitions of entanglement in systems composed
by two particles and in systems composed by a larger number of particles.

2.1.1 Bipartite entanglement

Pure states

First, we consider two quantum mechanical systems A and B that are controlled by two
persons named Alice and Bob, respectively. Let us start with the case of pure states. To
each of the two systems we associate a Hilbert space, HA and HB, respectively. Then,
the state of the combined system is described by a normalized vector |ψ〉 ∈ H, where
the Hilbert space H is given as the tensor product H = HA⊗HB. Moreover, |ψ〉 can be
written as

|ψ〉 =

dA∑

i=1

dB∑

j=1

cij |ai〉 ⊗ |bj〉 , (2.1)

where |ai〉 ∈ HA, |bj〉 ∈ HB and dA is the dimension of HA, dB the dimension of HB.
Furthermore, cij are complex coefficients. Note that, from now on, we will most often
use the shorthand notations |ai〉|bj〉 or |ai bj〉 instead of |ai〉 ⊗ |bj〉.

Separability and entanglement is now defined in the following way for bipartite pure
states.

Definition 1. A pure state |ψ〉 ∈ HA ⊗HB is called separable if it can be written as

|ψ〉 = |a〉|b〉 (2.2)

for some states |a〉 ∈ HA, |b〉 ∈ HB. Otherwise, it is called entangled.

Finally, a very useful tool for the characterization of entanglement in a bipartite setting
is the so-called Schmidt decomposition.

Lemma 2. Any pure state |ψ〉 ∈ HA ⊗HB can be written as

|ψ〉 =

r∑

i=1

λi|ai〉|bi〉 , (2.3)
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2 Setting the stage

where the so-called Schmidt coefficients λi are strictly positive and real. Moreover,
they are unique and

∑r
i=1 λ

2
i = 1. The number r of terms in the above sum is called

Schmidt rank and obeys r ≤ min{dA, dB}, where dA and dB are the dimensions of HA

and HB.

The proof of Lemma 2 can be found, e.g. in Ref. [29].

Mixed states

In general, the state of a quantum mechanical system is described by a positive, Hermi-
tian linear operator of unit trace. This is due to the fact that a system can also be in a
mixed state, i.e. its density matrix is given by

̺ =
∑

i

pi|φi〉〈φi| , (2.4)

where the pi form a probability distribution and thus pi ≥ 0 and
∑

i pi = 1. We can now
define the notion of entanglement for mixed states.

Definition 3. A state ̺ is called separable if there exist states ̺iA for Alice and states
̺iB for Bob, such that

̺sep =
∑

i

pi ̺
i
A ⊗ ̺iB , (2.5)

where pi ≥ 0 for all i and
∑

i pi = 1. Otherwise, it is called entangled.

A separable state can also be understood as a state that can be prepared via operations
performed locally by Alice and Bob and classical communication between them. In
particular, Alice can use a random number generator that outputs i with probability pi.
She can communicate her random output classically to Bob. Then, Alice prepares the
state |ai〉 locally, while Bob prepares |bi〉. In this way, they can produce any separable
state. Note that the set of local operations and classical communication is usually
labelled by LOCC. We will come back to this kind of operations in Sec. 2.3.1.

2.1.2 Multipartite entanglement

In the case of three or more particles, the notion of entanglement becomes more com-
plex. For illustration purposes, we consider three particles controlled by Alice, Bob and
Charlie. The notions defined here can be generalized to a larger number of particles in
a straightforward way. Let us first define a class of states that contain no entanglement
between any particles.

Definition 4. A state ̺ is called fully separable if it can be written as

̺fs =
∑

i

pi ̺
i
A ⊗ ̺iB ⊗ ̺iC , (2.6)

where pi ≥ 0 for all i and
∑

i pi = 1. A multipartite state ̺ that cannot be written in
this form is called entangled.

4



2.2 Detection of entanglement

There is, however, a kind of multipartite entanglement that is stronger than being
not fully separable. In order to define this kind of entanglement, we need to consider
bipartitions. For example, one can combine systems A and B and interpret them as
a single system. In this way, one has defined a bipartition AB|C and we are back in
the bipartite situation, i.e. we can define states that are separable with respect to this
bipartition according to Def. 3.

Definition 5. A state ̺ is called biseparable if it can be written as

̺bs = p1 ̺
sep
AB|C + p2 ̺

sep
A|BC + p3 ̺

sep
B|AC (2.7)

where pi ≥ 0 for all i and
∑3

i=1 pi = 1. Also, ̺sep
AB|C is some state which is separable

with respect to the bipartition AB|C, ̺sep
A|BC is separable with respect to A|BC and ̺sep

B|AC
with respect to B|AC. A multipartite state that cannot be written in this form is called
genuinely multipartite entangled.

Thus, a state like ̺AB ⊗ ̺C in which ̺AB is an entangled state, is entangled, but
not genuinely multipartite entangled. In this thesis, we focus on genuine multipartite
entanglement, as it is the strongest kind of entanglement, in which all particles are
entangled with each other. For the sake of brevity, we will therefore simply use the term
“entanglement” for multipartite states to refer to “genuine multipartite entanglement”.

2.2 Detection of entanglement

Let us now consider the question how one can decide whether a state is entangled
given its density matrix. It is not practicable to employ the definition of entanglement
directly and to try to explicitly decompose the given state into separable states. If
one is interested in showing that a state is entangled, one needs to prove that no such
decomposition exists, which means that, in principle, one has to consider all possible
decompositions. A proof that a state is separable can be done by giving a separable
decomposition. However, in many cases this is not an easy task.

In this section, we will therefore present two ways to detect entanglement: the so-
called PPT criterion in Sec. 2.2.1 and a class of operators, by the name of entanglement
witnesses, which are commonly used in experiment to detect entanglement (Sec. 2.2.2).
Then, we will specialize the latter notion to a certain subclass of entanglement witnesses.
Note that Bell inequalities are another tool to detect entanglement which also plays a
central role in this thesis. Since the underlying theory is a member of a whole class of
so-called hidden-variable theories, Bell inequalities will be presented in an own section,
namely Sections 2.4.1 and 2.4.2.

2.2.1 PPT criterion

First, we start by a definition that lies at the core of the separability criterion to be
presented.

5



2 Setting the stage

Definition 6. Given a state

̺ =

dA−1∑

i,j=0

dB−1∑

k,l=0

̺ij,kl|i〉〈j| ⊗ |k〉〈l| (2.8)

of two particles, the first one of which is described by a Hilbert space of dimension dA
and dB for the second particle. |i〉 ⊗ |k〉, i = 1, . . . , dA − 1, k = 1, . . . , dB − 1, is some
product basis of the composite Hilbert space. Then, the partial transpose of ̺ with
respect to subsystem A is defined as

̺TA =

dA−1∑

i,j=0

dB−1∑

k,l=0

̺ij,kl|j〉〈i| ⊗ |k〉〈l| . (2.9)

Note that the partial transpose ̺TA depends on the product basis in which the par-
tial transposition is performed. However, the spectrum of ̺TA is basis-independent.
Since the partial transpose can be calculated easily, the following necessary criterion for
separability can be easily checked.

Theorem 7. Any separable state ̺sep of two particles has a positive partial transpose,
i.e. ̺TA

sep has no negative eigenvalues [30]. If the dimensions of the two Hilbert spaces
are dA = 2 and dB = 2 or if they are dA = 2 and dB = 3, this positivity is also sufficient
for separability.

Thus, a negative eigenvalue of the partial transpose indicates that the respective state
is entangled. Note that, for the sake of brevity, states with a positive partial transpose
are usually said to be PPT states. Also, the fact that ̺TA has no negative eigenvalues
is denoted by ̺TA ≥ 0.

Proof. Per definition, any separable state can be written as in Eq. (2.5) and therefore
its partial transpose with respect to A is

̺TA
sep =

∑

i

pi
(
̺Ai
)T ⊗ ̺Bi . (2.10)

Since the transposition does not affect the non-negativity of ̺Ai ,
(
̺Ai
)T

is also positive
semidefinite and so is ̺TA

sep. The proof of positive semidefiniteness being sufficient for
separability for the given dimensions can be found in Ref. [31].

Clearly, the partial transposition can also be performed with respect to other subsys-
tems. However, in the case of two particles, the partial transpose with respect to B does
not yield new information, as

̺TA ≥ 0 ⇔
(
̺TA
)T

= ̺TB ≥ 0 . (2.11)

Here, it was used that an operator is positive if and only if its transpose is positive and
that composition of partial transposition with respect to A and full transposition simply
equals the partial transposition with respect to subsystem B.

6



2.2 Detection of entanglement

2.2.2 Entanglement witnesses

Another possibility to verify entanglement is the use of a special class of operators.

Definition 8. A hermitian operator W is called an entanglement witness [31–33] if
it fulfills the following two conditions:

(i) Tr(W̺sep) ≥ 0 for all separable states ̺sep

(ii) Tr(W̺ent) < 0 for at least one entangled state ̺ent

State ̺ent is then said to be detected by the entanglement witness W . Note that,
while the last section covered the particle transpose for two-particle systems, the given
definition of entanglement witnesses is independent from the number of particles. In
the multipartite case, however, it is important to specify whether one refers to entangle-
ment witnesses that are positive on fully separable states and detect entangled states or
entanglement witnesses that are positive on biseparable states and detect genuinely mul-
tipartite entangled states. As mentioned before, we will focus on witnesses for genuine
multipartite entanglement in this thesis.

An example for an entanglement witness that detects the singlet state

|ψ−〉 =
1√
2

(|01〉 − |10〉) (2.12)

is the witness

Wsing =
1

2
1− |ψ−〉〈ψ−| . (2.13)

This operator is a witness, as it is positive on all PPT states and therefore positive on
all separable states. This can be seen using the fact that the partial transposition obeys
Tr(Wsing̺

TA) = Tr(W TA
sing̺). Moreover, W TA

sing and ̺ are positive semidefinite operator.
The partially transposed witness is positive semidefinite, as 1 does not change under
partial transposition and a short calculation shows that (|ψ−〉〈ψ−|)TA has no eigenvalue
larger than one half. This way to show that a given observable is a witness will often be
applied in Sec. 5.6 in a similar way, but in a much more general setting.

Note that Wsing can also be in terms of Pauli matrices as

Wsing =
1

4
(X1X2 + Y1Y2 + Z1Z2 + 1) . (2.14)

Here, Xi denotes the Pauli matrix σx acting on the ith qubit. Analogously, Yi and Zi
refer to the Pauli matrices σy and σz, respectively. Let us consider an experiment that
aims at the preparation of a singlet state. Although the experimentally prepared state
̺exp will not exactly equal the singlet state due to experimental imperfections, ̺exp can
be expected to be close to the singlet state. Therefore, the measured expectation value

〈Wsing〉 =
1

4
(〈X1X2〉 + 〈Y1Y2〉 + 〈Z1Z2〉 + 1) (2.15)

7



2 Setting the stage

Figure 2.1: Entanglement witnesses define a hyperplane in the set of states. Here, two
witnesses, W1 and W2, are visualized by a line. The set of states that each
of them detects is shaded in gray. Both of them detect ̺ent, but W2 is finer
than W1. The set of all states is visualized by an ellipse with black border,
while the set of separable states is shown in blue. Both sets are convex. Any
state outside of the blue set of separable states is entangled by definition.

is likely to be negative and thus, the state ̺exp is proven to be entangled, independent
from its actual exact form. Note that, here, 〈A〉 = Tr(A̺exp).

This illustrates a nice property of entanglement witnesses: While many separability
criteria require knowledge of the whole density matrix, the witness’ expectation value
can usually be determined by measuring only a few expectation values, e.g., in the
case of Wsing only three expectation values according to Eq. (2.15). On the contrary,
determining a whole density matrix requires 4n−1 measurements in the case of n qubits.

Note that, in many experiments such as experiments with photons, it is not possible
to measure non-local observables like Wsing, but only local observables, which have a
tensor product structure, such as X1X2. This is why Wsing has to be decomposed into
local observables before measuring it. Also, in experiments statistical errors have to be
taken into account. Surprisingly, a larger number of expectation values in Eq. (2.15)
does not necessarily imply a larger statistical error. This will be the subject of Sec. 3.

Moreover, entanglement witnesses can be interpreted in a geometrical way. Since
Tr(W̺) is linear in ̺, the set of states for which Tr(W̺) = 0 defines a hyperplane that
cuts the set of states in two parts. The first part consists of states with Tr(W̺) < 0. All
of these states are detected by W and entangled. The second part contains states with
Tr(W̺) ≥ 0 and includes the set of separable states and some entangled states. This
situation is shown in Fig. 2.1.

The figure also illustrates that there are always some states are not detected for a given
witness W . On the other hand, there are “enough” witnesses to detect all entangled
states [31].
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2.2 Detection of entanglement

Theorem 9. For every entangled state ̺ent there is an entanglement witness that detects
it.

Proof. This property is easy to see as the set of separable states is convex and compact.
Therefore, for any point that corresponds to an entangled state there is a hyperplane
that separates this point from the set of separable states. Moreover, this hyperplane
defines an entanglement witness.

Moreover, Fig. 2.1 also shows what is meant when one witness is said to be finer than
another one.

Definition 10. Given two entanglement witnesses W1 and W2. If the set of states detect
by W1 is a strict subset of the states detected by W2, then W2 is said to be finer than
W1.

Lemma 11. If entanglement witness W2 is finer than W1, there is a positive hermitian
operator P , such that W1 = W2 + P [33].

Naturally, this notion gives rise to the idea of “finest” witnesses.

Definition 12. An entanglement witness W is called optimal, if there is no witness
that is finer than W .

Note that, the optimal entanglement witness for a given state ̺ is not unique. Also,
the fact that there is a separable state ̺sep with Tr(W̺sep), i.e. that W touches the set
of separable states, does not imply it is an optimal witness in the sense defined above.
In Ref. [33], it has been shown how to optimize witnesses.

Finally, note that witness operators can also be defined for other properties besides
entanglement. Instead of witnessing that a state is not separable, an operator that is
positive some other convex set of states could witness that a given state does not belong
to this convex set. Since the set of PPT states is also convex, an example are operators
that detect whether a state is not PPT. This will be one of the starting points of Sec. 4.

Decomposable witnesses

Let us now return to the case of two particles. In general, it is not easy to verify that a
given operator is an entanglement witness. However, there is a certain class of witnesses
that have a structure which immediately allows one to see that they are positive on all
separable states.

Definition 13. In a bipartite system, a witness W is called decomposable, if there
exists two positive hermitian operators P and Q such that

W = P +QTA , (2.16)

where TA is the partial transposition with respect to subsystem A [33].

9



2 Setting the stage

It is easy to see that Eq. (2.16) implies that W is positive on all PPT states. Let ̺ppt

be a PPT state. Then, for a decomposable witness W ,

Tr(W̺ppt) = Tr(P̺ppt) + Tr(QTA̺ppt)

= Tr(P̺ppt) + Tr(Q̺TA
ppt) ≥ 0 . (2.17)

Here, Tr(ABTA) = Tr(ATAB) has been used in the second line. The positivity follows
from the fact that P , Q and ̺ppt are positive operators and ̺ppt remains positive under
partial transposition. According to Theorem 7, the set of separable states is a subset
of the PPT states and therefore W is positive on all separable states. Note that the
witness of Eq. (2.13) is also a decomposable witness with P = 0.

2.3 Quantification of entanglement

The question whether a state is entangled naturally leads to the question of how much it
is entangled. The quantity of entanglement contained in a state is usually measured by
so-called entanglement measures or entanglement monotones. While there are several
entanglement monotones for bipartite systems, entanglement monotones for multipartite
systems are much less numerous. In Sec. 2.3.1, we will give an overview over the prop-
erties an entanglement monotone has to fulfill in the bipartite case and briefly mention
some examples. Then, we will present two entanglement measures for genuine multipar-
tite entanglement in Sec. 2.3.2.

2.3.1 Bipartite entanglement measures

In order to define what an entanglement monotone is, we need to the notion of local

operations and classical communication (LOCC). An LOCC operation on some
state ̺ is an operation in which Alice and Bob can perform any kind of local operation
and communicate over a classical channel. These local operations include measurements,
unitary operations, attaching an ancilla system and performing operations on the ancilla
system or the combined system of ancilla and original particle. Alice and Bob can
communicate before and after any such operations and, in this way, perform operations
that depend on the outcome of the previous operation of either of the two.

Due to this complexity of possible operations and protocols, there is no simple math-
ematical description of LOCC known. However, when one needs to optimize over all
possible LOCC operations, one often optimizes over a set of operations that is easier to
characterize and also contains the set of LOCC operations [34]. These are the so-called
separable operations. The set of separable operations are all operations Λsep that
map a given state ̺ onto

Λsep(̺) =
∑

i

pi
Ki̺K

†
i

Tr(Ki̺K
†
i )
, (2.18)
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2.3 Quantification of entanglement

where Ki = Ai ⊗ Bi,
∑

iK
†
iKi = 1 and pi = Tr(Ki̺K

†
i ) is the probability with which

the result of the operation is Ki̺K
†
i .

Since LOCC operations are a subset of the separable operations, an maximization
over separable operations provides an upper bound for maximizations over all LOCC
operations. Note that, also for LOCC operations, the outcome is, in general, not de-
terministic. Therefore, the possible results of the operation are given by some states ̺i
that occur according to some probabilities pi.

An entanglement monotone is given by a function

E : D(H) → R
+
0

̺ 7→ E(̺) , (2.19)

where D(H) is the set of density operators and R
+
0 is the set of non-negative real numbers,

which additionally has to fulfill certain conditions. However, there are differences in
the literature as to what conditions these are. Moreover, although an entanglement
measure usually fulfills more conditions than a monotone, these two terms are often
used interchangeably. For these reasons, we first provide a list of conditions that are
used in the literature [35,36].

(i) E(̺sep) = 0 for all separable states ̺sep.

(ii) Applying LOCC operations to any state ̺ does not increase the value of E, i.e.

E(ΛLOCC(̺)) ≤ E(̺) for all ̺ . (2.20)

(iii) E is convex, since mixing of two states should not increase the amount of entan-
glement,

E(
∑

i

pi̺i) ≤
∑

i

piE(̺i) . (2.21)

While one always requires an entanglement monotone to fulfill (i), condition (ii) is often
replaced by

(ii’) Applying LOCC operations to any state ̺ does not increase the value of E in
average, i.e. ∑

i

piE(̺i) ≤ E(̺) for all ̺ . (2.22)

Note that (ii’) implies condition (ii). Moreover, entanglement monotones should not
change under local basis changes. However, since local basis changes are included in
the set of LOCC operations and invertible, the invariance under local basis changes
follows from (ii). Also, condition (iii) is sometimes not postulated for an entanglement
monotone.

In contrast, an entanglement measure is usually required to fulfill the following con-
dition in addition to the ones presented above.
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2 Setting the stage

(iv) For any pure state |ψ〉,

E(|ψ〉〈ψ|) = −Tr[̺Alog2(̺A)] , where ̺A = TrA(|ψ〉〈ψ|) . (2.23)

Examples

There are many entanglement measures which have an operational meaning, such as
the entanglement cost EC(̺), which is basically given by the minimal number of singlet
states needed to create a large number of ̺ via LOCC. The entanglement of distillation
E(̺) is given by the number of singlets that one can obtain from a large number of copies
of ̺ [37]. The entanglement of formation EF (̺) extends the quantity of Eq. (2.23) to
mixed states via the so-called convex-roof construction

EF (̺) = inf
pi,|φi〉

∑

i

piS[TrA(|φi〉〈φi|)] . (2.24)

Here, the infimum is taken over all possible decompositions ̺ =
∑

i pi|φi〉〈φi|.
However, all of the mentioned entanglement measures are, in general, difficult to

compute. An easily computable measure is given by the violation of the PPT criterion
(cf. Theorem 7).

Definition 14. For any bipartite state ̺, its negativity [38] is defined as

N(̺) =
‖ ̺TA ‖1 −1

2
. (2.25)

Using that ‖ ̺TA ‖1 is the sum over all absolute values of the eigenvalues of ̺TA and
the normalization of ̺, one sees that the negativity can be calculated by summing up
the absolute values of ̺TA ’s negative eigenvalues. The negativity is also convex.

For completeness, we briefly mention the concurrence [39,40], which, for pure states,
is defined as

C(|ψ〉) =
√

2[1 − Tr(̺2
A)] , where ̺A = TrA(|ψ〉〈ψ|) . (2.26)

Also, its convex-roof extension [cf. Eq. (2.24)] to mixed states of two qubits can be
calculated analytically [41].

2.3.2 Multipartite entanglement measures

In the multipartite case, one has to distinguish between measures that vanish on all
fully separable states and measures that vanish on all biseparable states. While the
first detect multipartite entanglement (as opposed to full separability), the latter detect
genuine multipartite entanglement. It is also worth mentioning that, as there is no
general consensus on the axioms that an entanglement monotone has to fulfill in the
bipartite case, there is also no general agreement in the multipartite case. However, a
natural set of operations under which such a quantity should not increase are operations
that are fully local, i.e. a full tensor product of all parties, and classical communication
between all of them.
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2.4 Hidden-variable theories

The geometric measure of entanglement [42–44] EG of a pure state |ψ〉 is given
by its maximal overlap with a fully separable state,

EG(|ψ〉) = 1 − sup
|φ〉=|a〉|b〉|c〉...

|〈ψ|φ〉|2 . (2.27)

It can be extended to mixed states using the convex-roof construction. Although this
measure only vanishes on fully separable states, the idea of such distance measures can
also be used to construct measures for genuine multipartite entanglement. For example,
the relative entropy of entanglement [45] of a state ̺ is defined by

ER(̺) = inf
σ
S(̺ ‖ σ) , (2.28)

where S(̺ ‖ σ) = Tr[̺log(̺) − ̺log(σ)] is the so-called relative entropy.

Similarly, one can define the robustness R(̺) of a state as

R(̺) = min{s :
̺+ sσ

1 + s
} . (2.29)

Here, σ is an arbitrary separable state [46]. It is also possible to consider the quantity
of Eq. (2.29) for σ being an arbitrary state or identity [47].

For three qubits, there is the so-called three-tangle τ [48] which is for pure states
defined by

τ(|ψ〉) = C2
A|BC(|ψ〉) − C2

AB(̺AB) − C2
AC(̺AC) (2.30)

and for mixed states through the convex-roof construction. Here, CA|BC is the concur-
rence [cf. Eq. (2.26)] between system A and the combined system BC, CAB(̺AB) is the
concurrence between A and B and analogously for CAC(̺AC). Note that the three-tangle
vanishes not only on all biseparable states, but also on all states that can be created
from the state

|W 〉 =
1√
3
(|001〉 + |010〉 + |100〉) (2.31)

by stochastic LOCC operations [20]. In stochastic LOCC operations, one performs
LOCC operations and chooses, out of the many possible resulting states that occur
with a non-zero probability, one of these possible states. The three-tangle can be calcu-
lated analytically for important cases [49] and can be generalized to a higher number of
particles [50,51].

For general mixed states, the aforementioned measures are difficult to compute. In
Sec. 4, a generalization of the negativity to the multipartite case, which can easily be
computed numerically for an arbitrary state, will be presented.

2.4 Hidden-variable theories

Even before the field of quantum information emerged in the late 1980s, entanglement
played in important role in understanding nature’s properties. Einstein, Podolski and
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2 Setting the stage

Rosen suggested that the probabilistic character of quantum mechanics only stems from
the fact that the theory is not complete and that there is a complete theory behind it
which predicts the outcomes of all possible measurements [1]. Without specifying the
exact form of such a theory, Bell subsequently introduced a framework in which such
theories can be described, namely what we now call hidden-variable theories.

Let us first assume two particles controlled by Alice and Bob, respectively. In the
framework of hidden variables, the probability that Alice obtains the outcome α and Bob
the outcome β when Alice is measuring observable A and Bob is measuring observables
B given that the hidden variable is λ is denoted by pλ(α, β|A,B). Note that the exact
form of the hidden variable is not specified here. It can, in principle, be anything from a
scalar to a high-dimensional vector. The expectation value of the observable AB given
that the hidden variable is λ is then calculated according to

〈AB〉λ =
∑

α,b

αβ pλ(α, β|A,B) . (2.32)

As, in reality, we lack knowledge of the hidden variable, we actually measure the expec-
tation value

〈AB〉 =

∫
dλ̺(λ)

∑

α,β

αβ pλ(α, β|A,B) (2.33)

in experiment. Here, ̺(λ) is a probability density on the hidden variable λ.

2.4.1 Bipartite Bell inequalities

Besides the existence of hidden variables, Bell theories also assume locality. In other
words, one considers hidden-variable theories in which the expectation values of Eq. (2.33)
can always be written in terms of probability distributions that factorize, i.e. which obey

pλ(α, β|A,B) = pλ(α|A)pλ(β|B) (2.34)

for any two observables A1 and B1 and fixed λ. Hidden-variable theories that obey
Eq. (2.34) are called local hidden-variable theories (LHV theories). Note that lo-
cality implies that Alice’s choice of observable cannot affect Bob’s outcome probabilities
(no-signalling), i.e., that for any two observables B and B′ that Bob measures (and any
observable A and outcome a of Alice), the probabilities obey

pλ(α|A,B) = pλ(α|A,B′) where pλ(α|A,B) =
∑

b

pλ(α, β|A,B) . (2.35)

The most commonly used Bell inequality for two particles is the Clauser-Horne-
Shimony-Holt (CHSH) inequality [52]. It states that in any LHV theory, the inequality

〈AB〉 + 〈AB′〉 + 〈A′B〉 − 〈A′B′〉 ≤ 2 (2.36)

holds for any observables A, A′, B and B′. In quantum mechanics, this inequality can
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2.4 Hidden-variable theories

be violated by choosing A = −X, A′ = −Y , B = (X − Y )/
√

2, B′ = (X + Y )/
√

2 and
the singlet state of Eq. (2.12). For these choices, the left-hand side of Eq. (2.36) equals
2
√

2.

Bell inequalities can also be used for entanglement detection, as any state that violates
a Bell inequality must be entangled. This can be seen by noting that for any separable
state ̺sep =

∑
i pi ̺

A
i ⊗ ̺Bi , one has

〈AB〉 =
∑

i

pi Tr(A̺Ai )Tr(B̺Bi ) . (2.37)

Then, however, ̺Ai and ̺Bi can be interpreted as different values of the hidden variable.
This defines an LHV model, where the locality can be seen by Eq. (2.37), and there-
fore, it cannot violate a Bell inequality. However, the converse is not true: There are
some entangled states that do not violate any Bell inequality [4,53]. Finally, it is worth
mentioning that Bell inequalities are, in contrast to entanglement witnesses, tools to de-
tect entanglement independent from the observables actually measured in experiment.
As experimental implementations are never perfect, one might measure observables dif-
ferent from the ones that one intended to measure. However, since Eq. (2.36) holds
for any observables, a violation of this inequality would still indicate the presence of
entanglement.

2.4.2 Multipartite Bell inequalities

Analogously to multipartite entanglement, there are two different notions of non-locality
in the multipartite case. Let us first consider probability distributions which factorize
fully and have the form

pλ(α, β, γ|A,B,C) = pλ(α|A)pλ(β|B)pλ(γ|C) . (2.38)

Probability distributions of this kind, which one might call “fully local”, obey the Mer-

min inequality [54]. For three qubits, the Mermin inequality is given by

〈ABC〉 − 〈AB′C ′〉 − 〈A′BC ′〉 − 〈A′B′C〉 ≤ 2 , (2.39)

where A, A′, B, B′, C and C ′ are arbitrary observables. Note that, from now on, we will
present Bell inequalities with the quantum mechanical observables that yield the largest
violation already plugged in, since this allows for a more compact notation. In the case
of the Mermin inequality, we then have

〈X1X2X3〉 − 〈X1Y2Y3〉 − 〈Y1X2Y3〉 − 〈Y1Y2X3〉 ≤ 2 . (2.40)

This inequality is maximally violated for the three-qubit Greenberger-Horne-Zeilinger
(GHZ) state

|GHZ3〉 =
1√
2
(|000〉 + |111〉) . (2.41)
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2 Setting the stage

In this case, the left-hand side has a value of 4, since every term has an absolute value
of 1 with the appropriate sign. This observation was also the basis for the argument by
Greenberger, Horne and Zeilinger [55] who argue that the GHZ state contradicts realism
in the sense of Einstein, Podolsky and Rosen [1].

For n qubits, the Mermin inequality is given by

〈X1X2X3X4X5 . . . Xn〉 −
∑

perms

〈Y1Y2X3X4X5 . . . Xn〉

+
∑

perms

〈Y1Y2Y3Y4X5 . . . Xn〉 − · · · ≤
{

2n/2 , for even n,

2(n−1)/2 , for odd n .
(2.42)

Here,
∑

perms indicates a sum over all permutations of all qubits that lead to distinct
terms. Again, the Mermin inequality holds also for an arbitrary choice of observables.
The maximal violation is obtained for the n-qubit GHZ state

|GHZn〉 =
1√
2
(|0 . . . 0〉 + |1 . . . 1〉) , (2.43)

for which the left-hand side reaches a value of 2n−1.

Another example that holds for the same kind of non-locality is the Ardehali in-

equality [56], which is given by

[
〈A1X2X3X4X5X6X7 . . . Xn〉 + 〈B1X2X3X4X5X6X7 . . . Xn〉

−
∑

perms(2,...,n)

(〈A1Y2X3X4X5X6X7 . . . Xn〉 − 〈B1Y2X3X4X5X6X7 . . . Xn〉)

−
∑

perms(2,...,n)

(〈A1Y2Y3X4X5X6X7 . . . Xn〉 + 〈B1Y2Y3X4X5X6X7 . . . Xn〉)

+
∑

perms(2,...,n)

(〈A1Y2Y3Y4X5X6X7 . . . Xn〉 − 〈B1Y2Y3Y4X5X6X7 . . . Xn〉)

+
∑

perms(2,...,n)

(〈A1Y2Y3Y4Y5X6X7 . . . Xn〉 + 〈B1Y2Y3Y4Y5X6X7 . . . Xn〉)

−
∑

perms(2,...,n)

(〈A1Y2Y3Y4Y5Y6X7 . . . Xn〉 − 〈B1Y2Y3Y4Y5Y6X7 . . . Xn〉) − . . .
]
/
√

2

≤
{

2(n−1)/2 , for even n,

2n/2 , for odd n .
(2.44)

Here,
∑

perms(2,...,n) denotes a sum over all permutations of qubits 2 to n that yield

distinct observables. Moreover, A = (X1 + Y1)/
√

2 and A′ = (X1 − Y1)/
√

2. Again, the
Ardehali inequality holds for arbitrary observables, but with the above observables and
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the GHZ state, the quantum mechanical violation is maximal and equals 2n−1. Note
that the quantum mechanical operators on the left-hand side of Eqs (2.42) and (2.44)
are the same, but the bound on LHV models, i.e., the right-hand side differs.

As for entanglement, there is also a notion of genuine multipartite non-locality.
For three qubits, any probability distribution that cannot be written as

pλ(α, β, γ|A,B,C, . . . )
= q1pλ(α|A)pλ(β, γ|B,C) + q2pλ(β|B)pλ(α, γ|A,C) + q3pλ(γ|C)pλ(α, β|A,B) , (2.45)

where
∑

i qi = 1 and qi ≥ 0, is called genuine multipartite non-local. Any probability
distribution that is of the form of Eq. (2.45) obeys the Svetlichny inequality [57]

〈ABC〉+ 〈AB′C〉+ 〈ABC ′〉− 〈AB′C ′〉+ 〈A′BC〉− 〈A′B′C〉− 〈A′BC ′〉− 〈A′B′C ′〉 ≤ 4 .
(2.46)

The quantum mechanical violation is maximal for the GHZ state [cf. Eq. (2.41)] of
three qubits and equals 4

√
2 for the choice A = −X, A′ = Y , B = (X + Y )/

√
2,

B′ = (X − Y )/
√

2, C = −X and C ′ = Y [58]. One way to prove that Eq. (2.46) holds
for genuinely non-local models is based on the realization that the inequality is a sum of
two CHSH inequalities. For example, all expectation values containing A form a CHSH
inequality on parties two and three and the same for all terms that include A′. Moreover,
since Eq. (2.46) is invariant under any permutation of particles, it has this form on any
two qubits.

Also, Svetlichny’s inequality has been generalized to an arbitrary number of qubits [15].

2.4.3 Leggett inequalities

In 2003, Leggett introduced another class of hidden-variable theories, replacing the as-
sumption of locality in Bell inequalities by an assumption on the marginal probability
distributions [28, 59]. More precisely, consider, for a fixed hidden variable λ, the prob-
ability distributions pλ(α, β|A,B) on the measurement outcomes α and β given that A
and B have been measured, and their marginal

pλ(α|A) =
∑

b

pλ(α, β|A,B) . (2.47)

Here, by writing pλ(α|A) instead of pλ(α|A,B), we have also assumed no-signalling [cf.
Eq. (2.35)]. Now, consider the set L of all probability distributions whose marginals
obey the following condition: For every observable A, there exists a unit vector ~a ∈ R3,
such that

〈A〉λ =
∑

α

αpλ(α|A) = ~λ~a . (2.48)
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Here, the unit vector ~λ ∈ R3 corresponds to the hidden variable and is fixed. Note
that the first equality sign holds due to the definition of an expectation value and the
second equality is the actual assumption that we impose. Then, a Leggett model is
a hidden variable model in which all probability distributions are convex combinations
of distributions whose marginals obey Eq. (2.48), i.e. all probability distributions are in
the convex hull of L.

Equation (2.48) can be interpreted as follows: Every one-qubit quantum state can be

written as ̺ = 1
2

(
1 +

∑3
i=1 λiσi

)
, where σi are the three Pauli matrices and λi ∈ R3

is of unit length for pure states and of length less than one for mixed states. As we can
also write the observable A =

∑3
i=1 aiσi in the Pauli basis using a three-dimensional

real vector ~a, we have Tr(A̺) = ~λ~a with |~λ| = 1 for pure states. Thus, Eq. (2.48)
says that every reduced one-qubit state (of Alice) behaves like a pure state (for a given
λ). Naturally, one can postulate the same condition on Bob’s side. However, in the
following, we only need to make use of such a condition on Alice’s side.

Following the derivation in Ref. [60], we consider the probability pλ(α1, β1|A,B) of
measuring outcomes α1 and β1, when the observables A and B are measured, for a fixed
hidden variable λ. This probability is given by

pλ(α1, β1|A,B) =
1

4
(1 + α1〈A〉 + β1〈B〉 + α1β1 〈AB〉) . (2.49)

Here, 〈A〉 is the expectation value of A on Alice’s side when, at the same time, Bob
is measuring B on his side (and vice versa for 〈B〉). However, assuming no-signalling
[cf. Eq. (2.35)] implies that 〈A〉 is independent from Bob’s choice of observables and
justifies the notation 〈A〉. If we invoke this assumption and consider a second probability
distribution of measuring outcomes α2 and β2 for the observables A and B′, then the
sum of these distributions is given by

pλ(α1, β1|A,B) + pλ(α2, β2|A,B′)

=
1

4

[
2 + (α1 + α2)〈A〉 + β1〈B〉 + β2〈B′〉 + α1β1 〈AB〉 + α2β2 〈AB′〉

]
. (2.50)

Positivity of these probability distributions for any value of α1, α2, β1, β2 ∈ {−1,+1}
implies

|〈AB〉λ + 〈AB′〉λ| ≤ 2 − |〈B〉λ + 〈B′〉λ| . (2.51)

Integration
∫
dλ ̺(λ), where ̺(λ) is some probability density function on the hidden

variables, and use of |
∫
.| ≤

∫
|.| yields

|〈AB〉 + 〈AB′〉| ≤ 2 −
∫
dλ ̺(λ)|〈B〉λ − 〈B′〉λ| . (2.52)

Note that the left-hand side is now independent from λ, as we have used the definition
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2.5 Graph states

of Eq. (2.33). Finally, we plug in the assumption of Eq. (2.48), which results in

|〈AB〉 + 〈AB′〉| ≤ 2 −
∫
dλ ̺(λ)|~λ~b− ~λ~b′| , (2.53)

where ~b, ~b′ ∈ R3 are unit vectors. This equation contains three observables, namely A,
B and B′. Consider an experiment in which such a triple of observables is measured
for three different settings, resulting in the observables Ai, Bi, B

′
i, i = 1, 2, 3. As Bob

cannot measure Bi and B′
i at the same time, this actually requires six different runs in

experiment — three for Ai, Bi and three for Ai, B
′
i. To Ai, we associate the unit vector

~ai and to Bi and B′
i, we associate ~bi and ~b′i, respectively. Now, we define the unit vector

~ei by ~bi −~b′i = 2 sin(ϕ/2)~ei, where ϕi is the angle between ~bi and ~b′i. We consider the
case in which ϕ = ϕ1 = ϕ2 = ϕ3 and sum Eq. (2.53) over all three settings. This results
in

1

3

3∑

i=1

|〈AiBi〉 + 〈AiB′
i〉| ≤ 2 − 2

3
| sin(ϕ/2)|

∫
dλ ̺(λ)

3∑

i=1

|~λ~ei| . (2.54)

If {~e1, ~e2, ~e3} are orthonormal, then, for any ~λ, we have |~λ~ei| ≥ 1 and therefore

1

3

3∑

i=1

|〈AiBi〉 + 〈AiB′
i〉| ≤ 2 − 2

3
| sin(ϕ/2)| , (2.55)

which holds for all Leggett models. Quantum mechanics, however, violates this inequal-
ity. For the singlet state, we have 〈AiBi〉 = −~ai~bi and therefore

2| cos(ϕ/2)| ≤ 2 − 2

3
| sin(ϕ/2)| , (2.56)

which is maximally violated for ϕ ≈ 0.680, where the left-hand side of Eq. (2.56) is
approximately 1.06 times as big as the right-hand side.

One can therefore conclude that quantum mechanics cannot be characterized by a
hidden-variable model in which the single qubits behave as if they were in a pure state.
In Sec. 7, we will consider the question of how one can define Leggett models and
construct the according inequalities in the multipartite case.

2.5 Graph states

In this section, we will introduce graph states, a special class of states that can be
described by an efficient and useful formalism. Graph states play an important role for
tasks like measurement-based quantum computation [7, 8] or quantum error correction
[61–63]. These states have several interesting properties, for instance they are relatively
robust against decoherence and violate certain Bell inequalities maximally [64]. Recently,
several experiments succeeded in preparing graph states of several qubits with photons
[25,65–71], and also the theory of entanglement detection for such experiments has been
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investigated in a number of papers [72,73].

Examples for graph states are the 2D cluster state [74] used for universal measurement-
based quantum computation, the GHZ state of Eq. (2.43) [55], the ring cluster and the
linear cluster state. An introduction to graph states can be found in Ref. [64]. Finally,
note that a considerable part of this section is taken from Ref. [75].

In this introductory section, we will start with the definition in Sec. 2.5.1, then define
the so-called graph state basis (cf. Sec. 2.5.2) and finally consider the application of
local unitary operations to graph states in Sec. 2.5.3.

2.5.1 Definition

Graph states are defined by mathematical graphs in the following way. Given a graph
G = (V,E) that is defined by a set V of vertices which correspond to qubits and a set E
of edges that connect some of these vertices (cf. the examples in Fig. 2.2). We denote
the number of vertices by n. Then, one can define a set of n operators

gi = Xi

∏

k∈N (i)

Zk, i = 1, . . . , n , (2.57)

where N (i) is the neighborhood of qubit i, i.e., the set of all qubits that are connected
to qubit i by an edge.

The operators gi commute and generate a set S of so-called stabilizer operators

which consists of 2n elements, i.e.,

S = {S1, . . . , S2n} =

{
n∏

i=1

gxi
i |~x ∈ {0, 1}n

}
. (2.58)

Here, ~x is a vector of length n containing only zeros and ones. This means that every
operator Si ∈ S can be written as a product of some generators gi, in which every
generators appears once or not at all. Note that the identity operator 1 is also contained
in S, as it is obtained for ~x being a vector of only zeros. Since gigi = 1, i = 1, . . . , n, the
product of gi with itself is included in the definition of Eq. (2.58) and S is closed under
multiplication. Now, we can define the corresponding graph state |G〉.

Definition 15. Given a graph G = (V,E). The corresponding graph state |G〉 is
uniquely defined by

gi|G〉 = |G〉, ∀ i = 1, . . . , n , (2.59)

where the gi are defined by Eq. (2.57).

Thus, |G〉 is the common eigenstate of all generators gi with eigenvalue +1.

As an example, let us consider the four Bell states
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2.5 Graph states

No. 1 — Bell state No. 2 — GHZ3 No. 3 — GHZ4 No. 4 — Cl4

No. 5 — GHZ5 No. 6 — Y5 No. 7 — Cl5 No. 8 — R5

No. 9 — GHZ6 No. 10 No. 11 — H6 No. 12 — Y6

No. 13 — E6 No. 14 — Cl6 No. 15 No. 16

No. 17 No. 18 — R6 No. 19

Figure 2.2: The graph states of up to six qubits can be grouped into 19 LU equivalence
classes. For each class, we show the representative state here.
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|φ+〉 =
1√
2
(|00〉 + |11〉) , (2.60)

|φ−〉 =
1√
2
(|00〉 − |11〉) , (2.61)

|ψ+〉 =
1√
2
(|01〉 + |10〉) , (2.62)

|ψ−〉 =
1√
2
(|01〉 − |10〉) . (2.63)

Here, the last state is the singlet state that has already been introduced in Eq. (2.12).
The associated graph is shown in Fig. 2.2 as No. 1. According to Eq. (2.57), the gener-
ators of the state’s stabilizer group are

g1 = X1Z2, g2 = Z1X2 . (2.64)

Then, the state

|G1〉 =
1√
2
(| + 0〉 + | − 1〉) (2.65)

is an eigenstate of g1 and g2 with eigenvalue +1. Here, |±〉 = (|0〉 ± |1〉)/
√

2 are the
eigenvectors of X for eigenvalue ±1 and |0〉 and |1〉 are the eigenvectors of Z. It is
therefore easy to check that |G1〉 is really an eigenvector for eigenvalue +1 for the two
gi, if one keeps in mind that X acts as a flip operator on |0〉 and |1〉 and Z as a flip
operator on |±〉.

One notes that |G1〉 does not equal any Bell state exactly. However, by applying
appropriate local unitary operations, one can transform the state of Eq. (2.65) to any of
the four Bell states. This is why the graph No. 1 in Fig. 2.2 is said to belong to a Bell
state.

Another example is the GHZ state of three qubits [cf. Eq. (2.41)]. Its associated graph
is shown in Fig. 2.2 as No. 2. Therefore, the generators of the stabilizer group are given
by

g1 = X1Z2, g2 = Z1X2Z3, g3 = Z2X3 . (2.66)

Then, the state

|G2〉 =
1√
2
(| − 1−〉 + | + 0+〉) (2.67)

is an eigenstate of all of these generators. Also here, one can see that the three-qubit
GHZ state in its standard form as in Eq. (2.41) is different from the state |G2〉 that is
associated to graph No. 2 of Fig. 2.2. However, after a local basis change, |G2〉 and the
three-qubit GHZ state coincide.

2.5.2 Graph state basis

Every graph also defines a basis of orthonormal states.
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2.5 Graph states

Definition 16. Given a graph a G = (V,E) and the corresponding generators gi [cf.
Eq. (2.57)]. The graph state basis of this graph is the set of states {|a1 . . . an〉G|ai ∈
{0, 1}} which obey

gi|a1 . . . an〉G = (−1)ai |a1 . . . an〉G, ∀ i = 1, . . . , n . (2.68)

Consequently, |G〉 = |0 . . . 0〉G. Moreover, projectors on these vectors can be written
as

G|a1 . . . an〉〈a1 . . . an|G =

n∏

i=1

(−1)aigi + 1

2
. (2.69)

In the following, we will refer to states that are diagonal in a graph state basis as
graph-diagonal states.

It is also useful to know that the application of Zi to |a1 . . . an〉G flips the ith bit, i.e.

Zi |a1 . . . ai . . . an〉G = |a1 . . . ai ⊕ 1 . . . an〉G . (2.70)

Moreover, any state can be transformed into a graph-diagonal state by local transfor-
mations [76]. This can be done for any given graph in the following way: Given a state
q, we can write it in the graph basis associated to the given graph as

̺ =
∑

λi1i2...in,j1j2...jn G|i1i2 . . . in〉〈j1j2 . . . jn|G . (2.71)

Here, the sum runs over all binary strings i1i2 . . . in ∈ {0, 1}n and the same for j1j2 . . . jn.
Then, one can throw a coin and with probability 1/2 leave the state untouched and in
the other case apply g1 to the state. Note that the latter is a local operation as it
is a tensor product of Pauli operators. Through this stochastic operation, the state is
changed into

̺ 7→ ˜̺ =
1

2
(̺+ g1̺g

†
1) (2.72)

Note that ˜̺ does not have any off-diagonal elements of the form G|i1i2 . . . in〉〈j1j2 . . . jn|G
with i1 6= j1 anymore, as

g1 G|i1i2 . . . in〉〈j1j2 . . . jn|G g†1 = −G|i1i2 . . . in〉〈j1j2 . . . jn|G , (2.73)

if i1 6= j1. If one adds the untouched part to such terms, these off-diagonal terms cancel.

It is now straightforward to complete the transformation by adding n−1 more rounds
in which, first, we apply g2 to ˜̺ with probability 1/2, then g3 to the resulting state with
probability 1/2 etc. This finally results in a graph-diagonal state which can only be
entangled if the original state was already entangled, as the described local operations
cannot create entanglement.
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2.5.3 Local unitary operations on graph states

An important class of operations are the local unitary operations, as these operations
do not change the entanglement properties of a state and leave its physical properties
unchanged. Two states |ψ〉 and |φ〉 that are related via local unitaries U1, . . . , Un,

|ψ〉 = U1 ⊗ · · · ⊗ Un|φ〉 , (2.74)

are called LU-equivalent.

In Refs [77, 78], it was shown that two graph states belonging to two different math-
ematical graphs can be LU-equivalent (when also allowing for permutations of qubits).
In particular, two graphs that can be transformed into each other by a local comple-

mentation are LU-equivalent. A local complementation on a vertex i is an inversion of
its neighborhood graph, i.e. one considers all qubits that are neighbors of i (but not i
itself) and deletes all edges that connect these qubits with each other. Also, an edge is
added between each two qubits in this neighborhood that are not connected.

For example, a local complementation on qubit 1 in star graph No. 9 of Fig. 2.2 results
in the fully connected graph, in which each of the six vertices is connected with every
other vertex. Therefore, the states associated to these graphs are LU-equivalent. Note
that both graphs are LU-equivalent to the GHZ state as in Eq. (2.43) of six qubits.

It has been shown that, when taking into account states of up to six qubits, there
are 19 LU-equivalence classes of connected graph states [77]. Note that the equivalence
classes of up to eight qubits have been characterized in Ref. [79]. Figure 2.2 shows one
representative state of each LU-equivalence class. Any graph state of six or less qubits
can therefore be mapped by local unitaries and permutations onto a state associated
to some graph in Fig. 2.2. In terms of a graph transformation, these local unitaries all
correspond to local complementations as described before.

The application of these local unitaries, whose exact form is given in Ref. [77], allows
one to transform a witness for any graph state in a particular LU-equivalence class into
a witness of any other graph state in the same class. However, in order to perform this
transformation, it is important to know how the generators of the graph transform under
local complementation. Consider a graph G and its generators gi according to Eq. (2.57).
Moreover, let G̃ be the graph that is obtained from G by a local complementation on
vertex i and g̃i its generators according to Eq. (2.57). Then, this local complementation
maps

gj 7→
{

g̃j if j /∈ N (i)

g̃j g̃i if j ∈ N (i)
. (2.75)

One can check that one can build up all possible products of generators g̃i using the
operators on the right-hand side of Eq. (2.75). Therefore, this mapping maps
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|G〉〈G| =
∑

~x∈{0,1}n

n∏

i=1

gxi
i 7→

∑

~x∈{0,1}n

n∏

i=1

g̃ xi
i = |G̃〉〈G̃| . (2.76)

as desired. An example of Eq. (2.75) will be given in Sec. 5.2.1, where the mapping will
be applied to witness operators that we will construct there.

Finally, we add that for any graph state |G〉, the operator Wproj = 1
21 − |G〉〈G| is a

witness [72]. We will refer to Wproj as the projector witness of |G〉 [80].

2.6 Semidefinite programming

To conclude the introduction, the reader will be introduced to a class of problems that
can be solved numerically in an efficient way which will be presented in Sec. 2.6.1.
Moreover, these problems allow for statements of existence and uniqueness which will
be given in Sec. 2.6.2.

2.6.1 General form of a semidefinite program

Semidefinite programs have proven to be very useful in quantum information. The
general form of a semidefinite program is given in the following definition [81].

Definition 17. Given a vector ~c ∈ Rm and a set of m+ 1 hermitian matrices
{F0, F1, . . . , Fm | Fi ∈ Cn×n}. Then, a minimization over ~x ∈ Rm of the form

min
~x
~c ~x

subject to F0 +

m∑

i=1

xiFi ≥ 0 (2.77)

(2.78)

is a semidefinite program (SDP). Note that the second line means that the matrix
F (~x) = F0 +

∑m
i=1 xiFi should be positive semidefinite.

The set over which the optimization is performed is convex. This can be seen by
noting that if F (~x) ≥ 0 and F (~y) ≥ 0 for some x, y ∈ Rm, the linearity of F implies that
also

F (t~x+ (1 − t)~y) = tF (~x) + (1 − t)F (~y) ≥ 0 (2.79)

for any t with 0 ≤ t ≤ 1. Moreover, the function g(~x) = ~c~x which is optimized is convex
as it is linear. An optimization of a convex function over a convex set is called a convex

optimization problem and an SDP is a special case of such a problem, as just argued.

An example for an SDP would be to calculate the sum of all negative eigenvalues of a
given Hermitian matrix A, which could be formulated as
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min
P

Tr(AP )

subject to 1 ≥ P ≥ 0 . (2.80)

Here, 1 ≥ P denotes the condition that 1−P is positive semidefinite. This minimization
is an SDP, where the vector ~c of Eq. (2.77) corresponds to the vector ~p in which all
columns of P have been concatenated. Then, Tr(AP ) =

∑
iAiiPii can be written as a

scalar product of a vector ~p and a vector ~c that contains the diagonal elements Aii and
zeros for the non-diagonal elements of P . Moreover, the condition that P (and 1 − P )
must be positive semidefinite, can clearly be written as in Eq. (2.77) by choosing the
matrices Fi such that

∑
i piFi = P . This is not difficult, as pi are the elements of ~p and

therefore of the columns of P .

The minimum in Eq. (2.80) would be obtained for P =
∑

i |ei〉〈ei|, where |ei〉 are the
eigenvectors of A with negative eigenvalues. In case A has no negative eigenvalues, the
minimum is zero and obtained for P = 0. The SDP of Eq. (2.80) can also be used to
calculate the negativity (cf. Definition 14) of a state ̺. In order to do so, one has to
replace A by ̺TA .

Moreover, if the matrices Fi of Eq. (2.77) are diagonal, their sum is also diagonal.
Then, the positivity constraint becomes much easier, as only the element-wise positivity
of the diagonal elements has to be checked. These special instances of SDPs are called
linear programs and will play a role in Sec. 5.1.

Definition 18. Given a vector ~c ∈ Rm, ~b ∈ Rn and a real matrix A ∈ Rn×m. Then, a
minimization over ~x ∈ Rm of the form

min
~x
~c ~x

subject to A~x+~b ≥ 0 (2.81)

(2.82)

is a linear program (LP). Note that the second line denotes element-wise positivity
here.

It becomes clear that any LP is an SDP, if one denotes the m column vectors of A by
~ai and sets F0 = diag(~b) and Fi = diag(~ai). Here, diag(~b) denotes the diagonal matrix
whose diagonal elements are the entries of ~b. With this choice, the LP of Eq. (2.81) has
been brought into the form of Eq. (2.77) and is therefore an SDP.

2.6.2 Properties of a semidefinite program

Every SDP also has a dual problem which is defined as follows.
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Definition 19. Given a semidefinite program as in Def. 17. Then, its dual problem

is

max
Z

−Tr(F0 Z) (2.83)

subject to Tr(Fi Z) = ci, i = 1, . . . ,m

Z ≥ 0
,

where Z ∈ Cn×n is a hermitian matrix and Z ≥ 0 denotes positivity of the matrix Z.

The dual problem can be cast into the form of Eq. (2.77) and is therefore also an
SDP. Since SDPs with ~c = 0 test whether there exists a ~x that fulfills the constraints,
they are also called feasibility problems and if any solution ~x exists, the SDP is
primal feasible. Analogously, if there is a hermitian, positive semidefinite matrix Z
with Tr(Fi Z) = ci, then the SDP is dual feasible.

If a problem is primal and dual feasible, any ~x and Z that fulfill the constraints of the
primal and dual problem, respectively, fulfill

~c ~x+ Tr(Z F0) = Tr(ZF (~x) ≥ 0 , (2.84)

where the positivity follows from Z ≥ 0, F (~x) ≥ 0. The fact that

~c ~x ≥ −Tr(Z F0) (2.85)

which follows from Eq. (2.84) is called weak duality. If the infimum of the left-hand
side of Eq. (2.85) coincides with the supremum of its right-hand side, once speaks about
strong duality. The conditions for this case are given by the following a theorem.

Theorem 20. Given an SDP. Let p∗ = inf{~c ~x | F (~x) ≥ 0} be the optimal value of the
primal problem and d∗ = sup{−Tr(F0 Z) |Z = Z† ≥ 0, Tr(Fi Z) = ci ∀ i = 1, . . . ,m} be
the optimal value of the dual problem. If ...

(i) ... there exists an ~x ∈ Rm in the primal problem, such that F (~x) > 0 or ...

(ii) ... there exists a hermitian Z ∈ Cn×n with Tr(Fi Z) = ci for i = 1, . . . ,m and
Z > 0, ...

... then p∗ = d∗. If (i) and (ii) hold, then p∗ ∈ {~c~x|F (~x) ≥ 0} and d∗ ∈ {−Tr(F0Z)|Z =
Z† ≥ 0, Tr(Fi Z) = ci ∀ i = 1, . . . ,m}.

Duality is a strong tool that allows for testing the quality of a numerically performed
minimization in an SDP. Assume that pnum is a minimum of the primal problem which
has been determined numerically, which will therefore be slightly larger than the exact
minimum, pnum > p∗. Also, let dnum < d∗ be a numerical estimate for the maximum of
the dual problem. Then, due to weak duality,

dnum < d∗ ≤ p∗ < pnum . (2.86)
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Therefore, pnum and dnum provide an interval in which the exact minimum of the primal
problem must be. In the case of strong duality, the less-or-equal-sign in Eq. (2.86) is
replaced by equality. Therefore, the difference between pnum and dnum provides a good
measure of how well the numerical optimization worked.
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significances in experiments

In this chapter, we will consider an experimental test for entanglement and take its
statistical error into account to ask how strong such a test really is. The main results of
this section have already been published in Ref. [82].

As quantum theory is a statistical theory, predicting in general only probabilities
for experimental results, in most experiments observing quantum effects, several copies
of a quantum state are generated and individually measured to determine the desired
probabilities. As only a finite number of states can be generated, this leads to an
unavoidable statistical error. The particularly low generation rate in certain experiments
demands a careful statistical treatment.

For the experimental verification of entanglement, often inequalities for the correla-
tions — such as Bell inequalities or entanglement witnesses (cf. Secs 2.2.2, 2.4) — are
used, in which a violation indicates entanglement [31, 32]. The maximization of this
violation has been investigated in detail, cf. Refs [19,33]. In fact, making such inequal-
ities more sensitive is a crucial step in order to allow advanced experiments with more
particles.

In this chapter, it is demonstrated theoretically and experimentally that such an opti-
mization does not necessarily lead to a better entanglement test, if the statistical nature
of quantum theory is taken into account. It was already noted [83,84] that, when aiming
at ruling out local realism, highly entangled states do not necessarily deliver a stronger
test than weakly entangled states, but this does not answer the question which inequality
to use for a given state and it remains unclear how to apply it to actual error models used
in experiments. Also, most of the different entanglement detection methods compared
in Ref. [85] cannot be applied to multiparticle systems.

Theoretically, we show for different error models that decreasing the violation of an
inequality can improve the significance. Also, we demonstrate this phenomenon in a four-
photon experiment, measuring the Mermin and the Ardehali inequality. We find that the
former inequality leads to a higher significance than the latter, despite a lower violation.
Finally, we discuss the physical origin of this phenomenon and provide methods to
construct entanglement tests with a high statistical significance.

3.1 Statement of the problem

Both Bell inequalities and entanglement witnesses provide a necessary condition for
a state to be separable which can be formulated in the form of an inequality. An
entanglement witness is positive on all separable states, while a Bell inequality
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〈B〉 ≤ Clhv , (3.1)

with some real constant Clhv holds for all local hidden variable models (LHV models) and
therefore for all separable states. In both cases, a violation implies entanglement and we
define V as the violation of the corresponding inequality. That is, for a witness we have
V(W ) = −〈W 〉 while for a Bell inequality V(B) = 〈B〉 − Clhv. Then, the significance of
an entanglement test can be defined as

S =
V
E (3.2)

where E is the statistical error for the experiment. Clearly, E depends on the par-
ticular experimental implementation and on the error model used. Nevertheless, in any
experiment S is a well characterized quantity; its notion is widely used in the literature,
when the violation is expressed in terms of “standard deviations”, e.g. [25,80].

Previously, much effort has been devoted to improving entanglement tests in order
to achieve a higher violation. For instance, for entanglement witnesses a mature theory
how to optimize witnesses has been developed [33]. Here, for a given witness W one tries
to find a positive operator P , such that W ′ = W − P is still a witness. In order to have
a more significant result, however, one can either increase V in Eq. (3.2) or decrease E .
It is a central result of this chapter that decreasing E is often superior.

3.2 Variance as error

Let us first consider a simple model, in which we take the square root of the variance as
the error of a witness,

E(W ) = ∆(W ) =
√

〈W 2〉 − 〈W 〉2. (3.3)

An experimentally relevant model will be discussed below. This simple model already
demonstrates that the standard optimization of witnesses is often not the appropriate
approach to increase the significance:

Lemma 21. Let ̺ = |ψ〉〈ψ| be a pure state detected by the witness W . Then, one
can always increase the significance of W at the expense of optimality (i.e., by adding a
positive operator). With this method one can make the significance arbitrarily large.

Proof. We use as an ansatz for the improved witness W ′ = W + γP , where γ > 0 and
P is a positive observable with unit trace. For small γ, we expand

− 〈W ′〉
∆(W ′)

= − 〈W 〉
∆(W )

+ γ
〈W 〉

2∆3(W )

(
〈WP + PW 〉 − 2

〈W 2〉
〈W 〉 〈P 〉

)
+O(γ2) . (3.4)

Maximizing this expression over all positive P with Tr(P ) = 1 is equivalent to min-
imizing Tr(QP ), where Q = ̺W + W̺ − 2〈W 2〉/〈W 〉̺. Hence the optimal P is a
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3.3 Error model for multi-photon experiments

one-dimensional projector P = |ϕ〉〈ϕ|, where |ϕ〉 is an eigenvector corresponding to the
minimal eigenvalue of Q.

We still have to show that this minimal eigenvalue is negative. To this end, we make
the ansatz |ϕ〉 = α|ψ〉 + β|ψ⊥〉, where 〈ψ|ψ⊥〉 = 0. We then have to minimize

Tr(QP ) = 2Re(α⋆β〈ψ|W|ψ⊥〉) − 2|α|2
∆2
ψ(W)

〈ψ|W|ψ〉 . (3.5)

We can always choose the phases of α and β such that Re(α⋆β〈ψ|W|ψ⊥〉) is negative.
Therefore the optimal |ψ⊥〉 is the vector orthogonal to |ψ〉 which maximizes |〈ψ|W |ψ⊥〉|,
i.e.,

|ψ⊥
opt〉 = [1− |ψ〉〈ψ|]W |ψ〉/∆ψ(W ) . (3.6)

Furthermore, we can always choose the moduli of α and β such that the negative term
2Re(α⋆β〈ψ|W|ψ⊥〉) dominates the positive second term. This shows that the minimal
eigenvalue of Q is negative.

For finite γ we can iterate this procedure. We always find the same |ψ⊥
opt〉 (though α

and β will be different in each iteration step). Thus, we make the ansatz

γP = a|ψ〉〈ψ| + b|ψ⊥
opt〉〈ψ⊥

opt| + c|ψ〉〈ψ⊥
opt| + h. c. (3.7)

for the final result of the iteration. If we choose c = −∆ψ(W ), ab ≥ |c|2, and a, b > 0,
then γP is positive, |ψ〉 is an eigenstate of W ′, and ∆ψ(W ′) is zero, so S diverges.

3.3 Error model for multi-photon experiments

Let us now consider a realistic situation, in which other and more specific error models
are used. As our later implementation uses multi-photon entanglement, we concentrate
on this type of experiments but our ideas can also be applied to other implementations,
such as trapped ions.

The basic experimental quantities are the numbers of detection events ni of the dif-
ferent detectors i. From these data, all other quantities such as correlations or mean
values of observables are derived.

In the standard error model for photonic experiments [66,86], the counts are assumed
to be distributed according to a Poissonian distribution, whose mean value is given by
the observed value. That is, for a certain measurement outcome i one sets the mean value
as 〈ni〉 = ni and the error as E(ni) =

√
ni (being the standard deviation of a Poissonian

distribution). In general, for a function f = f(ni) of several counts, Gaussian error
propagation is applied to obtain the error (see below).

To give an example, consider a two-qubit correlation

M = αZ1Z2 + βZ112 + γ11Z2 . (3.8)

〈M〉 can be determined by measuring in the common eigenbasis of all three terms in
M, i.e., by projecting onto |00〉, |01〉, |10〉 and |11〉. Repeating this with many copies of
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3 Bell inequalities: Statistical significances in experiments

the state will lead to count numbers nkl with k, l = 0 or 1 and to count rates

pkl = nkl/ntot, where ntot = n00 + n01 + n10 + n11 . (3.9)

ntot is the total number of events. The mean value 〈M〉 can be written as a linear
combination of pkl, namely

〈M〉 = λ00p00 + λ01p01 + λ10p10 + λ11p11 (3.10)

with λ00 = α+ β + γ, λ01 = −α+ β − γ,

λ10 = −α− β + γ, λ11 = α− β − γ .

Then, according to Gaussian error propagation, the squared error is given by

E(M)2 =
∑

k,l

(
∂〈M〉
∂nkl

)2

E(nkl)
2 =

∑

k,l

(
λkl
ntot

− 〈M〉
ntot

)2

nkl . (3.11)

Using Eq. (3.9) and the definition of 〈M〉 in Eq. (3.10), a simple calculation yields

(
λkl
ntot

− 〈M〉
ntot

)2

nkl = 4
n2
±

n4
tot

nkl , (3.12)

where n± stands for n−, the total number of counts associated to a negative eigenvalue,
if λkl = +1, and for n+, the total number of counts associated to a negative eigenvalue,
if λkl = −1. Note that, in this example with two qubits, n00 and n11 are associated to
a positive eigenvalue and therefore n+ = n00 + n11. Thus, n− = n01 + n10.

Now, when executing the sum in Eq. (3.11), one needs to distinguish between count
numbers nkl associated to negative eigenvalues and those associated to positive eigen-
values. Using that n+ + n− = ntot, we arrive at

E(M)2 =
∑

k,l

(
λkl
ntot

− 〈M〉
ntot

)2

nkl = 4
n+n−
n3

tot

= 4
n+(ntot − n+)

n3
tot

. (3.13)

This easy formula also shows that the error of a single setting is maximal if one measures
an equal number of outcomes for +1 and for −1.

In an experiment, one usually continues measuring until one has collected a certain
amount of experimental data, i.e. a total number of N counts. In photonic experiments,
however, measurements can usually only be performed locally on single qubits. In gen-
eral, the observable to be measured contains, say, m terms that need to be measured
in different local bases (one of which might be M of Eq. (3.8)). Now, one can ask how
much time should be spent on measuring each setting in order to minimize the error.

Lemma 22. Consider a photonic experiment in which the expectation value of an op-

32



3.3 Error model for multi-photon experiments

erator

B =

m∑

i=1

αiMi (3.14)

is to be determined. Here, the measurement of each term Mi has to be performed in a

different basis. Assume that basis i, 1 ≤ i ≤ m, is measured until one has detected n
(i)
tot

counts in this basis. Let N =
∑m

i=1 n
(i)
tot. Then, the total error is minimal if

n
(i)
tot =

N |αi||Ei
(
N
m

)
|

m∑
j=1

|αj ||Ej
(
N
m

)
|
, (3.15)

where Ei
(
N
m

)
is the error of setting i in the case where each setting is measured equally

often.

Corollary 23. We denote the experimental state by ̺exp. If both |αi| and |Tr(Mi̺exp)|
are the same for each setting i, then the uniform distribution n

(i)
tot = N/m achieves the

minimal error.

Proof. Lemma 22 — We need to minimize the total error, whose square is, according to
Gaussian error propagation, given by

E2(n
(1)
tot, . . . , n

(m)
tot ) =

m∑

i=1

α2
i E2
i (n

(i)
tot) . (3.16)

Note that minimizing the squared error is equivalent with minimizing the error itself.

We define xi by n
(i)
tot = xi

N
m , so that it gives the factor by which n

(i)
tot deviates from an

equal distribution of the total number N of counts on the m different settings.

Now, E2 must be minimized under the condition that N =
∑m

i=1, i.e. that
∑m

i=1 xi =
m. This can be done using a Lagrange multiplier λ by minimizing

f(x1, ..., xn, λ) = E2(n
(1)
tot, . . . , n

(m)
tot ) + λ(

m∑

i=1

xi −m) . (3.17)

Equation (3.13) shows that E2
i

(
xi
N
m

)
= 1

xi
E2
i

(
N
m

)
and therefore

f(x1, ..., xn, λ) =

m∑

i=1

α2
i

xi
E2
i

(
N

m

)
+ λ(

m∑

i=1

xi −m) . (3.18)

This expression is minimal for the count numbers given in Eq. (3.15).
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Corollary 23 — The corollary can be seen as follows: For any setting i, we have

n+n− =
(
n

(i)
tot

)2 1

4
[1 − Tr(Mi̺exp)] [1 + Tr(Mi̺exp)] (3.19)

=
(
n

(i)
tot

)2 1

4
{1 − [Tr(Mi̺exp)]2} . (3.20)

Therefore, if |Tr(Mi̺exp)| and |αi| are setting-independent, the product n+n− is the
same for each setting. According to Eq. (3.13) and Eq. (3.15), the optimal particle
numbers are then the same for each setting and therefore equal the uniformly distributed
ones.

From now on, we will denote the count numbers ntot in Eq. (3.13) by n
(i)
tot as they only

refer to the single setting i.

Let us finally discuss the underlying assumptions of this error model. The first main
assumption is that the nkl are Poisson distributed and their errors are uncorrelated.

This is well motivated by the experimental observations and assumes that the detector
efficiency is low. Moreover, Gaussian error propagation stems from a Taylor expansion
of the function f and therefore assumes that the non-linear terms of the expansion are
small. Finally, one can use the standard deviation to define a confidence interval. Under
the assumption that the distribution is Gaussian, one can state that, when repeating the
measurement, with a probability of 68.27% the distance of the measurement outcome
to the mean value will be smaller than one standard deviation. For other distributions
the connection between confidence interval and standard deviation is not so direct. If
the number of events for all detectors is sufficiently large (e.g.nkl & 10), however, the
Poissonian distribution is approximated well by a Gaussian distribution.

3.4 Bell inequalities for four particles

We now consider the Mermin and Ardehali inequality for four qubits (cf. Sec. 2.4.2,
[54,56]). In order to be consistent with the notation of Eq. (3.1), we define [cf. Eqs (2.42)
and Eqs (2.44)]

BM =X1X2X3X4 −X1X2Y3Y4 −X1Y2Y3X4 − Y1Y2X3X4

− Y1X2Y3X4 −X1Y2X3Y4 − Y1X2X3Y4 + Y1Y2Y3Y4 , (3.21)

for the Mermin inequality [54] and

BA =
(
A1X2X3X4 +B1X2X3X4 −A1X2Y3Y4 −B1X2Y3Y4

−A1Y2Y3X4 −B1Y2Y3X4 −A1Y2X3Y4 −B1Y2X3Y4

−A1Y2X3X4 +B1Y2X3X4 −A1X2X3Y4 +B1X2X3Y4

−A1X2Y3X4 +B1X2Y3X4 +A1Y2Y3Y4 −B1Y2Y3Y4

)
/
√

2 , (3.22)
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for the Ardehali inequality [56]. Here, A1 = (X1 + Y1) /
√

2 and B1 = (X1 − Y1) /
√

2.
We wrote BM and BA with the Pauli matrices as observables, since they are used later,
however, one might replace them by arbitrary dichotomic measurements.
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Figure 3.1: a) Significance S for the Mermin (red, solid) and the Ardehali inequality
(blue, dashed) for bit-flip noise when measuring each setting equally often.
Using optimized count numbers (cf. Lemma 22) results in the green curves.
On the horizontal axes, we show the bit-flip probability and the correspond-
ing fidelity with respect to a perfect GHZ state. We assumed that the ex-
perimenter prepares 8000 instances of a GHZ state and chooses either to
measure the eight terms of the Mermin inequality (each term with 1000 re-
alizations of the state) or the 16 terms of the Ardehali inequality with 500
states per correlation term. See text for further details. In b), the same
situation but with white noise added to the GHZ state was considered. c)
shows dephasing noise. d) shows the Mermin (red, solid) and the Ardehali
inequality (blue, dashed) for white noise for an increasing number of qubits
n. The values plotted here are n = 4, 6, 8, 10 and the arrow points in the
direction of increasing n.

The Mermin and Ardehali inequality reveal the non-local correlations of the four-qubit
GHZ state |GHZ4〉 [cf. Eq. (2.43)]. For this state we have 〈BM〉 = 〈BA〉 = 8. As the
bound for LHV models for the Ardehali inequality is smaller, the violation V is larger.
This may lead to the opinion that the Ardehali inequality is “better” than the Mermin
inequality for the state |GHZ4〉.
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3 Bell inequalities: Statistical significances in experiments

However, this belief is easily shattered, if the significance S is considered as the relevant
figure of merit. This can be seen directly from Eq. (3.11). The GHZ state is an eigenstate
for each of the correlation measurements in the Mermin inequality (they are stabilizing
operators of the GHZ state). Hence, if the Mermin inequality for a perfect GHZ state
is measured, we have in the last term of Eq. (3.11) for each case k, l either λkl = 〈M〉
(since the mean value is an eigenvalue) or nkl = 0, hence E(M) vanishes. The Ardehali
inequality, however, does not contain stabilizer terms and the error remains finite.

For an experimental application it is important that the Mermin inequality leads to a
higher significance than the Ardehali inequality, even if noise is introduced. 1 To see this,
we considered bit-flip noise, which can easily be simulated in experiment. Therefore, we
used a perfect GHZ state whose qubits are locally affected by the bit-flip operation f
with probability p, i.e.

f(̺i) = (1 − p)̺i + pXi̺iXi , for each qubit i . (3.23)

In Fig. 3.1 a), we plotted the significance S versus the fidelity F of the noisy state w.r.t.
a perfect GHZ state, i.e. F = 〈GHZ4|̺exp|GHZ4〉, and versus the bit-flip probability
p. We considered the case in which each setting is measured the same number of times

and therefore n
(1)
tot = n

(2)
tot = . . . . For F ≥ 0.70 the Mermin inequality is more significant

(for the 6-qubit versions of these inequalities [54,56], this changes to F ≥ 0.40).

Moreover, it is possible to optimize the count numbers n
(i)
tot according to Lemma 22 to

minimize the error and therefore increase the statistical significance. Doing so results in
the green curves in Fig. 3.1 a). One can see that, while the significance of the Mermin
inequality can be enhanced considerable, the significance of the Ardehali inequality does
not change considerably. In fact, it only increases by a factor of approximately 1.003 for
F = 0.6 and even less at higher fidelities.

The sharp-eyed reader might have noticed that Eq. (3.15) results in vanishing count
numbers for settings i for which the error Ei(Nm) is zero. To produce the green curves
in Fig. 3.1 a), we therefore assumed that in such cases, for setting i one count would be
measured. Since for F = 1 the total error already vanishes for a uniform distribution in
the count numbers, an application of Eq. (3.15) cannot decrease the error anymore and
is, indeed, impossible as its denominator vanishes.

As can be seen from Eq. (3.11), the fact that one witness is more significant than the

other one is independent of the total count number N =
∑m

i=1 n
(i)
tot. This holds both for

the case in which all n
(i)
tot are the same and in the case where they obey Eq. (3.15). This

behavior is caused by the fact that nkl is proportional to n
(i)
tot, which is proportional to

N and therefore the intersection point of both curves is independent from N .

Moreover, although not implemented in our experiment, let us examine what happens
for white noise. In fact, a calculation yields very similar values (F ≥ 0.72 for 4 qubits,

1This is also important, as for nearly perfect GHZ states, some count numbers nkl will be close to zero.
Then, the interpretation of the statistical error as a confidence interval may be questioned. Note that
a small count number n− or a small n+ also implies that the error is small according to Eq. (3.13)
and hence the statistical significance high.
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F ≥ 0.41 for 6 qubits). The situation of white noise and four qubits is shown in Fig. 3.1
b), while c) shows dephasing noise (F ≥ 0.85 for 4 qubits), i.e. a decay of the off-diagonal
matrix elements of the GHZ state.

Figures 3.1 a), b), c) suggest that the qualitative behavior of the significances does not
depend on details of the noise; only the scaling of the fidelity axis changes. For white
noise, the following statement can be made:

Lemma 24. For a state

̺(p) = (1 − p)|GHZn〉〈GHZn| +
p

2n
1 , (3.24)

the statistical significance of the Mermin inequality for an even number of particles n is
given by

SM (p) =
√
N

1
2(1 − p) − 2−n/2√

p
2 (1 − p

2 )
, (3.25)

when one measures each term in the inequality the same number of time. For an odd
number of qubits, 2−n/2 is replaced by 2−(n+1)/2. The statistical significance of the Arde-
hali inequality is, for even n, given by

SA(p) =
√
N

1
2(1 − p) − 2−(n+1)/2

√
p
2 − p2

4 + 1
4

. (3.26)

For odd n, 2−(n+1)/2 is replaced by 2−n/2. Here, N is the total number of photons detected
(summed over all different settings).

It turns out that the range of values of p, in which the Mermin inequality is more
significant, becomes even larger for an increasing particle numbers. In fact, the following
statement describes its behavior.

Corollary 25. For increasing particle number, the range of values of p and therefore
also the range of values of F = 〈GHZn|̺(p)|GHZn〉, for which the Mermin inequality
is better than the Ardehali inequality increases exponentially [cf. Fig. 3.1 d)]. In other
words, the value of p, from which on the Mermin inequality is worse, converges to one
exponentially fast.

Proof. Mermin inequality —Let us prove Lemma 24 first for the Mermin inequality.
Note that the BM can be written as

BM =

2n−1∑

i=1

miMi =

2n−1∑

i=1

mi(M
+
i −M−

i ) , (3.27)

where,

for any i ∈ {1, . . . , 2n−1} : mi = ±1 andMi|GHZn〉 = ∓|GHZn〉 . (3.28)
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Mi are tensor products of Pauli matrices and can be written as a difference of M+
i , M−,

where M+
i is a projector onto the positive eigenspace of Mi and M−

i a projector onto
the negative eigenspace.

Then, the number of positive counts n+
i when measuring Mi for a state as in Eq. (3.24)

is given by

n+
i = ntot

i

[
〈GHZ3|M+

i |GHZ3〉 (1 − p) +
p

2

]
, (3.29)

where ntot
i is the total count number when measuring Mi. Note that Tr(M+

i ) = 2n−1

was used here. Due to Eq. (3.28),

δi = 〈GHZ3|M+
i |GHZ3〉 ∈ {0, 1} . (3.30)

When we use Eq. (3.13) for all settings i and plug in Eqs. (3.29) and (3.29), we then
obtain

E2 =
2n−1∑

i=1

4

ntot
i

[
1 − δi(1 − p) − p

2

] [
δi(1 − p) +

p

2

]
(3.31)

=

2n−1∑

i=1

4

ntot
i

[
δi(1 − p) +

p

2
− δ2i (1 − p)2 − δi(1 − p)p− p2

4

]
(3.32)

=
2n−1∑

i=1

4

ntot
i

[
(δi − δ2i )(1 − p)2 +

p

2
− p2

4

]
(3.33)

=

2n−1∑

i=1

4

ntot
i

(
p

2
− p2

4

)
(3.34)

= 22n 1

N

p

2
(1 − p

2
) . (3.35)

Here, we have used that δ2i = δi in the fourth line and, in the last line, the assumption
that each setting is measured equally often and therefore ntot

i = N/2n−1.
A straightforward calculation shows that the violation of the Mermin inequality for ̺(p)
is given by

VM =

{
2n−1(1 − p) − 2n/2 , if n is even

2n−1(1 − p) − 2(n−1)/2 , if n is odd
. (3.36)

Thus, the statistical significance for the Mermin inequality for an even number of qubits
is given by

SM = VM/E =

√
N

2n
2n−1(1 − p) − 2n/2√

p
2(1 − p

2)
. (3.37)

For an odd number of qubits, 2n/2 is replaced by 2(n−1)/2.
Ardehali inequality — Analogously to the last part of the proof, we write the Ardehali
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inequality as

BA =
1√
2

2n−1∑

i=1

αiAi =
1√
2

2n−1∑

i=1

αi(A
+
i −A−

i ) , (3.38)

where Ai are tensor products of local operators, A+
i is a projector onto the positive

eigenspace of Ai and A−
i a projector onto the negative eigenspace. The coefficients αi

take values ±1.

Again, the number of positive counts n+
i when measuring Ai for a state as in Eq. (3.24)

is given by

n+
i = ntot

i

[
〈GHZ3|A+

i |GHZ3〉 (1 − p) +
p

2

]
. (3.39)

We define αi = 〈GHZ3|A+
i |GHZ3〉 and it remains to calculate these coefficients. We

note that

〈GHZn|Y1Y2 . . . YmXm+1 . . . Xn|GHZn〉 =





+1 , if m/4 is an integer

−1 , if m is even, butm/4 not an integer

0 , if m is odd

(3.40)

holds and is also valid for any permutation of the operator Y1Y2 . . . YmXm+1 . . . Xn. Note
that every Ai is the sum of two terms of the form as in Eq. (3.40) (with an additional
factor of 1/

√
2. One of these terms includes X1, while the other one includes one more

Y -operator, namely Y1. Therefore, we have

αi = 〈GHZ3|A+
i |GHZ3〉 =

1

2
〈GHZ3|1 +Ai|GHZ3〉 =

1

2
(1 ± 1√

2
) . (3.41)

Therefore,

αi − α2
i =

1

2
(1 ± 1√

2
− 1

4
(
3

2
± 2√

2
) =

1

8
. (3.42)

Then, we have

E2 =

2n−1∑

i=1

4

ntot
i

[
(αi − α2

i )(1 − p)2 +
p

2
− p2

4

]
(3.43)

=
2n−1∑

i=1

4

ntot
i

[
1

8
(1 − p)2 +

p

2
− p2

4

]
(3.44)

=
2n+1

N

[
(1 − p)22n−3 + 2n−1(p− p2

2
)

]
(3.45)

= 22n 1

N
(
p

2
− p2

4
+

1

4
) . (3.46)

Here, the first line is the same as in Eq. (3.31), but for the second line, we used Eq. (3.42).
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In the third line, the assumption that each term is measured the same number of times
was used. The violation is then given by

VA =

{
2n−1(1 − p) − 2(n−1)/2 , if n is even

2n−1(1 − p) − 2n/2 , if n is odd
(3.47)

and thus, for an even number of qubits,

SA = VA/E =

√
N

2n
2n−1(1 − p) − 2(n−1)/2

√
p
2 − p2

4 + 1
4

. (3.48)

For an odd number of qubits, 2(n−1)/2 is replaced by 2n/2.
Corollary — Let us now show Corollary 25. In our proof, we are only going to use the
quantities SM (p) of Eq. (3.25) and SA(p) Eq. (3.26) to prove that the range of p in which
SM (p) > SA(p) holds increases exponentially with n. Note that Eqs. (3.25) and (3.26)
are the significances in the case of an even number of particles. However, for an odd
number of particles, the significance of the Mermin inequality is even larger than the
expression in Eq. (3.25), since it is obtained through replacing 2−n/2 by 2−(n+1)/2. On
the contrary, the significance for the Ardehali inequality and an odd number of particles
is smaller than the expression given in Eq. (3.26). Therefore, it is enough to show
SM (p) > SA(p) using the expressions in Eqs. (3.25) and (3.26) for an arbitrary number
of particles.

Let us first show that the curves for the two significances can only intersect at most
once in the range 0 ≤ p ≤ 1. For p = 0, SM (p) diverges, while SA(p) does not. For
0 < p ≤ 1, both significances are differentiable with respect to p and their derivatives
are continuous, so we can simply show that ∂

∂p [SA(p) − SM (p)] > 0, which implies that
there can only be at most one value for p at which this difference vanishes and the
significances equal each other.

Due to Eqs (3.25) and (3.26), the derivatives are given by

∂

∂p
SA(p) = −

√
N

2 + 2(1−n)/2(p− 1)

[1 − (p− 2)p]3/2
(3.49)

∂

∂p
SM (p) = −

√
N

1 + 21−n/2(p− 1)

[−(p− 2)p]3/2
. (3.50)

Positivity of ∂
∂p [SA(p) − SM (p)] is equivalent with

−f(p, n) + g(p) > 0 , (3.51)
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3.4 Bell inequalities for four particles

where we defined

f(p, n) =
1√
2

2 + 2(1−n)/2(p− 1)

1/
√

2 + 2(1−n)/2(p− 1)
, (3.52)

g(p) =

[
1 +

1

(2 − p)p

]3/2

. (3.53)

A straightforward calculation shows that f is monotonously decreasing with n for 0 ≤
p ≤ 1. Therefore, if we can show that Eq. (3.51) holds for any p ∈ [0, 1] and, say, n = 4,
the positivity must hold for all n ≥ 4 for any fixed value of p.

Here, we chose n = 4, since it is particularly easy to verify: Let us divide the interval
[0, 1] of the values that p can take into the two intervals [0, 1/2] and [1/2, 1]. Then,
we have f(0, n = 4) = 4 −

√
2/2 < (7/3)3/2 = g(1/2). Together with the fact that

both g and f are monotonously decreasing with p, i.e. the fact that f is maximal
at p = 0 and g is minimal at p = 1/2 in the first interval, this implies that that
g(p) > f(p, n = 4) in the first interval. The same reasoning works for the second
interval, as f(1/2, n = 4) = (16 −

√
2)/6 < 2

√
2 = g(1). Thus, we know that, indeed,

Eq. (3.51) holds for 0 ≤ p ≤ 1 and n = 4 and, since f is monotonously decreasing with
n, for all n ≥ 4.

Thus, we have shown that there is at most one intersection point of SA(p) and SM (p)
between 0 and 1 (for n ≥ 4). Note that one can also show this for n ≥ 2, but the
calculation for n = 2 is much more complex and we are only interested in the behavior
of the significances for large n.

Finally, we will show that, at the point p0 = 1 − (2 +
√

2)2−n/2, we have SM (p0) >
SA(p0) for all values of n. This is equivalent with

√
p0
2 (1 − p0

2 ) + 1
4

p0
2 (1 − p0

2 )
−

1
2(1 − p0) − 2−(n+1)/2

1
2(1 − p0) − 2−n/2

> 0 . (3.54)

If we plug the definition of p0 in the second term, this simplifies to

h(p0) −
√

2 > 0 , (3.55)

where we have also introduced the definition

h(p0) =

√
p0
2 (1 − p0

2 ) + 1
4

p0
2 (1 − p0

2 )
(3.56)

for the first term in Eq. (3.54). As p0 depends on n, so does h(p0). Note that, for n < 4,
p0 is negative and therefore not a probability. However, for any larger n, the derivative
dh
dn = ∂h

∂p0
∂p0
∂n is strictly negative, since ∂h

∂p0
< 0 and ∂p0

∂n > 0. As h(p0) does not have a
pole in the region 0 < p0 ≤ 1, its negative derivative implies that it is always larger than
limn→∞ h(p0) =

√
2, which shows that SM (p0) − SA(p0) > 0.

Since p0 approaches 1 exponentially fast with increasing n, the range in which the
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3 Bell inequalities: Statistical significances in experiments

Mermin inequality is better than the Ardehali inequality also increases exponentially.

In terms of the fidelity, one also has an exponential increase due to

F0 = 〈GHZn|̺(p0)|GHZn〉 =
(
2 +

√
2
)(

2−n/2 − 2−3n/2
)

+ 2−n . (3.57)
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Figure 3.2: Scheme of the experimental setup. a. The setup to generate the required
four-photon GHZ state. Femtosecond laser pulses (≈ 200 fs, 76 MHz, 788
nm) are converted to ultraviolet pulses through a frequency doubler LiB3O5

(LBO) crystal (not shown). The pulses go through two main β-barium borate
(BBO) crystals (2 mm), generating two pairs of photons. The observed two-
fold coincidence count rates are about 1.6 × 104/s with a visibility of 96%
(94%) in the H/V (+/−) basis. b. Setup for engineering the bit-flip noise.
c. The measurement setup. (This figure is taken from Ref. [82].)

Finally, we note that for white noise and dephasing noise, applying Lemma 22 does
not improve the significances. In order to see that this is true for white noise, i.e. for
the state ̺(p) of Eq. (3.24), we note that

Tr[Mi̺(p)] = Tr(Mi|GHZ4〉〈GHZ4|) = ±1 (3.58)

and

Tr[Ai̺(p)] = Tr(Ai|GHZ4〉〈GHZ4|) = ± 1√
2

(3.59)

hold for all settings i and therefore Corollary 23 applies.
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3.5 Experimental setup

For dephasing noise, the noisy state can be written as

˜̺(p) =
1

2
(|0000〉〈0000| + |1111〉〈1111|) +

p

2
(|0000〉〈1111| + |1111〉〈0000|) (3.60)

= |GHZ4〉〈GHZ4| −
1 − p

16
BM (3.61)

Therefore, due to the form of BM , we have

Tr(Mi ˜̺(p)) = ±1 − (±1)(1 − p) (3.62)

and Corollary 23 can be used. As BA = BM and Ai|GHZ4〉 = ± 1√
2
|GHZ4〉, the same

holds for the Ardehali inequality.

Let us now come to the an experimental implementation to see whether the effect of
a large statistical significance for the Mermin inequality at high fidelities also occurs in
the experiment.

3.5 Experimental setup

Spontaneous down conversion has been used to produce the desired four-photon state
[see Fig. 3.2(a)]. With the help of polarizing beam splitters (PBSs), half-wave plates
(HWPs) and conventional photon detectors, we prepare a four-qubit GHZ state, where
|0〉 = |H〉 (|1〉 = |V 〉) denotes horizontal (vertical) polarization.

We have chosen the bit-flip noise channel to demonstrate the theory introduced in this
chapter. As shown in Fig. 3.2(b), the noisy quantum channels are engineered by one
HWP sandwiched with two quarter-wave plates (QWPs) [87]. The HWP is switched
randomly between +θ and −θ and the QWPs are set at 0◦ with respect to the vertical
direction. In this way, the noise channel can be engineered with a bit-flip probability p =
sin2(2θ). The Pauli matrix measurements required in the Bell test can be implemented
by a combination of HWP, QWP and PBS [see Fig. 3.2(c)]. The fidelity of the prepared
GHZ state is obtained via

F =
1

2
Tr(|0000〉〈0000| + |1111〉〈1111|) +

1

16
〈BM 〉 . (3.63)

Without added noise, its value is F = 0.84 ± 0.01.

3.6 Experimental results

For different noise levels, the experimental results of the violation, the statistical error
and the significance are shown in Table 3.1. The first observation is that, when there
is no engineered noise, the violation of the Mermin inequality is smaller than the vio-
lation of the Ardehali inequality. Its significance, however, is larger than that of the
Ardehali inequality; this proves that testing the Mermin inequality is a better choice
to characterize the entanglement in this case. Secondly, when the noise level increases,
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3 Bell inequalities: Statistical significances in experiments

θ p V(BM ) E(BM ) S(BM ) V(BA) E(BA) S(BA)

±0◦ 0 2.37 0.05 44.3 3.65 0.10 35.0

±2◦ 0.005 2.00 0.06 33.4 3.14 0.11 29.2

±4◦ 0.019 1.57 0.07 23.7 2.48 0.11 21.8

±6◦ 0.043 1.13 0.07 16.2 2.05 0.11 17.8

±8◦ 0.076 0.67 0.08 8.8 1.63 0.12 13.7

Table 3.1: Experimental values of the violation, the statistical error and the significance
for different values of θ (and the corresponding p). V(BM ), E(BM ), S(BM )
represent the values of V, E and S when testing the Mermin inequality; V(BA),
E(BA), S(BA) represent the corresponding values for the Ardehali inequality.
Each setting X1X2X3X4 etc. in the Mermin inequality is measured for 800 s,
while each setting A1X2X3X4 etc. in the Ardehali inequality is measured for
400 s. The average total count number for each inequality is about 7500.

the significance in the Mermin inequality decreases more quickly. When θ = ±6◦,±8◦,
the significance for the Ardehali inequality is already larger than that for the Mermin
inequality. Due to the experimental imperfections, the initial state to which the noise is
added is not the perfect GHZ state. However, assuming an initial state like

̺(p = 0) = α|0000〉〈0000|+β|1111〉〈1111|+γ(|0000〉〈1111|+|1111〉〈0000|)+ λ

16
1, (3.64)

where α = 0.362, β = 0.522, γ = 0.398, λ = 0.12 reproduces that for p ≤ 0.019 the
Mermin inequality is more significant.

3.7 Discussion

We have proved that it can be favorable to use an entanglement witness or a Bell
inequality that results in a lower violation. We confirmed this experimentally using four-
photon GHZ states. Our results show that the usual way of optimizing witnesses will not
necessarily lead to more powerful tools for the analysis of many-particle experiments. It
is important to note that when the number of photons in multi-photon experiments is
increased the count rates decrease; consequently, the statistical error becomes more and
more relevant.

Our results provide a direction to find powerful entanglement tests for low count
rates: the observed effect relied on the fact that in the Mermin inequality only stabilizer
measurements were made. There are already powerful approaches available to construct
witnesses from stabilizer observables [72] and also other Mermin-like or Ardehali-like Bell
inequalities have been explored [88–90]. Consequently, these approaches are promising
candidates for developing sensitive analysis tools. Further, inequalities similar to wit-
nesses have been proposed and used to characterize quantum gate fidelities [25,91], which
is another application of our theory.
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4 Entanglement detection via PPT
mixtures

Having studied the statistical behavior of entanglement tests in experiment, we will now
pass on to the theoretical verification of genuine multipartite entanglement given that
the state of the system is known without or with negligible error. This chapter is based
on Ref. [92].

We derive a general method to characterize genuine multipartite entanglement us-
ing suitable relaxations which leads to a criterion for this type of entanglement. This
chapter mainly focuses on the presentation of the criterion, the idea behind it and its
most important properties, while chapters 5 and 6 are then dedicated to some of its
applications.

Our criterion can be considered to be a generalization of the Peres-Horodecki cri-
terion [30, 31] to the multipartite case. We argue that the relaxed problem that we
consider is good-natured, as the criterion to be introduced can be evaluated efficiently
using semidefinite programming. In addition, we show that it improves existing criteria
significantly and, in fact, is necessary and sufficient for permutation-invariant states of
three qubits (cf. Sec. 4.4). Furthermore, we use it to estimate the volume of the set of
genuinely multipartite entangled states and we apply it to the situation in which not a
whole tomography, but only a few observables have been measured. Finally, in Sec. 4.5,
we give an example of an analytical witness for the W state.

We note that our criterion can be applied to multi-qubit systems, continuous-variable
or hybrid systems and can be evaluated, even if the mean values of only a few observables
are known. Furthermore, it leads to a computable entanglement monotone for genuine
multiparticle entanglement (cf. Sec. 4.3).

4.1 General idea

We start by considering a three-particle quantum state ̺. In the following, whenever we
talk about multipartite entangled states, we refer to genuine multipartite entanglement
as defined in Sec. 2.1.1. We remind the reader of the fact that the general form of a
biseparable state as in Eq. (2.7) cannot be easily checked for as, in principle, a search
through all possible decompositions is necessary.

Thus, to characterize multipartite entanglement, we apply the method illustrated by
Fig. 4.1. Instead of states like ̺sep

A|BC that are separable with respect to a fixed bipartition,
we consider a larger set of states, which can be more easily characterized. For instance,
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4 Entanglement detection via PPT mixtures

Figure 4.1: For three qubits, there are three convex sets of states that are separable with
respect to a fixed bipartition, namely the bipartitions A|BC, B|AC and
C|AB (blue, dashed lines). Their convex hull (thick blue, dashed line) is the
set of biseparable states (cf. Sec. 2.1.1). Each of the three sets is contained
within the set of states that are PPT with respect to the corresponding
bipartition (red, solid lines). Their convex hull forms the set of PPT mixtures
(thick red, solid line).

for the bipartition A|BC we may consider states which have a positive partial transpose
[cf. Eq. (2.9)]. According to the PPT criterion, which was given here as Theorem 7,
separable states are also PPT [30,31]. We denote such states by ̺ppt

A|BC (and analogously

for the other bipartitions).

Thus, we ask whether a state can be written as

̺pmix = p1̺
ppt
A|BC + p2̺

ppt
B|AC + p3̺

ppt
C|AB. (4.1)

Definition 26. In the following, a state that can be written in the form of Eq. (4.1) is
called a PPT mixture.

Clearly, any biseparable state is a PPT mixture, so proving that a state is no PPT
mixture implies genuine multipartite entanglement. There are examples of states, which
are PPT with respect to any bipartition, but nevertheless multipartite entangled [93,94].
Hence, not all multipartite entangled states can be detected in this way, but, as we will
see, often the set of PPT mixtures is a very good approximation to the set of biseparable
states. Finally, note that all definitions can be extended to n particles. Also, one may
use other relaxations of bipartite separability, e.g. apply the criterion of Doherty et
al. [95,96].

The advantage of considering PPT mixtures instead of biseparable states is that the
set of PPT mixtures can be fully characterized with the method of linear semidefinite
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4.2 Characterization via entanglement witnesses

programming (cf. Sec. 2.6.1) — a standard problem of constrained convex optimization
theory. Moreover, PPT mixtures can also be characterized analytically using the notion
of entanglement witnesses which was introduced in Sec. 2.2.2 .

4.2 Characterization via entanglement witnesses

We can generalize the class of decomposable entanglement witnesses of Definition 13 as
follows.

Definition 27. For more than two particles, we call a witness W fully decomposable

if, for every subset M of all systems, it is decomposable with respect to the bipartition
given by M and its complement M. This means, there exist positive semidefinite opera-
tors PM and QM , such that

for allM : W = PM +QTM
M . (4.2)

A fully decomposable witness is positive on all PPT mixtures, as it is non-negative on
all states which are PPT with respect to some bipartition. But also the converse holds:

Lemma 28. If ̺ is not a PPT mixture, then there exists a fully decomposable witness
W that detects ̺.

Proof. The set of PPT mixtures is convex and compact. Therefore, for any state outside
of it, there is a witness that is positive on all PPT mixtures. Furthermore, positivity on
all states that are PPT with respect to a fixed (but arbitrary) bipartition implies that
the witness is decomposable with respect to this fixed (but arbitrary) bipartition [33].
Thus, W = PM +QTM

M for any M .

4.3 Practical evaluation of the criterion

To find a fully decomposable witness for a given state, the convex optimization tech-
nique SDP becomes important, since it allows us to optimize over all fully decomposable
witnesses. Given a multipartite state ̺, the search is given by

min Tr(W̺) (4.3)

s.t. Tr(W ) = 1 and for allM :

W = PM +QTM
M , QM ≥ 0, PM ≥ 0 .

The free parameters are given by W and the operators PM for every subset M . If
the minimum in Eq. (4.3) is negative, ̺ is not a PPT mixture and hence genuinely
multipartite entangled. The operator W for which the negative minimum is obtained is
a fully decomposable witness. Note that, due to XTM = (XT )TM and X ≥ 0 ⇔ XT ≥ 0,
a witness that is decomposable with respect to M is also decomposable with respect to
M . Thus, one needs to check only half of all subsets in practice.
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4 Entanglement detection via PPT mixtures

Equation (4.3) has the form of a semidefinite program [cf. Eq. (2.77)]. In contrast
to usual optimization problems, global optimality of an SDP can be certified and the
solution can efficiently be computed via interior-point methods. In practice, Eq. (4.3)
can be solved with few lines of code, using e.g. the parser YALMIP [97] and, as solvers,
SeDuMi [98] or SDPT3 [99, 100]. Our implementation in MATLAB named PPTMixer
can be found online [101].

Let us discuss two variations of Eq. (4.3). First, in order to reduce the number of
free parameters, one can restrict oneself to witnesses W that obey W TM ≥ 0 for all
M , i.e. PM = 0 for all M . In the following, we will call these witnesses fully PPT

witnesses. For bipartite systems, decomposable witnesses and fully PPT witnesses
detect the same states. For the multipartite case, fully PPT witnesses are not as good
as fully decomposable witnesses, but they are easier to characterize.

Second, this SDP can also be modified to account for the case that, instead of a full
tomography, only a restricted set of observables is measured. Let O = {O1, ...Ok} be such
a set of observables. Then, adding W =

∑k
i=1 λiOi to the constraints in Eq. (4.3) results

in an SDP that searches for witnesses which can be evaluated knowing these observables.
Note that for this program the free parameters are given by the real numbers λi and their
number might be considerably smaller than in Eq. (4.3). If the minimum in Eq. (4.3) is
non-negative, there exists a PPT mixture with expectation values 〈Oi〉. However, one
may then add further observables to O and run the SDP again. Repeating this procedure
gives more and more sensitive tests. We will discuss an example later. In practice, this
program can even decide separability if the Oi have already been measured, so it can be
used to gain new insights into already performed experiments.

But before proceeding to the examples, let us note three more facts. First, in the
formulation no dimension of the Hilbert space is fixed. Consequently, our approach is
valid for any dimension and combined with the methods of Ref. [102, 103] it can be
directly used to study multipartite entanglement in continuous-variable or hybrid sys-
tems [104]. For continuous variables, it can be employed complementary to the methods
of Ref. [105].

Second, our approach can also be used to quantify genuine multipartite entanglement.
In order to do so, we modify Eq. (4.3) to obtain the following quantity:

N(̺) = − min
W∈W

Tr(̺W ), (4.4)

W =
{
W
∣∣ for allM : ∃ PM , QM such that

0 ≤ PM , QM ≤ 1 andW = PM +QTM
M

}
, (4.5)

where M is a strict subset of the set of all qubits. Note that the class W consists of
fully decomposable witnesses which are only normalized in a different way than before.
Then, the following lemma holds.

Lemma 29. N(̺) is an entanglement monotone for genuine multipartite entanglement,
since it fulfills the following properties:
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(i) N(̺bs) = 0 for all biseparable states ̺bs.

(ii) N [ΛLOCC(̺)] ≤ N(̺) for all full LOCC operations.

(iii) N(Uloc̺U
†
loc) = N(̺) for local basis changes Uloc.

(iv) N(
∑

i pi̺i) ≤
∑

i piN(̺i) holds for all convex combinations
∑

i pi̺i.

Thus, N(̺) is a monotone for genuine multipartite entanglement. In the bipartite case,
the monotone N(̺) of Eq. (4.4) equals the negativity [38,106].

Proof. The first statement follows directly from the fact that any fully decomposable
witness can only detect genuine multipartite entanglement, hence the expectation value
satisfies Tr(̺bsW ) ≥ 0 and vanishes for W = 0.

For the second property we effectively show N [Λ(̺)] ≤ N(̺) for all trace-preserving,

completely positive operations Λ(̺) =
∑

iKi̺K
†
i with

∑
iK

†
iKi = 1 that admit a fully

separable operator-sum representation, which means that each operator Ki = Ai⊗Bi⊗
· · ·⊗Fi has a tensor product form. This set of operations defines a superset to the set of
full LOCC operations, so we verify the above property for an even larger set of possible
operations [34]. Let us point out that for each operation Λ, there exists an adjoint

operation Λ†(Y ) =
∑

iK
†
i Y Ki, that satisfies the identity Tr[Λ(X)Y ] = Tr[XΛ†(Y )] for

all linear operators X,Y . The trace-preserving condition for Λ translates to a unital
condition for the adjoint map Λ†(1) = 1.

Let us first prove the following statement: For each trace-preserving, separable oper-
ation Λ and for any decomposable operator W the observable Λ†(W ) is decomposable
as well. Suppose that W = P + QTM is an appropriate decomposition1 with respect
to a chosen partition M . Because of linearity we obtain Λ†(W ) = Λ†(P ) + Λ†(QTM ).
First, we want to check “normalization” 0 ≤ Λ†(P ) ≤ 1. Complete positivity provides
Λ†(P ) ≥ 0 since P ≥ 0 is positive semidefinite itself. If one applies the adjoint map to
(1− P ) ≥ 0 and employs the unital condition one obtains

Λ†(1− P ) = Λ†(1) − Λ†(P ) = 1− Λ†(P ) ≥ 0, (4.6)

hence the upper bound Λ†(P ) ≤ 1 holds as well. We can apply the same argument
to Λ†(Q) if we can fulfill the identity Λ†(QTM ) = [Λ̃†(Q)]TM with Λ̃ being completely
positive and unital. Using the assumed tensor product structure of each operator Ki

it is straightforward to deduce the Kraus operators of the liner map Λ̃ satisfying this
identity. These operators K̃i = Ãi ⊗ B̃i ⊗ · · · ⊗ F̃i are given by Ãi = Ai if A 6∈ M and
Ãi = A∗

i if A ∈ M , and similar relations for all other operators. Let us point out that
this is the only step where one explicitly needs the separable operator structure.

Via this statement one finally obtains

N [Λ(̺)] = − min
W∈W

Tr[Λ(̺)W ] = − min
W∈W

Tr[̺Λ†(W )] (4.7)

≤ − min
W∈W

Tr(̺W ) = N [̺]. (4.8)

1The subscripts M do not matter here.
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4 Entanglement detection via PPT mixtures

The inequality holds since Λ†(W ) is decomposable again, hence the optimization over
the complete set of decomposable entanglement witnesses can only produce a lower
(negative) expectation value.

Invariance under local basis changes is a direct consequence of the previous property.
Since any local basis change Uloc represents an invertible full LOCC operation, one
obtains

N(̺) ≥ N(Uloc̺U
†
loc) ≥ N [U †

loc(Uloc̺U
†
loc)Uloc] = N(̺). (4.9)

Thus a local basis does not change the value of N(̺).

The convexity statement

N

(
∑

i

pi̺i

)
= − min

W

∑

i

piTr(̺iW ) (4.10)

≤
∑

i

pi

[
−min

W
Tr(̺iW )

]
(4.11)

=
∑

i

piN(̺i) , (4.12)

follows from linearity of the trace and the fact that if one performs independent opti-
mizations then the obtained expectation value can only be smaller.

To see that our quantity equals the negativity in the bipartite case, we write

Tr(W̺) = Tr(PA̺) + Tr(QTA
A ̺) (4.13)

= Tr(PA̺) + Tr(QA̺
TA) , (4.14)

where we used Tr(CTAD) = Tr(CDTA). This expression is minimized under the con-
straints 1 ≥ PA, QA ≥ 0 by letting PA = 0 and QA =

∑
i |φi〉〈φi|, where |φi〉 are the

eigenvectors of ̺TA that correspond to negative eigenvalues. The trace then sums over all
negative eigenvalues of ̺TA , which equals the definition of the negativity (cf. Definition
14 or Refs [38,106]).

Finally, as mentioned before, we remark that there are other possible choices of super-
sets for the set of separable states, e.g. the set of states that have a symmetric extension
on a larger Hilbert space (cf. [95,96]).

These extensions are defined as follows. For the bipartition A|BC, we consider states
that possess a symmetric extension to k copies of system A. This means that the given
state ̺A|BC can be written as the reduced state of a multipartite state ̺A1...Ak|BC that
is invariant under all possible permutations of the copied subsystems. Every separable
state necessarily satisfies this extension condition for any number of copies and we denote
states of this class by ̺symk

A|BC . Consequently, we ask whether a three-particle state can
be decomposed as

̺ = p1̺
symk

A|BC + p2̺
symk

B|AC + p3̺
symk

C|AB. (4.15)

Any biseparable state can be written in this way, hence if this expansion fails, genuine
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4.4 Numerical examples

multipartite entanglement is detected. This approach has appealing properties: With in-
creasing number of copies, these supersets converge to the set of separable states [95,96].
Moreover, it is again possible to characterize such decompositions using entanglement
witnesses that can be tackled via SDP. These witnesses are such that for all possible
bipartitions M , the operator W must be a bipartite entanglement witness for the case
of k symmetric extensions as given in Ref. [96].

4.4 Numerical examples

Let us come back to the criterion of Eq. (4.3) and test it for some important pure three-
and four-qubit states prepared in many experiments. Besides the GHZ state of n qubits
as in Eq. (2.43), these are the W states of three and four qubits,

|W3〉 = (|001〉 + |010〉 + |100〉)/
√

3 (4.16)

|W4〉 = (|0001〉 + |0010〉 + |0100〉 + |1000〉)/2 (4.17)

and the linear cluster state of four qubits |Cl4〉, the four-qubit Dicke state with two
excitations |D2,4〉 and the four-qubit singlet state |ΨS,4〉, where

|Cl4〉 = (|0000〉 + |0011〉 + |1100〉 − |1111〉)/2 (4.18)

|D2,4〉 = (|0011〉 + |1100〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉)/
√

6 (4.19)

|ΨS,4〉 =

[
|0011〉 + |1100〉 − 1

2
(|0101〉 + |0110〉 + |1001〉 + |1010〉)

]
/
√

3 (4.20)

For our test, we use the white noise tolerance as a figure of merit. 2

Definition 30. The white noise tolerance of an entanglement criterion for a given
state |ψ〉 is the maximal amount ptol of white noise for which the state ̺(ptol) = (1 −
ptol)|ψ〉〈ψ| + ptol1/2

n is still detected as entangled by the criterion.

Table 4.1 shows the white noise tolerances of our criterion, compared with the most
robust criteria so far.

Strikingly, the tolerances of the witnesses obtained by our SDP are significantly higher
than previous ones. For the GHZ and the W state of three qubits and the GHZ and the
linear cluster state of four qubits, we even obtain the best white noise tolerance possible,
since one can show that for a larger amount of white noise the state becomes biseparable.
For GHZ states, this has been shown in Ref. [16]. For the four-qubit linear cluster state,
we refer to Sec. 6. For the three-qubit GHZ and W state, the fact that our criterion is
necessary and sufficient even holds in the general case of a permutation-invariant state.

2This quantity is commonly used to characterize the robustness of entanglement or non locality criteria
against noise [80].
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4 Entanglement detection via PPT mixtures

state white noise tolerances ptol

fully decomposable before

|GHZ3〉⋆ 0.571 0.571 [16]
|GHZ4〉⋆ 0.533 0.533 [16]
|W3〉⋆ 0.521 0.421 [16]
|W4〉 0.526 0.444 [16]
|Cl4〉⋆ 0.615 0.533 [107]
|D2,4〉 0.539 0.471 [108]
|ΨS,4〉 0.553 0.317 [109]

Table 4.1: White noise tolerances of the fully decomposable witnesses obtained by the
SDP of Eq. (4.3) compared with the corresponding tolerances of the most
robust criteria known so far. For the states marked by ⋆, we verified that
adding more white noise than what is tolerated by Eq. (4.3) results in a
biseparable state, so the values are optimal.

Lemma 31. Any three-qubit state that is invariant under any permutation of qubits is
biseparable if and only if it is a PPT mixture.

Proof. As mentioned before, any biseparable state is a PPT mixture (due to the PPT
criterion). Therefore, we need to show that, in the case of three-qubit permutation-
invariant states, all PPT mixtures are biseparable. Therefore, let us start by considering
such a state which can be written according to Eq. (4.1) as

̺inv = p1̺A + p2̺B + p3̺C , (4.21)

where the pi are normalized and non-negative and qTA
A , qTB

B and qTC
C are positive semidef-

inite. Note that this notation differs slightly from Eq. (4.1), but was chosen for the sake
of brevity for this proof.

Since ̺inv is invariant under permutation of qubits, one can write it as

̺inv =
1

6

∑

i

Πi̺invΠi , (4.22)

where we sum over all six possible permutations of qubits. We plug Eq. (4.21) into
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4.4 Numerical examples

Eq. (4.22) and explicitly write down the permutations, where Pij swaps qubits i and j.

6 (p1̺A + p2̺B + p3̺C)

= p1

(
̺A + PBC̺AP

†
BC

)
+ p1PAB

(
̺A + PBC̺AP

†
BC

)
P †
AB

+ p1PAC

(
̺A + PBC̺AP

†
BC

)
P †
AC + p2

(
̺B + PAC̺BP

†
AC

)

+ p2PAB

(
̺B + PAC̺BP

†
AC

)
P †
AB + p2PBC

(
̺B + PAC̺BP

†
AC

)
P †
BC

+ p3

(
̺C + PAB̺CP

†
AB

)
+ p3PBC

(
̺C + PAB̺CP

†
AB

)
P †
BC

+ p3PAC

(
̺C + PAB̺CP

†
AB

)
P †
AC (4.23)

Now, we group the terms on the right-hand side of this equation which are PPT with
respect to A. They must equal the term on the left-hand side which is PPT with respect
to A, which implies that

6p1̺A = p1

(
̺A + PBC̺AP

†
BC

)
+ p2PAB

(
̺B + PAC̺BP

†
AC

)
P †
AB

+ p3PAC

(
̺C + PAB̺CP

†
AB

)
P †
AC . (4.24)

The same can be done for ̺B and ̺C . Thus,

6p2̺B = p1PAB

(
̺A + PBC̺AP

†
BC

)
P †
AB + p2

(
̺B + PAC̺BP

†
AC

)

+ p3PBC

(
̺C + PAB̺CP

†
AB

)
P †
BC . (4.25)

6p3̺C = p1PAC

(
̺A + PBC̺AP

†
BC

)
P †
AC + p2PBC

(
̺B + PAC̺BP

†
AC

)
P †
BC

+ p3

(
̺C + PAB̺CP

†
AB

)
. (4.26)

Using these equations and the relations PABPACPAB = PBC and PACPABPAC = PBC ,
one can now verify that p2PAB̺BP

†
AB = p1̺A and p3PAC̺CP

†
AC = p1̺A. These equa-

tions then prove that ̺A = PBC̺AP
†
BC and therefore

̺A =
1

2
(̺A + PBC̺APBC) . (4.27)

Now, one can write ̺A as a sum of two terms: One that lives in the symmetric subspace
of qubits B and C and one which is separable with respect to bipartition A|BC. More

precisely, we write ̺A in the basis {|i〉 ⊗ |φ(j)
BC〉}, where i = 0, 1 and j = 1, 2, 3, 4, and

|φ(1)
BC〉 = |00〉, |φ(2)

BC〉 = |11〉, |φ(3)
BC〉 = (|01〉+ |10〉)/

√
2, |φ(4)

BC〉 = |ψ−〉 = (|01〉− |10〉)/
√

2.
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4 Entanglement detection via PPT mixtures

Then, we apply PBC to these basis vectors, which results in

̺A =
∑

1≤j,l≤3
i,k=0,1

̺ij,kl|i〉〈k| ⊗ |φ(j)
BC〉〈φ

(l)
BC | +

∑

i,k=0,1

̺i4,k4|i〉〈k| ⊗ |ψ−〉〈ψ−| (4.28)

=
∑

1≤j,l≤3
i,k=0,1

̺ij,kl|i〉〈k| ⊗ |φ(j)
BC〉〈φ

(l)
BC | + ˜̺A ⊗ |ψ−〉〈ψ−| , (4.29)

where we defined ˜̺A =
∑

i,k=0,1 ̺i4,k4|i〉〈k|.
The two terms on the right-hand side live on different spaces. When we partially

transpose the whole equation with respect to A, the two terms on the right still live
on distinct spaces and must add up to the positive operator ̺TA

A on the left-hand side.
Therefore, both terms on the right must be PPT with respect to A|BC. As the first term
is PPT and lives on a space of dimension 2 ⊗ 3, it must be separable [31]. The second
term is clearly separable. Therefore, ̺A is separable (with respect to A|BC).

The same line of argument also shows that ̺B and ̺C are separable and therefore ̺inv

is biseparable.

This shows that our criterion is indeed optimal for the states in Table 4.1 marked by ⋆.

To show that the criterion of Eq. (4.3) works well for higher-dimensional states and a
restricted set of observables, we consider the four-qubit Dicke state with two excitations
|D2,4〉 [cf. Eq. (4.19)]. For this state, the SDP yields the witness

WD=
1

16

[
1 + α1X

⊗4 + α1Y
⊗4 + α2Z

⊗4 + α3 (X1X2Y3Y4 + perms)

+ α4 (Z1Z2Y3Y4 + perms) + α4 (Z1Z2X3X4 + perms)

+ α5 (X1X21314 + perms)+ α5 (Y1Y21314 + perms)

+α6 (Z1Z21314 + perms)] . (4.30)

Here, X1X2Y3Y4 + perms is the sum over all distinct permutations of X1X2Y3Y4. More-
over, α1 = 0.014, α2 = −0.095, α3 = 0.0046, α4 = 0.16, α5 = −0.14, α6 = −0.15.
WD only consists of O = {X⊗4, Y ⊗4, Z⊗4,X1X2Y3Y4,X1X2Z3Z4, Y1Y2Z3Z4}, distinct

permutations of these observables and other observables that can be measured in the
same run. For example, a local measurement of X1X2X3X4 yields knowledge of the
expectation value of X1X213X4. The SDP finds a witness consisting of O1 = X⊗4,
O2 = Y ⊗4 and observables obtained by replacing some Paulis by the identity. Already

with these observables, the white noise tolerance is p
(2)
tol ≈ 0.29495. We can proceed in this

way and use additional observables Oi from the set O — including their permutations and
observables obtained by replacing Pauli operators by 1— to produce strictly stronger

witnesses W
(i)
D . Their white noise tolerances p

(i)
tol are p

(3)
tol ≈ 0.38379, p

(4)
tol ≈ 0.38383,

p
(5)
tol ≈ 0.45200 and finally p

(6)
tol ≈ 0.53914 as in Table 4.1, since WD = W

(6)
D .

Finally, we compute a lower bound on the volume of genuinely multipartite entangled
states. We created samples of 104 random mixed three-qubit states uniformly distributed
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4.5 An analytical witness for the W state

with respect to the Hilbert-Schmidt distance (or the Bures distance) and check whether
they are genuinely multipartite entangled. 6.28 % (Bures: 10.32 %) were detected by
fully decomposable and 0.44 % (Bures: 1.06 %) by fully PPT witnesses. As expected,
fully PPT witnesses detect fewer states.

While the problem can still be tackled numerically for six or seven qubits, in recent ex-
periments up to 14 ions have been coherently manipulated [24]. Therefore, an analytical
treatment is desirable to obtain witnesses for an arbitrary number of qubits. Before we
do so in Sec. 5, let us first examine the state |W3〉 for which the PPT witness produced
by our SDP can also be understood analytically.

4.5 An analytical witness for the W state

Let us consider the W state of three qubits |W3〉 from Eq. (4.16). For this state, the
best PPT witness that the program of Eq. (4.3) finds (with PM = 0 for all M) is given
by

WW3 = 0.253 (|001〉〈001| + |010〉〈010| + |100〉〈100|) − 0.380|W3〉〈W3|
+ 0.310|000〉〈000| + 0.103 (|011〉〈011| + |101〉〈101| + |110〉〈110|) . (4.31)

Since these witness has been obtained numerically, we do not have an analytical expres-
sion for the occurring coefficients. However, the following lemma allows us to understand
these values analytically.

Lemma 32. Among all witnesses that detect the W3 state and have the form

W = α (|001〉〈001| + |010〉〈010| + |100〉〈100|) + β|W3〉〈W3|
+ γ|000〉〈000| + δ (|011〉〈011| + |101〉〈101| + |110〉〈110|) + ǫ|111〉〈111| (4.32)

with α, β, γ, δ, ǫ ∈ R, the witness

WW3 =
2

15

(
−3 + 2

√
6
)

(|001〉〈001| + |010〉〈010| + |100〉〈100|) +
1

5

(
3 − 2

√
6
)
|W3〉〈W3|

+
1

5

(
4 −

√
6
)
|000〉〈000| + 1

15

(
4 −

√
6
)

(|011〉〈011| + |101〉〈101| + |110〉〈110|) .
(4.33)

has the highest white noise tolerance.

Proof. Since Eq. (4.32) is invariant under permutation of qubits, it is enough to consider
the partial transpose with respect to A. Note that positivity of W TA implies positivity
of WTBC

. The eigenvalues of the witness W in Eq. (4.32) are given by

λ1 =α , λ2 = α+
1

3
β , λ3 = α+

2

3
β

λ4 =δ , λ5,6 =
1

6

[
3γ + 3δ ±

√
8β2 + 9 (γ − δ)2

]
. (4.34)
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4 Entanglement detection via PPT mixtures

As the white noise tolerance is given by Eq. (5.79), we need to minimize Tr(W ) and to
maximize the absolute value of 〈W3|W |W3〉while keeping W TA positive semidefinite. We
have Tr(W ) = 3α+ β + γ + 3δ + ǫ and 〈W3|W |W3〉 = α+ β.

First, we note that we can set β to any value, since we are allowed to multiply W
by a factor which does not change the white noise tolerance [cf. Eq. (5.79)]. Since
〈W3|W |W3〉 = α+ β must be negative while λ1 = α cannot be negative, we set β = −1.
Then, the minimal possible value for α is α = 2

3 . Equation (4.34) shows that the smallest
allowed value we can choose for ǫ in order to minimize Tr(W ) is ǫ = 0.

The smallest possible values of γ and δ can be found as follows: Since

λ6 =
1

6

[
3γ + 3δ −

√
8β2 + 9 (γ − δ)2

]
≤ λ5 , (4.35)

we do not need to consider λ5 when searching for these values. Since λ4 cannot be
negative, δ must be non-negative. Also, γ cannot be negative since otherwise the operator
in Eq. (4.32) would not be a witness. Thus, a short calculation shows that λ6 ≥ 0 is
equivalent with γδ ≥ 2

9 . The linear function Tr(W ) = 1 + γ + 3δ takes its minimum on
the boundary of the allowed area, i.e. for γδ = 2

9 and δ ≥ 0. It is now easy to see (using

e.g. a Lagrange multiplier) that Tr(W ) is minimized for γ = 3δ =
√

2
3 . Altogether, we

thus have

α =
2

3
, β = −1 , γ = 3δ =

√
2

3
, ǫ = 0 . (4.36)

Up to a normalization constant, this coincides with Eq. (4.34).

Note that, in Sec. 5, we will present various different analytical construction methods
for graph state witnesses.

4.6 Discussion

In this chapter, we presented an easily implementable criterion for genuine multipartite
entanglement. We demonstrated its high robustness, showed that it is necessary and
sufficient for permutation-invariant three-qubit states and we connected it to entangle-
ment measures. Moreover, we presented witnesses for the Dicke state of four qubits with
two excitations and the W state of three qubits.

Due to its versatility, the presented criterion can be used to characterize the entan-
glement in various physical systems, e.g. in ground states of spin models undergoing
a quantum phase transition. Moreover, we believe that, as an easy-to-use scheme, it
will be valuable for the analysis of experimental data that do not constitute a whole
tomography. In order to extend the criterion to a larger number of particles, it would
be interesting to find classes of states to which it can be applied analytically (cf. Sec. 5)
and classes for which the presented criterion is necessary and sufficient (cf. Sec. 6).

56



5 Entanglement witnesses for graph
states

The last chapter was dedicated to presenting a new criterion for genuine multipartite en-
tanglement, illustrating its general idea and properties, deriving a monotone and showing
its performance on selected states. The criterion was applied to some important states
as the W and the GHZ state for three and four qubits, and, for four qubits, the linear
cluster state, the singlet and the Dicke state of two excitations. Its white noise tolerance
turned out to be higher than in previous criteria. Moreover, the case in which no fully
tomography, but only a restricted set of observables has been measured, was considered.

In this chapter, we turn to an analytical characterization. This analytical treatment
enables us to apply the criterion and the notion of fully decomposable witnesses to
states of an arbitrary number of qubits and is therefore an important step to allow for
its application in experiments involving a higher number of qubits. This chapter has
been extracted from Ref. [75].

We use our approach of the last chapter to develop a general theory of witnesses
for graph states (cf. Sec. 2.5). The main results of this chapter can be grouped into
two parts: First, we provide entanglement criteria, so-called entanglement witnesses (cf.
Sec. 2.2.2), for all graph states up to six qubits. These witnesses are optimal in the
framework of the last chapter, they detect more states than the graph state witnesses
known so far and thus require a lower fidelity when measured in an experiment.

Second, we extend our results to arbitrary qubit numbers by providing a general
theory of how to construct witnesses for arbitrary graph states. In many cases, these
witnesses improve the best known witnesses so far and have white noise tolerances that
approach one for an increasing particle number. This implies that for this type of
noise the state fidelity can decrease exponentially with the number of qubits, but still
entanglement is present and can be detected. Moreover, this improvement comes with
very low experimental costs, since it is realized by measuring one additional setting in
the experiment. Furthermore, a similar improvement can be achieved for witnesses that
require only two settings to be measured [72], which results in improved witnesses that
consist of only two experimental settings in total.

This chapter is structured as follows. In Sec. 5.1, we show that the criterion of Eq. (4.3)
can be reduced from a general semidefinite program (cf. Definition 17) to a linear
program (cf. Definition 18) in the case of graph-diagonal states.

Then, we will first consider the class of fully decomposable witnesses given in Def-
inition 27. This is done in Sec. 5.2. We provide such entanglement witnesses for all
graph states of up to six qubits in Sec. 5.2.1. Then, in Sec. 5.2.2, we present analyti-
cal construction methods. We provide examples and give an extended construction for
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5 Entanglement witnesses for graph states

particular states in Sec. 5.2.3 including further examples.
In Sec. 5.3, we move on to another class of witnesses, the fully PPT witnesses which

are easier to characterize and which were introduced in Sec. 4.2. Here, we do not only
provide a construction method for witnesses of this class (in Sec. 5.3.1), but we can
extend it to an even larger number of graph states compared with the case of fully
decomposable witnesses. We present this extension in Sec. 5.3.2. In order to illustrate
that the presented methods can be exploited further, we provide a witness for the 2D
cluster state (Sec. 5.3.3).

Finally, we discuss the entanglement monotone of Eq. (4.4) for genuine multiparticle
entanglement and show that graph states are the maximally entangled states for this
entanglement measure. In the conclusion, we discuss our results and possible extensions
for the future. In order to make this chapter as readable as possible, we grouped nearly
all proofs in the last section of this chapter.

5.1 Graph-diagonal states

Let us first consider the form of the criterion in Eq. (4.3) for graph-diagonal states. Note
that any state can be transformed into a graph-diagonal state by local transformations
[76]. Since local operations cannot create entanglement, the presence of entanglement
in the transformed, graph-diagonal state indicates that the original state was entangled.

Here, we will see that for graph-diagonal states, the corresponding search for an opti-
mal fully decomposable entanglement witness can w.l.o.g. be restricted to graph-diagonal
witnesses, for which also the operators PM and QM are graph-diagonal. This is summa-
rized in the following lemma.

Lemma 33. For any graph diagonal state ̺G =
∑
~k
s~k|~k〉〈~k|, the search for an optimal

fully decomposable entanglement witness given by Eq. (4.3), can w.l.o.g. be restricted to
a graph-diagonal form, i.e., to a linear program given by

min Tr(WG̺G) (5.1)

s.t. WG =
∑

w~k|~k〉〈~k|,Tr(WG) = 1 and for allM :

WG = PM +QTM
M , PM ≥ 0, QM ≥ 0,

PM =
∑

pM~k |~k〉〈~k|, QM =
∑

qM~k |~k〉〈~k| .
(5.2)

The proof is given in Sec. 5.6.
This lemma has the following important implications: First, the optimization prob-

lems simplifies to a linear program, which are in general easier to solve than general
semidefinite programs. Second, it provides a great simplification in order to derive ana-
lytic witnesses, because we know that there is an optimal witness which is diagonal in the
graph state basis. Also, checking positivity of any operator simplifies to verifying non-
negativity within the graph state basis. Instead of testing positivity of a whole matrix, it
is enough to consider products of generators gi and sums thereof [cf. Eq. (2.69)]. Third,
let us point out that this lemma also implies that, if a state is a PPT mixture, each PPT
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5.2 Fully decomposable witnesses

state in its decomposition can be assumed to be graph-diagonal as well. Finally, note
that a similar statement as Lemma 33 holds for PPT witnesses as well.

5.2 Fully decomposable witnesses

In this section, we present a general theory for fully decomposable witnesses of graph
states. First, in Sec. 5.2.1, we provide fully decomposable witnesses for all LU-equivalence
classes of graph states up to six qubits. These witnesses are obtained by the criterion
of Eq. (4.3). The graph states are given in Fig. 2.2, while the witnesses’ white noise
tolerances are given in Table 5.1. The witnesses can be found in Sec. 5.7.

Moreover, we introduce an analytical construction method for fully decomposable
witnesses of general graph states in Sec. 5.2.2. This is this section’s main result and is
formulated in Lemma 34.

We provide specific examples in Sec. 5.2.2. Finally, we show how to construct witnesses
that detect even more states using the witnesses of Lemma 34. This result is given as
Lemma 36 in Sec. 5.2.3. Again, we give examples in Sec. 5.2.3.

5.2.1 Graph states up to 6 qubits

We now apply the criterion of Eq. (4.3) to certain graph states. To this end, we imple-
mented it as a semidefinite program using the parser YALMIP [97] in combination with
the solver modules SeDuMi [98] or SDPT3 [99,100] in MATLAB. The program we wrote
is called PPTMixer and can be found online [101].

As mentioned before, there are 19 LU-equivalence classes of connected graph states up
to six qubits. We apply our criterion to one state of each class (cf. Fig. 2.2), obtaining
the witnesses given in Sec. 5.7. By applying the rules presented in Sec. 2.5.3 and in
Ref. [77], it is possible to transform these into witnesses for any graph state of up to six
qubits.

Let us have a closer look at the witnesses of Sec. 5.7. A widely-used indicator for
how robust a witness is to noise in an experiment is the white noise tolerance given in
Definition 30. Note that the criterion of Eq. (4.3) provides witnesses with the highest
possible white noise tolerance among all fully decomposable witnesses. This can be seen
by noting that both Tr(W |G〉〈G|) and Tr[W̺(ptol)] reach their minimum for the same
normalized witness W , since Tr(Wptol1/2

n) = ptol/2
n is independent of W . Thus, the

witness that one obtains for the state |G〉 is also a witness for ̺(ptol). In Table 5.1, we
give the white noise tolerances of these witnesses.

Now, let us present some of these witnesses as examples. Note that the SDP yields
witnesses whose trace is normalized to one. In order to make the structure of the
witnesses more evident, we renormalized them for each state |G〉, such that 〈G|W |G〉 =
−1/2.

For the GHZ states of three to six qubits (cf. states No. 2, No. 3, No. 5 and No. 9 in
Fig. 2.2), we obtain the well-known projector witnesses Wproj = 1

21− |G〉〈G|. Since it is

known that (1 − p)|GHZn〉〈GHZn| + p1/2n is biseparable for p ≥ [2 (1 − 2−n)]−1
[16],
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5 Entanglement witnesses for graph states

these witnesses have the maximal possible white noise tolerance.
The linear cluster state of four qubits |Cl4〉, labelled as state No. 4 in Fig. 2.2, is

detected by the witness

WCl4 =
1

2
− |Cl4〉〈Cl4| −

1

2
γ−1 γ

−
4 , (5.3)

where we defined γ±i = (1± gi) /2, gi being the generators of the stabilizer group of
|Cl4〉, for the sake of a compact notation. Note that, alternatively, one can write γ−1 γ

−
4 =

(1− g1) /2 (1− g4) /2 =
∑

i,j∈{0,1} |1ij1〉〈1ij1| in the graph state basis. We will gain a
deeper understanding of the structure of this witness in the next section.

Let us use the witness of Eq. (5.3) as an example of how the witnesses are transformed
when the graph is transformed by local complementations, which corresponds to an
application of local unitaries to the graph state (cf. Sec. 2.5.3). The four-qubit linear
cluster state can be transformed into the four-qubit ring cluster state as shown in Fig. 5.1
via local complementations on the qubits 2, 3 and 2 again. We denote the graph that
is obtained after the first step by G̃, the graph after the second step by G and the final
ring graph by G′. Their generators according to Eq. (2.57) are denoted by g̃i, ḡi and
g′i, respectively. Application of the transformation rules for the generators in Eq. (2.75)
results in the transformations

WCl4 =
1

2
− |Cl4〉〈Cl4| −

1

8
(g1 − 1)(g4 − 1) (5.4)

LC2−−→ 1

2
− |Cl4〉〈Cl4| −

1

8
(g̃1g̃2 − 1)(g̃4 − 1) (5.5)

LC3−−→ 1

2
− |Cl4〉〈Cl4| −

1

8
(ḡ1ḡ3ḡ2ḡ3 − 1)(ḡ3ḡ4 − 1) (5.6)

=
1

2
− |Cl4〉〈Cl4| −

1

8
(ḡ1ḡ2 − 1)(ḡ3ḡ4 − 1) (5.7)

LC1−−→ 1

2
− |Cl4〉〈Cl4| −

1

8
(g′1g

′
2 − 1)(g′4g

′
1g

′
3g

′
1 − 1) (5.8)

=
1

2
− |Cl4〉〈Cl4| −

1

8
(g′1g

′
2 − 1)(g′3g

′
4 − 1) (5.9)

(5.10)

Strikingly, the similar state No. 6, which we call Y5 state, is detected by a similar
witness which has, however, some additional terms. The witness is given by

WG6 =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
4 γ

−
5 . (5.11)

For the symmetrized version of this state, state No. 11 (or H6 state), we obtain a witness
with even more terms, namely

WG11 =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
2 γ

−
4 − 1

2
γ−1 γ

−
3 γ

+
4 − 1

2
γ+
1 γ

−
2 γ

−
3 γ

+
4 . (5.12)
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Figure 5.1: The linear four-qubit cluster state is LU-equivalent with the four-qubit ring
cluster state as they can be transformed into each other by local complemen-
tations (LC).

The special structure of these witnesses motivates an analytical investigation. In fact,
we will gain more insight on the witness WG6 and WG11 in Section 5.2.3.

5.2.2 Analytical construction methods

In this section, we present an analytical method to construct fully decomposable wit-
nesses for arbitrary graph states. This construction method results in witnesses which
are a generalization of the linear cluster state witnesses in Eq. (5.3). First, we have a
closer look at these witnesses for linear cluster states, before we then generalize it to
arbitrary graph states in Lemma 34 in the second half of this section.

Linear cluster state

We have pointed out that the witness WCl4 of Eq. (5.3) is a witness for the four-qubit
linear cluster state. For the seven-qubit linear cluster state |Cl7〉 shown in Fig. 5.2 a),
there exists a similar witness

WCl7 =
1

2
1− |Cl7〉〈Cl7| −

1

2

(
γ−1 γ

−
4 γ

−
7 + γ+

1 γ
−
4 γ

−
7 + γ−1 γ

+
4 γ

−
7 + γ−1 γ

−
4 γ

+
7

)
. (5.13)

WCl7 is a fully decomposable witness. However, since WCl7 was not obtained from our
SDP, but via Lemma 34, there are — most likely — fully decomposable witnesses for
|Cl7〉 with a higher white noise tolerance. This is in contrast to WCl4 which was obtained
by the semidefinite program and therefore has the maximal white noise tolerance among
the fully decomposable witnesses.

WCl7 has a very particular structure. The qubits i whose generators gi appear in the
witness are indicated with red circles in Fig. 5.2 a). Let us denote the set of these qubits
by B. One can see that each two qubits in B have at least two other qubits between
them. Moreover, the terms γ±1 γ

±
4 γ

±
7 in Eq. (5.13) all contain two or more minus signs.

It turns out that witnesses of this kind can be constructed for general graph states.

Arbitrary graph states

The construction in Eq. (5.13) can be generalized in the following way:
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state white noise tolerance

No. 1, Bell state ptol = 2
3 ≈ 0.667

No. 2, GHZ3 ptol = 4
7 ≈ 0.571

No. 3, GHZ4 ptol = 8
15 ≈ 0.533

No. 4, Cl4 ptol = 8
13 ≈ 0.615

No. 5, GHZ5 ptol = 16
31 ≈ 0.516

No. 6, Y5 ptol = 16
25 = 0.64

No. 7, Cl5 ptol = 16
25 = 0.64

No. 8, R5 ptol = 12
19 ≈ 0.632

No. 9, GHZ6 ptol = 32
63 ≈ 0.508

No. 10 ptol = 32
49 ≈ 0.653

No. 11, H6 ptol = 32
45 ≈ 0.711

No. 12, Y6 ptol = 32
45 ≈ 0.711

No. 13, E6 ptol = 32
45 ≈ 0.711

No. 14, Cl6 ptol = 128
179 ≈ 0.715

No. 15 ptol = 32
47 ≈ 0.681

No. 16 ptol = 8
11 ≈ 0.727

No. 17 ptol ≈ 0.696

No. 18, R6 ptol ≈ 0.667

No. 19 ptol = 2
3 ≈ 0.667

Table 5.1: For graph states of up to six qubits, there are 19 classes of states which are
equivalent under LU operations. Here, we show one state of each class. Using
the presented criterion, one obtains a witness for each of these states (cf.
Sec. 5.7) which have the white noise tolerances given here.

Figure 5.2: For the linear cluster state, we construct several witnesses. In a), the qubits
in B (marked by red circles) can be used to construct the fully decomposable
witness of Eq. (5.13) using Lemma 34. b) illustrates the construction method
of Lemma 38 which yields a fully PPT witness. Qubits in B1 are marked by
red circles, qubits in B2 by green squares.
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5.2 Fully decomposable witnesses

Lemma 34. Given a connected graph state |G〉. Let B = {βi} be a subset of the set
of all qubits such that any two qubits in B are neither neighbors of each other nor have
a neighbor in common. We define b = |B|. Let

∑
~s be the sum over all vectors ~s of

length b with elements si = ±1 that contain at least two elements which equal −1, i.e.,∑b
i=1 si ≤ b− 4. In this case,

WG =
1

2
1− |G〉〈G| − 1

2

∑

~s

∏

i∈B
γsi
i (5.14)

is a fully decomposable witness for |G〉.

For the detailed proof, we refer to Sec. 5.6. Its main idea is to construct a suitable
positive operator PM for every subset M , such that (W − PM )TM = QM is positive
semidefinite.

Furthermore, the proof takes advantage of the fact that, besides |G〉〈G|, all terms in
Eq. (5.14) are invariant under any partial transposition TM , since the identity is diagonal
in any basis and there are no two generators gi in the product that are neighbors of each
other. However, products of non-neighboring generators are only tensor products of the
Pauli matrices X, Z and the identity all of which are invariant under transposition.
Moreover, the proof is simplified by WG being diagonal in the graph state basis.

Note that in many cases, the choice of subset B is not unique. For the seven-qubit
linear cluster state, instead of the choice B = {1, 4, 7} which results in the witness of
Eq. (5.13), the choices B = {1, 6} or B = {2, 5} would also be valid. However, these sets
would lead to witnesses that have a lower white noise tolerance.

It turns out that for many graph states, the white noise tolerances of witnesses con-
structed according to Lemma 34 converge to one for an increasing particle number. More
precisely, this is the case for graph states that can be defined for an arbitrary number of
qubits such that, when increasing the number of qubits, also the number of qubits in B
grows. This includes the linear cluster state, the 2D cluster state for n qubits and the ring
cluster state. It does not include GHZ states, since for any number of qubits, no set B
(of more than one qubit) that contains only qubits with non-overlapping neighborhoods
can be defined on the GHZ state. Let us formulate this observation as a corollary:

Corollary 35. Let |Gn〉 be a graph state of n qubits and B(n) a subset of these n qubits
with the properties as in Lemma 34. Let WGn be a witness for |Gn〉 as in Eq. (5.14).
Then, the white noise tolerance of WGn with respect to |Gn〉 is given by

p(n) =
(
1 − 2−n+1 + 2−|B(n)|(|B(n)| + 1)

)−1
. (5.15)

For a family of graph states on any number of qubits n with |B(n)| n→∞−−−→ ∞, this
expression implies

p(n)
n→∞−−−→ 1 . (5.16)

For high particle numbers, the fidelity Freq required to detect the state ̺ = (1−p)|Gn〉〈Gn|+
p1/2n is given by Freq ≈ |B(n)|2−|B(n)| and therefore vanishes exponentially fast.
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5 Entanglement witnesses for graph states

Figure 5.3: We illustrate two different ways to construct witnesses for the 2D cluster
state. In a), the red circles mark qubits that belong to B, which can be
used to construct a fully decomposable witness according to Lemma 34 (or
a fully PPT witness using Lemma 37). In b), we illustrate the method of
Lemma 38 which results in a fully PPT witness. For this, one needs to
define the sets B1 (red circles), B2 (blue triangles), B3 (green squares) and
B4 (orange pentagons).

For the proof, we refer to Sec. 5.6.
Note that this behavior of the white noise tolerance has been found in Ref. [92].

Moreover, entanglement criteria for Dicke states that also exhibit a white noise tolerance
which converges to one have been found recently in Ref. [108].

Examples

2D cluster state — Let us consider a 2D cluster state of 16 qubits as given in Fig. 5.3 a).
To construct a witness according to Lemma 34, one could choose B = {1, 4, 10, 16} as
indicated by red circles. However, it would also be possible to choose qubit 13 instead
of qubit 10. In both cases, the white noise tolerance is ptol =

(
1 − 2−15 + 5 · 2−4

)−1 ≈
0.762.

Other graph states — Consider state No. 13, the E6 state, of Fig. 2.2. Here, B =
{1, 5, 6} would be a valid choice.

For state No. 11, the H6 state, B = {1, 4} is a possible choice. However, one could
have also selected B = {1, 3}, B = {2, 3} or B = {2, 4}. Indeed, in the next section,
we will see that all these choices can be combined to construct an even better witness,
namely the witness of Sec. 5.7 which is obtained by our SDP. As mentioned before, the
corresponding white noise tolerances are given in Table 5.1.

5.2.3 Extended construction method

Although Lemma 34 can be applied to many graph states, for most graph states there
exist witnesses with a higher white noise tolerance (cf. Sec. 5.7). In this section, we
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5.2 Fully decomposable witnesses

provide an extended construction method that, for some states, allows one to subtract
additional terms from the witnesses constructed by Lemma 34. This extended method
can be applied to, e.g., the states No. 6 (Y5) and No. 11 (H6) of Fig. 2.2 to obtain the
witnesses of Eqs. (5.11) and (5.12).

Lemma 36. Given a connected graph state |G〉 and m subsets Bi of its qubits that fulfill
the following two conditions:

(i) No two qubits in a set Bi have a neighbor in common or are neighbors of each
other.

(ii) Any two qubits β
(i)
j ∈ Bi and β

(k)
l ∈ Bk from two different subsets either have the

same neighborhood or no common neighbor at all.

Moreover, let Wi be the fully decomposable witnesses that one can construct from the
subsets Bi according to Lemma 34. Then,

W =
∑

~k∈{0,1}n

|~k〉〈~k| min
i=1,...,m

〈~k|Wi|~k〉 (5.17)

is a fully decomposable witness. Note that W is clearly better than any of the witnesses
Wi alone.

Note that it is possible, according to conditions (i) and (ii), that a qubit is in more
than one subset Bi. The proof of Lemma 36 is given in Sec. 5.6. Let us present some
examples of the witnesses constructed in this lemma.

Examples

State No. 6 (Y5) — Consider state No. 6 of Fig. 2.2. Here, the subsets Bi are given
by B1 = {1, 4} and B2 = {5, 4}, which fulfill the conditions of Lemma 36, since the
neighborhoods of qubits 1 and 5 coincide, N (1) = N (5). Lemma 34 then yields the two
witnesses

W1 =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 , (5.18)

W2 =
1

2
− |G〉〈G| − 1

2
γ−5 γ

−
4 . (5.19)

Thus, performing the minimization of Eq. (5.17) is tantamount to subtracting the terms
γ−1 γ

−
4 /2 =

∑
i,j,k∈{0,1} |1ij1k〉〈1ij1k|/2 and γ−5 γ

−
4 /2 =

∑
i,j,k∈{0,1} |ijk11〉〈ijk11|/2 from

the projector witness and then adding the terms which have been subtracted twice in
this way, namely γ−1 γ

−
4 γ

−
5 /2. This results in the witness given in Eq. (5.11).

State No. 11 (H6) — Similarly, state No. 11 allows to define four subsets, namely
B1 = {1, 4}, B2 = {2, 4}, B3 = {1, 3} and B4 = {2, 3}. Applying Lemma 36 leads to the
witness of Eq. (5.12).
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5.3 Fully PPT witnesses

In this section, we provide analytical construction methods for fully PPT witnesses of
graph states. In Sec. 5.3.1, Lemma 37 gives a method analogous to the fully decompos-
able witnesses in Lemma 34. An example will be given in Sec. 5.3.1.

As in the last section, we then provide an extended method to construct even better
witnesses using the witnesses of Lemma 37. This is done in Sec. 5.3.2, with examples in
Sec. 5.3.2. This time, however, the extension is more general and can be applied to a
larger family of states. Thus, our main results of this section are Lemmata 37 and 38.
Finally, we provide a witness for the 2D cluster state in Sec. 5.3.3 which does not fit into
the construction methods presented so far.

As mentioned before, fully PPT witnesses are easier to characterize, since they are fully
decomposable witnesses with PM = 0 for all M . This allows for a further generalization
of the construction methods presented above — however, only resulting in fully PPT
witnesses — and for the construction of a new witness for the 2D cluster state.

5.3.1 Arbitrary graph states

Let us first give the analogon to Lemma 34 for fully PPT witnesses.

Lemma 37. Given a connected graph state |G〉. Let B = {βi} be a subset of the set
of all qubits such that any two qubits in B are neither neighbors of each other nor have
a neighbor in common. We define b = |B|. Let

∑
~s be the sum over all vectors ~s of

length b with elements si = ±1 that contain at least two elements which equal −1, i.e.,∑b
i=1 si ≤ b− 4. In this case,

WG =
1

2
1− |G〉〈G| −

∑

~s

(
1

2
− 1

2m(~s)

) ∏

i∈B
γsi
i (5.20)

is a fully PPT witness for |G〉. Here, m(~s) is the number of elements si = −1 in ~s, i.e.,

m(~s) =
(
b−∑b

i=1 si

)
/2.

The proof is similar to the proof of Lemma 34, but some parts are easier. We present
it in Sec. 5.6.

Examples

2D cluster state — When applying the presented construction to the 2D cluster state of
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Fig. 5.3, one obtains the witness

W =
1

2
1− |Cl4×4〉〈Cl4×4|

− 1

4

(
γ−1 γ

−
4 γ

+
10γ

+
16 + γ−1 γ

+
4 γ

+
10γ

−
16 + γ+

1 γ
+
4 γ

−
10γ

−
16

+ γ+
1 γ

−
4 γ

−
10γ

+
16 + γ+

1 γ
−
4 γ

+
10γ

−
16 + γ−1 γ

+
4 γ

−
10γ

+
16

)

− 3

8

(
γ−1 γ

−
4 γ

−
10γ

+
16 + γ−1 γ

−
4 γ

+
10γ

−
16 + γ−1 γ

+
4 γ

−
10γ

−
16 + γ+

1 γ
−
4 γ

−
10γ

−
16

)

− 7

16
γ−1 γ

−
4 γ

−
10γ

−
16 . (5.21)

This witness has a white noise tolerance of ptol = 32768
51455 ≈ 0.637.

5.3.2 Extended construction method

We can now rewrite Lemma 36 for fully PPT witnesses. Although these witnesses have
a smaller white noise tolerance, they can be handled easier analytically, which enabled
us to relax the premises of Lemma 36. Therefore, one can apply the new lemma to a
larger class of states.

Lemma 38. Given a connected graph state |G〉 and m subsets Bi of its qubits that fulfill
the following two conditions:

(i) No set Bi contains two qubits that have a neighbor in common.

(ii) No two qubits in ∪mi=1 Bi are neighbors of each other.

Moreover, let Wi be the fully PPT witnesses that one can construct from the subsets Bi
according to Lemma 37. Then,

W =
∑

~k∈{0,1}n

|~k〉〈~k| min
i=1,...,m

〈~k|Wi|~k〉 (5.22)

is a fully PPT witness.

The proof of Lemma 38 can be found in Sec. 5.6.

Examples

Linear cluster state — Consider an n-qubit linear cluster state as shown in Fig. 5.2 b).
We define a subset B1 for the construction of a witness W1 according to Lemma 37)
by picking the qubits B1 = {1, 5, 9, ...}. These are marked by red circles in Fig. 5.2 b).
Analogously, the qubits marked by a green square belong to a second subset B2 which
is used to construct a witness W2. Then, Lemma 38 implies that there is a witness W
as given in Eq. (5.22).
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Let us present this witness for a seven-qubit cluster state. Then, B1 = {1, 5} and
B2 = {3, 7}. Consequently,

W1 =
1

2
1− |Cl7〉〈Cl7| −

1

4
γ−1 γ

−
5 , (5.23)

W2 =
1

2
1− |Cl7〉〈Cl7| −

1

4
γ−3 γ

−
7 . (5.24)

Since the only terms that γ−1 γ
−
5 and γ−3 γ

−
7 have in common are given by γ−1 γ

−
3 γ

−
5 γ

−
7 ,

Eq. (5.22) can be expressed as

WCl7,2 =
1

2
1− |Cl7〉〈Cl7| −

1

4
γ−1 γ

−
5 − 1

4
γ−3 γ

−
7 +

1

4
γ−1 γ

−
3 γ

−
5 γ

−
7 . (5.25)

A fully PPT witness for the seven-qubit linear cluster state constructed according to
Lemma 37 with B = {1, 4, 7} has a white noise tolerance of ptol = 64/109 ≈ 0.588. The
witness of Eq. (5.25), however, only has a tolerance of ptol = 64/113 ≈ 0.566. While
Lemma 38 does not allow to construct more robust witnesses for linear cluster states
compared to simply using Lemma 37, it still has some advantages.

First, for many graph states, e.g. the state No. 6 (Y5) and the state No. 11 (H6) of
Fig. 2.2, Lemma 38 does provide a method to construct witnesses that are more robust
than witnesses constructed via Lemma 37 alone. We note that the fully decomposable
witnesses of Lemma 36 are even more robust. However, as mentioned before, the prereq-
uisites for Lemma 36 are more strict than those for Lemma 38 and therefore, there are
graph states for which the former cannot be used, but the latter applies. For example,
this is the case for the 2D cluster state of 16 qubits, to which Lemma 38 can be applied,
as we will see at the end of this section, but Lemma 36 can not be used as there are no
two qubits with the same neighborhood.

Second, witnesses constructed according to Lemma 38 using two sets B1 and B2 as
shown in Fig. 5.2 b) can be used to improve the linear cluster state witnesses W(CN )

of Ref. [72], which results in a witness that only needs two experimental settings to be
measured.

To illustrate this, we consider the seven-qubit linear cluster state and its witnessWCl7,2

of Eq. (5.25) again. The linear cluster state witness of Eq. (9) in Ref. [72] is given by

W(CN ) =
3

2
1−


 ∏

i=1,3,5,7

γ+
i +

∏

i=2,4,6

γ+
i


 . (5.26)

Due to the form of the generators, it can be measured locally using only two settings,
namely the eigenbases of X1Z2X3Z4X5Z6X7 and Z1X2Z3X4Z5X6Z7. Since W(CN ) ≥
1
21− |G〉〈G|, one has
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WCl7,2 =
1

2
1− |Cl7〉〈Cl7| −

1

4
γ−1 γ

−
5 − 1

4
γ−3 γ

−
7 +

1

4
γ−1 γ

−
3 γ

−
5 γ

−
7

≤W(CN ) − 1

4
γ−1 γ

−
5 − 1

4
γ−3 γ

−
7 +

1

4
γ−1 γ

−
3 γ

−
5 γ

−
7

= W(CN )
imp , (5.27)

where the last equality sign defines the improved witness W(CN )
imp . This witness detects

more states than W(CN ) and also requires only two settings, since the additional terms
can be determined through the measurement of X1Z2X3Z4X5Z6X7. Note that this is
not in contradiction with the result of Ref. [73] stating that W(CN ) has the highest
possible white noise tolerance amongst all stabilizer witnesses that can be measured
using two settings, as only witnesses obeying W(CN ) ≥ α(1

21− |G〉〈G|) for some α > 0
where considered in Ref. [73].

Note that it is possible to construct a better witness for linear cluster state of seven
qubits by adding a third witness W3 constructed for the subset B3 = {1, 7}. Then, the
white noise tolerance increases to ptol = 64

111 ≈ 0.577.

Finally, we apply the construction of Lemma 38 to the 2D cluster state of 16 qubits.

2D cluster state — Fig. 5.3 b) shows how to choose four subsets Bi of qubits from a
2D cluster state |Cl4×4〉 made up of 16 qubits. B1 is shown by red circles, B2 by blue
triangles, B3 by green squares and B4 by orange pentagons. The resulting witnesses Wi

can be combined as in Eq. (5.22) to yield a witness that can be rewritten as

W =
1

2
1− |Cl4×4〉〈Cl4×4|

−1

4

(
γ−1 γ

−
11 + γ−6 γ

−
16 + γ−3 γ

−
9 + γ−8 γ

−
14

)

+
1

4

(
γ−1 γ

−
11γ

−
6 γ

−
16 + γ−6 γ

−
16γ

−
3 γ

−
9 + γ−3 γ

−
9 γ

−
8 γ

−
14

+ γ−1 γ
−
11γ

−
8 γ

−
14 + γ−6 γ

−
16γ

−
8 γ

−
14 + γ−1 γ

−
11γ

−
3 γ

−
9

)

−1

4

(
γ−1 γ

−
11γ

−
6 γ

−
16γ

−
3 γ

−
9 + γ−1 γ

−
11γ

−
6 γ

−
16γ

−
8 γ

−
14

+ γ−1 γ
−
11γ

−
3 γ

−
9 γ

−
8 γ

−
14 + γ−6 γ

−
16γ

−
3 γ

−
9 γ

−
8 γ

−
14

)

+
1

4
γ−1 γ

−
11γ

−
6 γ

−
16γ

−
3 γ

−
9 γ

−
8 γ

−
14 . (5.28)

This witness has a white noise tolerance of ptol = 32768
54335 ≈ 0.603. As we noted for

linear cluster state, there are even more subsets Bi that one can use, such as B5 = {1, 8}
and B6 = {3, 9, 16}. In fact, there are 13 subsets of {1, 3, 6, 8, 9, 11, 14, 16} that obey
condition (ii) of Lemma 38. Taking all of them into account, one obtains a witness
with white noise tolerance ptol = 32768

49791 ≈ 0.658 which is even better than the witness of
Eq. (5.21).
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5.3.3 2D cluster state

Finally, we present a fully PPT witness for the 2D cluster state |Cl4×4〉 of 16 qubits
which does not fit into the framework of Lemma 37. Although the construction can
easily be generalized to n× n qubits, we present the witness for the 4× 4 case here. To
circumvent any problems that might occur due to the border, we consider this state on
a torus, i.e., with periodic boundary conditions as shown in Fig. 5.4.

Figure 5.4: For the 2D cluster state on a torus, it is possible to define a fully PPT witness
using the diagonals (cf. Lemma 39).

The 2D cluster state has four parallel diagonals in one direction and, orthogonal to
these, another set of four diagonals. All of these diagonals contain four qubits. The first
set is made up of diagonals parallel to the diagonal {3, 8, 9, 14} which is indicated by red
circles. We denote this set by

D/ = {D(j)
/ } = {{1, 6, 11, 16}, {2, 7, 12, 13}, {3, 8, 9, 14}, {4, 5, 10, 15}} . (5.29)

The second set contains diagonals parallel to the one marked by green squares, {4, 7, 10, 13}.
We define it as

D\ = {D(j)
\ } = {{1, 8, 11, 14}, {2, 5, 12, 15}, {3, 6, 9, 16}, {4, 7, 10, 13}} . (5.30)

We can now introduce the following witness.

Lemma 39. Given the 2D cluster state of 16 qubits with periodic boundary conditions
|Cl4×4〉. By D/ and D\, we denote the two sets of diagonals as defined above. For each
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pair of orthogonal diagonals that have no qubit in common, i.e. for each (i, j) such that

D(i)
/ ∩ D(j)

\ = {}, we define a projector

D(i,j) =
1

2
(1−

∏

k∈D(i)
/

gk)
1

2
(1−

∏

l∈D(j)
\

gl) . (5.31)

Then,

W4×4 =
1

2
1− |Cl4×4〉〈Cl4×4| −

1

4

∑

~k

|~k〉〈~k|max
(i,j)

〈~k|D(i,j)|~k〉 (5.32)

is a fully PPT witness for |Cl4×4〉.

The proof can be found in Sec. 5.6. Note that Eq. (5.32) is easy to generalize to n×n
qubits, as for a larger number of qubits only the definitions of Eqs. (5.29) and (5.30)
would have to be changed. The proof provided in Sec. 5.6 works for n × n qubits with
n ≥ 3.

Specifically, the maximization in Eq. (5.32) is carried out over the operators D(1,2),
D(1,4), D(2,3), D(2,1), D(3,2), D(3,4), D(4,3) and D(4,1). Similarly to Eq. (5.28), this maxi-
mum can also be written as a polynomial in the operators D(i,j). Moreover, the expecta-
tion values of these operators can be determined by measuring one experimental setting,
namely X-measurements on all qubits. Thus, the sum in Eq. (5.32) can be obtained by
implementing one experimental setting.

In order to determine the terms that the witness W4×4 contains in addition to the
projector witness, i.e. the sum in Eq. (5.32), one has to measure the operators D(i,j)

that obey D(i)
/ ∩ D(j)

\ = {}. These are the operators D(1,2), D(1,4), D(2,3), D(2,1), D(3,2),
D(3,4), D(4,3) and D(4,1). From these, one can determine the elementwise maximum in
Eq. (5.32), as one can show that it can be written as a polynomial in the operators
D(i,j). Moreover, the expectation values of all of these operators can be determined by
measuring one experimental setting, namely X-measurements on all qubits. Thus, the
additional term in Eq. (5.32) can be obtained by implementing one experimental setting.

The white noise tolerance of W4×4 is given by ptol = 32768
53503 ≈ 0.612.

5.4 Entanglement monotone

Finally, we consider the monotone N(̺) of Eq. (4.4) and derive the value that it takes
for graph states.

Lemma 40. For any state ̺ of n qubits,

N(̺) ≤ 1

2
. (5.33)
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For any connected graph state |G〉,

N(|G〉〈G|) =
1

2
. (5.34)

Therefore, connected graph states are maximally entangled states for this monotone.
We note that, if the system does not only consist of qubits, but also of higher-dimensional
particles, Eq. (5.33) must be replaced by

N(̺) ≤ 1

2
(dmin − 1) , (5.35)

where dmin is the lowest dimension of any particle in the system.

The proofs of this section are given in Sec. 5.6.

5.5 Conclusion

In this chapter we presented general construction methods for graph state witnesses in
the framework of PPT mixtures [92]. These methods can be applied to a large class of
graph states, resulting in witnesses that are significantly better than previously known
witnesses. In many cases, the white noise tolerances approach one for an increasing par-
ticle number. This means that for many qubits, the state fidelity can decrease exponen-
tially, but still entanglement is present and can be detected. Moreover, the improvement
of the witnesses comes with very low experimental costs, as the additional terms which
are not part of the standard projector witness can be measured with one local setting.

For these reasons, we believe that the presented entanglement witnesses will prove to
be useful in experiments, also for future experiments involving larger qubit numbers.
Furthermore, the applied methods can serve as starting points for the construction of
even better entanglement criteria.

There are several interesting questions remaining. First, as we have seen, the approach
of this and the last chapter results in strong separability conditions for noisy graph states.
A natural question would be whether these conditions are already necessary sufficient
for entanglement, or whether they can still be improved. We will tackle this question in
the following Sec. 6.

Second, there are many other interesting families of multi-qubit states besides graph
states, in particular Dicke states and other states with many symmetries, such as
permutation-invariant states. It would be desirable to similarly develop witnesses for
these families of states using the framework developed here.

5.6 Proofs

Linear program for graph-diagonal states (Lemma 33)

Proof. Let us define a simplifying notation for this proof: For any operatorO we define its
graph-diagonal form as O =

∑
~k
|~k〉〈~k|O|~k〉〈~k|. Note that any state ̺ can be transformed
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into its graph-diagonal form ̺ by local operations. Now suppose that the operator W
is the fully decomposable entanglement witnesses that minimizes the expectation value
for the graph diagonal state ̺G according to the original problem of Eq. (4.3). Then
its graph-diagonal operator W has the same expectation value Tr(WρG) = Tr(WρG)
as the original witness. Given any valid decomposition W = P +QTM for a particular
chosen bipartition M , the operator W = P +QTM can be expressed in its corresponding
graph-diagonal operators P and QTM due to linearity, but note that QTM stands for the
graph-diagonal form of the partially transposed operator.

However, it is straightforward to see that this operator is actually identical to the par-

tial transpose of the graph-diagonal operator, i.e., QTM = Q
TM , as follows: The mapping

of Q 7→ Q is achieved by expanding O in the Pauli basis, Q =
∑

~x∈{0,1,2,3}n α~x⊗n
i=1 σxi ,

and then setting to zero all coefficients α~x of Pauli matrix products which are no stabi-
lizers of the given graph state. Note that σ1, σ2, σ3 denote the Pauli matrices and σ0

is the identity. In this picture, the partial transposition only corresponds to flipping the
sign of coefficients α~x of Pauli matrix products which change under partial transposi-
tion. These are the Pauli matrix products in which there is an odd number of σ2s, i.e.
of Y s, in the set M , since Y T = −Y and all other Pauli matrices are invariant under
transposition.

Then, it is clear that the partial transposition and the mapping Q 7→ Q commute.

Thus the witness decomposition simplifies to W = P +Q
TM . Since the operator P ≥ 0

is positive semidefinite, the overlap with any basis element 〈~k|P |~k〉 ≥ 0 is non-negative.
However this is equivalent to P ≥ 0 because P is diagonal in exactly this basis. The
same argument applies to the operator Q, which concludes the proof.

Fully decomposable witnesses for arbitrary graph states (Lemma 34)

Proof. Consider an arbitrary, connected graph G = (V,E) consisting of a set V of
vertices/qubits and a set E of edges that connect some of these vertices.

In the following, Ñ (i) = N (i) ∪ {i} denotes the union of qubit i and its neighbor-
hood. Moreover, all states in the following are given in the graph state basis of the
corresponding graph.

Let us first give four lemmata to prepare the main proof. The first of these lemmata
shows which kind of partial transposition one can apply to one of two orthogonal vectors
without affecting their orthogonality. The second one can be used to estimate the eigen-
values of a partially transposed state. More precisely, it provides an upper bound on
these eigenvalues in terms of the state’s Schmidt coefficients. The third lemma demon-
strates that certain expressions are invariant under partial transpositions on a single
qubit. Finally, the fourth lemma helps to estimate the largest Schmidt coefficient of a
graph state. In order to prove it, we will count the Bell pairs that can be distilled from
it using local operations and classical communication (LOCC).

We will then apply these lemmata to prove that the operator WG of Eq. (5.14) is a
fully decomposable witness.

Lemma 41. Given a graph G = (V,E) of n qubits and an arbitrary bipartition M |M of
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these qubits. Let |~a〉 and |~c〉 be two arbitrary states in the associated graph state basis.
If there is a qubit i with Ñ (i) ⊆M or Ñ (i) ⊆M , such that ci 6= ai, then

〈~c| (|~a〉〈~a|)TM |~c〉 = 0 . (5.36)

Proof. Let gi, i = 1 . . . n be the generators defined by Eq. (2.57). Since XT = X,
Y T = −Y , ZT = Z and 1T = 1, the partial transposition of a product of generators
only changes the product’s sign. Thus, we can describe the action of the partial transpose
TM w.r.t partition M on products of generators by

(
n∏

i=1

gxi
i

)TM

= (−1)f(~x)

(
n∏

i=1

gxi
i

)
, (5.37)

where xi ∈ {0, 1}. Here, f depends on M and is a Boolean function defined by

f : {0, 1}n → {0, 1} (5.38)

~x 7→ f(~x) =





0, if

(
n∏
i=1

gxi
i

)TM

=
n∏
i=1

gxi
i

1, if

(
n∏
i=1

gxi
i

)TM

= −
n∏
i=1

gxi
i

.

Note that the support supp(f) of a Boolean function contains the bits that the function
depends on, i.e.,

supp(f) = {i | ∃ ~x, s.t.f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , xi ⊕ 1, . . . , xn)} . (5.39)

Due to the explicit form of the gi, flipping the value of xi cannot change f(~x), if i ∈ UM .
Therefore, UM ∩ supp(f) = {}. For this reason, we can pull qubits in UM out of the
partial transposition TM in the following way (using also Eq. (2.69)).

〈~b| (|~a〉〈~a|)TM |~b〉 = Tr




n∏

j=1

(−1)bjgj + 1

2

∏

i∈UM

(−1)aigi + 1

2


 ∏

i/∈UM

(−1)aigi + 1

2



TM



(5.40)
Since gi+1

2
−gi+1

2 = 0, the last expression vanishes if there is an i ∈ UM , such that
bi 6= ai.

The states in the following lemma are generic states and no graph state basis vectors.

Lemma 42. Given a state |ψ〉 and its Schmidt decomposition |ψ〉 =
∑d1

i=1 λi|µi〉 ⊗ |νi〉
with respect to some bipartition M |M , where λi ≥ 0, d1 = dim(M), d2 = dim(M) and
w.l.o.g. d1 ≤ d2. Then, for any state |φ〉,

〈φ| (|ψ〉〈ψ|)TM |φ〉 ≤ max
i
λ2
i . (5.41)
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Proof. Writing down (|ψ〉〈ψ|)TM in the basis {|µi〉 ⊗ |νi〉}i=1...d1,j=1...d2 , one obtains a
matrix with two different kinds of submatrices. First, a diagonal one with diagonal
elements λ2

i or zero. Second, anti-diagonal submatrices of the form

(
0 λiλj

λiλj 0

)
. (5.42)

Thus, the eigenvalues of the total matrix are {±λiλj , λ2
i , 0} and the maximum of these

eigenvalues has the form λ2
i .

Let us now return to the graph state basis and recall that the application of the Pauli
operator Zk to a graph state basis vector results in a bit flip on bit k, i.e.,

Zk|~a〉 = |a1 . . . ak−1 ak ⊕ 1 ak+1 . . . an〉 . (5.43)

Lemma 43. Given a graph G. Then, in the associated graph state basis,

(|~a〉〈~a| + |~c〉〈~c|)Tk = |~a〉〈~a| + |~c〉〈~c| , (5.44)

i.e. |~a〉〈~a| + |~c〉〈~c| is invariant under partial transposition on qubit k, if

|~c〉 =
∏

i∈N (k)

Zi|~a〉 . (5.45)

Proof. With Eq. (2.69) and Eq. (5.43), we have

|~a〉〈~a| + |~b〉〈~b|

=

(
gk + 1

2
+

−gk + 1

2

) n∏

i=1
i6=k

(−1)aigi + 1

2

=

n∏

i=1
i6=k

(−1)aigi + 1

2
. (5.46)

Since gk cancels in Eq. (5.46), the explicit form of the generators gi implies that, in this
equation, there is no Y on qubit k. Since Y is the only Pauli matrix that changes under
partial transposition, |~a〉〈~a| + Zk|~a〉〈~a|Zk is invariant under Tk.

Lemma 44. Let |G〉 be a graph state that is defined by a bipartite graph G = (V,E),
i.e. the qubits can be grouped into two partitions M and M , such that no two qubits in
the same partition are connected with each other. Let λi be the Schmidt coefficients of
|G〉 with respect to the bipartition M |M . If there exists a subset B = {βi} of m qubits
which have at least one neighbor and are chosen in such a way that no two qubits in B
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5 Entanglement witnesses for graph states

have a neighbor in common or are neighbors of each other, then

max
i
λ2
i ≤ 2−m . (5.47)

Proof. Note that any graph can be made bipartite with respect to a fixed bipartition
M |M using operations which are local with respect to M |M . These operations are
controlled-Z between two qubits i, j of the same partition and they correspond to a
deletion of the edge between qubits i and j [77].

In order to prove that the square of the largest Schmidt coefficient of |G〉 is smaller
than (or equal to) 2−m, it is sufficient to show that |G〉 can be converted into at least m
Bell pairs via local operations and classical communication. Since the largest Schmidt
coefficient does not decrease under LOCC [110] and a Bell pair has Schmidt coefficients
{1/

√
2, 1/

√
2}, this implies the given bound.

In the first step, we choose a set of edges F = {(βi, wi)} ⊆ E by selecting, for every
qubit βi in B, a neighboring wi. The edge (βi, wi) between them then belongs to F . Since
no qubit wi can be a neighbor of two different qubits in B according to the assumptions,
every qubit in the graph is endpoint of at most one of the edges in F . A set with this
property is also called a matching. For our proof, each edge in the matching F marks
two qubits between which we will create a Bell pair which is disconnected from the rest
of the graph.

As a second step, we measure every qubit, which is not an end point of an edge in F , in
the Z-basis. In terms of the graph, this deletes all edges that are incident on a measured
qubits. Fig. 5.5 shows an example of a graph that emerges from these measurements.
There are two kinds of edges left: edges that are contained in the matching (shown
as thick, red lines in Fig. 5.5) and edges that connect a qubit wi to a qubit wj in the
opposite partition, which are not in the matching (drawn thinner and in black). Note
that, after the measurements, the qubits βi are only connected through edges of the
matching. Any other edge would either contradict the fact that the graph is bipartite
with respect to M |M or the condition that qubits in B have no neighbor in common.
As seen in Fig. 5.5, some qubits βi are in M , some are in M . This distinction, however,
is of no importance in this proof. Also, there might be other, isolated qubits. These are
not shown in Fig. 5.5, since they do not play any role in the proof.

Finally, we need to delete all edges that are not in the matching, i.e. the edges (wi, wj).
Consider an edge, say (w1, wk) (cf. Fig. 5.5). It can be deleted using the following steps:

First, connect β1 and wk. Such a creation of an edge corresponds to an application of
a local unitary to the graph state, namely a controlled-Z gate acting on the two qubits
to be connected.

Second, apply a local complementation operation on qubit β1. This operation corre-
sponds to a local unitary and inverts the neighborhood graph of β1. More precisely, all
edges between neighbors of β1 are deleted and all neighbors of β1 which are not con-
nected become connected [77]. Since w1 and wk are the only neighbors of β1, this means
that the edge (w1, wk) is deleted.
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Figure 5.5: After measuring out all qubits that are not needed for the creation of Bell
pairs, one obtains a graph as the one shown. Edges of the matching are
indicated by red, thick lines, while other edges are shown in black and with
thin lines.

Finally, delete the edge (β1, wk) again. The described steps now have to be repeated
for all other edges that do not belong to the matching. After that, one ends up with m
pairs of connected qubits which are disconnected from the rest of the graph. These m

Bell pairs have a largest Schmidt coefficient of
√

2
−m

and the performed LU and LOCC
operations cannot have decreased it [110]. Thus, the square of the largest Schmidt
coefficient of |G〉 must be smaller than 2−m.

Let us now start with the main part of the proof in which Lemmata 41 - 44 will be
used.

For the sake of brevity, we define P+ =
∑

~s

∏
i∈B γ

si
i [cf. Eq. (5.14)]. Note that P+ is a

sum of all projectors onto graph state basis vectors that contain at least two excitations
in B, i.e., two bits βi that equal one. For example, in the case of a linear cluster state
(cf. Fig. 5.2), we can choose B = {1, 4, 7, . . . }. Then,

P+ =
∑

~x∈{0,1}n−b

(|0x1x21x3x41 . . .〉〈0x1x21x3x41 . . . |

+ |1x1x20x3x41 . . .〉〈1x1x20x3x41 . . . |
+ |1x1x21x3x40 . . .〉〈1x1x21x3x40 . . . |
+ |1x1x21x3x41 . . .〉〈1x1x21x3x41 . . . |
+ . . . ) . (5.48)

Note that the following proof is an extension of the proof for linear cluster states in
Ref. [92].

Main part of the proof of Lemma 34 — In order to prove that WG is a fully decom-
posable witness, we have to show that, for every strict subset M , there exists a positive
operator PM such that

QM = (WG − PM )TM ≥ 0 . (5.49)
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We proceed in two steps. First, for a given M , we transform our problem for the
graph state |G〉 into a problem for another graph state |G′〉 in which some edges have
been deleted by local operations. Second, in the main part of the proof, we provide an
algorithm for a given M to construct a positive operator PM that obeys Eq. (5.49).

First step: Transformation of the graph state — The goal of the first step is to trans-
form the graph G to a graph G′ by deleting all edges that connect qubits in the same
partition. A graph, in which the vertices can be divided into two subsets M and M such
that only vertices of different subsets are connected with each other, is called bipartite.
As we will see later, this property will be useful, since it allows us to make use of Lemma
43.

We start by noting that any operator O that is diagonal in a graph basis can be
written in the form

O =
∑

~x

c~x

n∏

i=1

gxi
i , (5.50)

where the sum runs over the set of binary vectors ~x ∈ {0, 1}n. Moreover, c~x are co-
efficients that depend on the operator O. Since any partial transposition can at most
introduce minus signs in some terms of this sum, such operators remain diagonal under
any partial transposition.

As both WG of Eq. (5.14) is graph-diagonal and we restrict ourselves to operators PM
which are also graph-diagonal, it is enough to prove that

〈~k| (WG − PM )TM |~k〉 ≥ 0 (5.51)

holds for all M and all graph state basis vectors |~k〉.

Now, we perform the graph transformation G 7→ G′ by deleting all edges that connect
qubits in the same partition. This corresponds to applying a controlled-Z operation Cj,l
to all such pairs of qubits j, l. Altogether, this results in a unitary A =

∏
(j,l)Cj,l that

acts on M , where the product runs over all edges (j, l) that connect qubits in M , and
an analogous unitary B =

∏
(j,l)Cj,l, where the product includes edges in M and which

acts on M .

Since the controlled-Z operation is real and diagonal, we have

A = A∗ = A† = AT (5.52)

and analogously for B.

Together with the unitarity of A and B, these equalities imply the equivalence
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〈~k| (WG − PM )TM |~k〉 ≥ 0 (5.53)

⇔ G′〈~k|A⊗B (WG − PM )TM A† ⊗B†|~k〉G′ ≥ 0 (5.54)

⇔ G′〈~k|A⊗B∗ (WG − PM )TM A† ⊗BT |~k〉G′ ≥ 0 (5.55)

⇔ G′〈~k|
[
A⊗B (WG − PM )A† ⊗B†

]TM |~k〉G′ ≥ 0 (5.56)

⇔ G′〈~k|
(
WG′ − P ′

M

)TM |~k〉G′ ≥ 0 (5.57)

where |~k〉G′ = A ⊗ B |~k〉 are the basis vectors that are associated to the transformed
generators gi

′ = (A ⊗B)gi(A
† ⊗ B†). Also, the transformed witness is given by WG′ =

(A⊗B)WG(A† ⊗B†) = 1
21− |G′〉〈G′| − 1

2

∑
~k2>1

∏|B|
i=1

1+(−1)kig′βi
2 .

Thus, the transformed Eq. (5.57) has the same form as Eq. (5.51). Keep in mind that
one needs to prove Eq. (5.57) for all subsets M and all basis vectors |~k〉G′ .

For better readability, we drop the subscriptG′ of the graph basis vectors: |~k〉G′ 7→ |~k〉.
Every state in the remainder of this proof is to be understood in the graph basis of graph
G′.

Finally, we note that the most important thing to keep in mind from this step is that
the graph G′ is bipartite with respect to the two sets M and M .

Second step: Algorithm to construct P ′
M — Let us now provide an algorithm to con-

struct P ′
M for any given M . Note that we order the qubits βi in a canonical way such

that βi < βi+1.

1. Start with P
(0)
M = |G′〉〈G′| = |0 . . . 0〉〈0 . . . 0|.

2. Set i = 1.

3. If βi has no neighbors (in graph G′), set P
(i)
M = P

(i−1)
M . If βi has neighbors, define

P
(i)
M as P

(i)
M = P

(i−1)
M +

(∏
j∈N (βi)

Zj

)
P

(i−1)
M

(∏
j∈N (βi)

Zj

)
.

4. If i ≤ b, increase i by one and repeat step 3. Otherwise, proceed with step 5.

5. Let r be the number of qubits in B that have neighbors (in graph G′), i.e., the

number of steps in which P
(i)
M changed.

If r ≤ 1, define
P ′
M = 0 . (5.58)

Let t be the value of i for which P
(i)
M was changed the last time, i.e., P

(i)
M = P

(t)
M ∀i >

t. If r > 1, define

P ′
M = P

(t−1)
M − |G′〉〈G′| . (5.59)

Note that the operator P ′
M constructed via the given algorithm is either zero or a sum

of one-dimensional projectors onto basis states, i.e.,
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P ′
M =

∑

~a

|~a〉〈~a| . (5.60)

This can be seen by the fact that P
(0)
M = |G′〉〈G′| = |0 . . . 0〉〈0 . . . 0|, the application of

Z only flips a bit and finally |G′〉〈G′| is subtracted again. Let us illustrate the algorithm
by a concrete example.

Example of the algorithm: Consider state No. 16 of Fig. 2.2 and the bipartition
given by M = {1, 2, 5, 6}. Then, the transformation in the first step of the proof deletes
the edges (1, 2) and (3, 4), since 1, 2 ∈M and 3, 4 ∈M .

Let us choose set B = {1, 5, 6}. Thus, the algorithm produces the following operators.
From step 1, we have

P
(0)
M = |000000〉〈000000| . (5.61)

As qubit 1 does not have any neighbors, since edge (1, 2) has been deleted, step 2 does

not change the operator P
(0)
M and therefore results in

P
(1)
M = |000000〉〈000000| . (5.62)

Then, the loop in step 3 produces

P
(2)
M = |000000〉〈000000| + |000100〉〈000100| , (5.63)

P
(3)
M = |000000〉〈000000| + |000100〉〈000100|

+ |001000〉〈001000| + |001100〉〈001100| . (5.64)

P
(i)
M was changed in two steps or, in other words, two qubits in graph G′ which are

also in B, namely qubits 5 and 6, have a neighbor. Thus, r = 2. Moreover, as P
(i)
M was

changed in the third step, we have t = 3 and therefore

P ′
M = P

(2)
M − |000000〉〈000000|

= |000100〉〈000100| . (5.65)

Therefore, in this example, the sum in Eq. (5.60) has only one term.

Let us now return to the general case and understand the properties of the operator
P ′
M for an arbitrary M . The construction uses Lemma 43 to ensure that, in every step,

either

(
P

(i)
M

)TMi
=
(
P

(i)
M

)T
Ñ (βi) (5.66a)

or (
P

(i)
M

)TMi
= P

(i)
M (5.66b)
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hold, where we defined Mk = M ∩ Ñ (βk). Therefore, as we will see later, the qubits βi
can be treated as if they had no neighbor in the opposite partition.

To see that Eqs. (5.66) hold, assume that βi ∈ M . Since qubits that were neighbors
of βi in graph G and were also in M are not connected to βi in graph G′ anymore, we
know that N (βi) ⊆M . Then, the given algorithm sets

P
(i)
M =

∑

~c


|~c〉〈~c| +


 ∏

j∈N (βi)

Zj


 |~c〉〈~c|


 ∏

j∈N (βi)

Zj




 . (5.67)

This expression is invariant under the partial transposition Tβi
due to Lemma 43.

Therefore, Eq. (5.66b) holds. Similarly, in the case βi ∈M , Eq. (5.66a) holds.
Eqs. (5.66) hold in every step, i.e., for i = j and for i = k, where j 6= k. According

to the premise of non-overlapping neighborhoods of the qubits in B, we have Ñ (βj) ∩
Ñ (βk) = {}. Therefore, the partial transpositions in Eqs. (5.66) for i = j always affect
qubits different from the ones that are affected by the partial transpositions for i = k.

For this reason, Eqs. (5.66) for P
(t−1)
M hold with respect to every value of k, except for

k = t. More precisely,

(
P

(t−1)
M

)TMk
=
(
P

(t−1)
M

)T
Ñ (βk)

(5.68a)

or (
P

(t−1)
M

)TMk
= P

(t−1)
M (5.68b)

is true for every k 6= t. We will use this important property later.
Let us proceed with the proof. Since P ′

M is zero or has the form of Eq. (5.60), we
know that P ′

M ≥ 0. Thus, it remains to show that Eq. (5.57) holds.
Note that the transformed operator P ′

+ = (A⊗B)P+ (A⊗B) is invariant under any
partial transposition. This can be seen using Eq. (5.52) and the fact that P+ is invariant
under any partial transposition. P+ =

∑
~s

∏
i∈B γ

si
i is invariant, since it only contains

generators of qubits that have no neighbor in common and are no neighbors of each other.
Thus, the form of the generators as given in Eq. (2.57) implies that P+ does not contain
any Y operators which are the only Pauli matrices that change under transposition.

Together with the explicit form of the witness given in Eq. (5.14), we can therefore
rewrite Eq. (5.57) as

1

2
− 1

2
〈~k|P ′

+|~k〉 − 〈~k|
(
|G′〉〈G′| + P ′

M

)TM |~k〉 ≥ 0 . (5.69)

In order to prove this, we distinguish two different cases:

1. 〈~k|P ′
+|~k〉 6= 0 ⇔ 〈~k|P ′

+|~k〉 = 1

Note that this equivalence is due to the form of P ′
+ as shown in Eq. (5.48). Also,

this form implies that, in the vectors |~k〉 with non-zero overlap, there must be at
least two qubits i0, j0 ∈ B, with i0 6= j0, such that ki0 = kj0 = 1.
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In the case P ′
M = 0, Eq. (5.69) and 〈~k|P ′

+|~k〉 = 1 are equivalent to

−〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≥ 0 . (5.70)

To see that the left-hand side always vanishes for all M and all |~k〉, one uses that
P ′
M = 0 is equivalent to r ≤ 1, i.e., Ñ (βi) ⊆M or Ñ (βi) ⊆M holds for all qubits
βi ∈ B with at most one exception, namely βt. With ki0 = kj0 = 1, Lemma 1 can
be applied to see that the left-hand side of Eq. (5.70) vanishes.

In the case P ′
M 6= 0, Eq. (5.69) can be simplified using 〈~k|P ′

+|~k〉 = 1 to

− 〈~k|
(
|G′〉〈G′| + P ′

M

)TM |~k〉 ≥ 0

⇔ − 〈~k|
(
P

(t−1)
M

)TM |~k〉 ≥ 0 . (5.71)

Here, the definition of P ′
M , Eq. (5.59), has been used.

Now, P ′
M and therefore P

(t−1)
M consists of a sum of projectors onto graph basis

states |~a〉 [see Eq. (5.60)]. Since the algorithm starts with P
(0)
M = |0 . . . 0〉〈0 . . . 0|

and never flips any bits on the qubits βi ∈ B, these states |~a〉 obey aβi
= 0, ∀ i =

1, . . . , b. Also, depending on whether i0 = t or j0 = t, Eqs. (5.68) can be applied to
whichever of these two qubits is different from t. Let us assume that i0 6= t. Then,
one can use Eq. (5.68a) or Eq. (5.68b) to replace M by a slightly modified subset
M ′ with Ñ (βi0) ⊆ M ′ or Ñ (βi0) ⊆ M ′, respectively. Thus, Lemma 41 applied to
i0 yields

〈~k|
(
P

(t−1)
M

)TM |~k〉 = 〈~k|
(
P

(t−1)
M

)TM′

|~k〉
= 0 (5.72)

and therefore Eq. (5.71) holds.

2. 〈~k|P ′
+|~k〉 = 0

To show that Eq. (5.69) holds, we need to prove that

〈~k|
(
|G′〉〈G′| + P ′

M

)TM |~k〉 ≤ 1

2
. (5.73)

In the case P ′
M 6= 0, P ′

M is given by Eq. (5.60) and Eq. (5.73) is equivalent to
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〈~k|
(
|G′〉〈G′| +

∑

~a

|~a〉〈~a|
)TM

|~k〉 ≤ 1

2
. (5.74)

Note that |G′〉〈G′| +∑~a |~a〉〈~a| = P
(t−1)
M consists of 2r−1 terms, as one starts with

one term and doubles this number (r − 1) times to obtain P
(t−1)
M . Therefore, it is

enough to prove the upper bounds

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 2−r (5.75)

and

〈~k| (|~a〉〈~a|)TM |~k〉 ≤ 2−r ∀ |~a〉 . (5.76)

We will show these bounds using Lemma 42. However, since the vectors |~a〉 are
basis vectors of the graph state basis of |G′〉, |~a〉 and |G′〉 are LU-equivalent.
Therefore, they have the same Schmidt coefficients and Lemma 42 results in the
same upper bounds. For this reason, it suffices to show only one of these upper
bounds, namely

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 2−r . (5.77)

In order to apply Lemma 42, we need the largest Schmidt coefficient of |G′〉.
According to Lemma 44, the largest Schmidt coefficient is smaller than (or equal
to) 2−r, since r is the number of qubits in B that have at least one neighbor. Note
that the conditions of Lemma 44 are met, since G′ is a bipartite graph. Thus,
Eq. (5.77) holds.

In the case P ′
M = 0, we need to show that

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 1

2
. (5.78)

Since M 6= {1, . . . , n}, there is at least one Bell pair in G that connects a qubit in
M and a qubit in M . Since the transformation G → G′ only deletes connections
between qubits in the same partition, this pair is also connected in graph G′. Then,
however, deleting all edges besides the one of this pair by measuring all other qubits
leads to one Bell pair. One Bell pair with Schmidt coefficients { 1√

2
, 1√

2
} is enough

to show that Eq. (5.78) holds (using Lemma 42).

This finishes the proof of Lemma 34.
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White noise tolerance of fully decomposable witnesses (Corollary 35)

Proof. The definition of the white noise tolerance ptol for state |G〉 and witnessW implies
that

ptol =

[
1 − Tr(W )

2n〈G|W |G〉

]−1

. (5.79)

Since 〈G|W |G〉 = −1/2, it remains to calculate

Tr(W ) = 2n−1 − 1 − 1

2
2n−|B|∑

j=2

(|B|
j

)

= 2n−1 − 1 − 2n−|B|−1
(
2|B| − |B| − 1

)
(5.80)

Together with Eq. (5.79), this results in Eq. (5.15).

Extended construction of fully decomposable witnesses (Lemma 36)

Before we begin with the proof of Lemma 36, let us state the following lemma, which
we will need later in this proof and also in Sec. 5.6.

Lemma 45. Given a graph state |G〉 of n qubits, the associated generators gi and the
projectors γ±i = (1± gi) /2. Let B be any subset of all qubits in which no two qubits are
neighbors of each other. Let Bi for i = 1, . . . ,m, be some arbitrary subsets of B and Pi
for i = 1, . . . ,m, some operators that can be written as

Pi =
∑

~s

α~s
∏

j∈Bi

γ
sj

j , (5.81)

where
∑

~s sums over some subset of {−1,+1}|Bi|, i.e. over vectors of length |Bi| with
elements ±1, and α~s are some coefficients. Then, the operator

max
i=1,...,m

Pi =
∑

~k

|~k〉〈~k| max
i=1,...,m

〈~k|Pi|~k〉 (5.82)

is invariant under any partial transposition.

Proof. We prove the invariance by showing that maxi=1,...,m Pi can be written as a linear
combination of operators

T~s =
∏

j∈B
γ
sj

j , (5.83)

where ~s ∈ {−1,+1}|B|. T~s is graph-diagonal and

〈~k|T~s|~k〉 =

{
1, if (−1)kj = sj for all j ∈ B
0, otherwise

. (5.84)
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Now, we note that

〈~k|Pi|~k〉 = 〈~l|Pi|~l〉, if kj = lj for all j ∈ B . (5.85)

This follows from the fact that, if |~k〉 and |~l〉 have the same bit values on all qubits in B,
it is possible to obtain |~k〉 from |~l〉 by applying operators Zj on qubits j /∈ B. Since Pi
only has Z-operators (or 1) on these qubits, it commutes with Zj , j /∈ B, and one has

〈~k|Pi|~k〉 = 〈~l|(
∏

j

Zj)Pi(
∏

j

Zj)|~l〉 = 〈~l|Pi|~l〉 . (5.86)

Equation (5.85) implies that 〈~k|maxPi|~k〉 only depends on the bit values kj with

j ∈ B. We can therefore set α~s = 〈~k|maxPi|~k〉, where ~s ∈ {−1,+1}|B| and sj = (−1)kj

for all j ∈ B. Then, we have

max
i=1,...,m

Pi =
∑

~s

α~sT~s . (5.87)

The operators T~s are invariant under partial transposition, since B only consists of
qubits that are not neighbors of each other [cf. Eq. (5.83)]. Thus, maxi=1,...,m Pi is
invariant under any partial transposition.

Let us now come to the main part of the proof of Lemma 36.

Proof. We write the given fully decomposable witnesses Wi in the form

Wi =
1

2
1− |G〉〈G| − 1

2
P

(i)
+ , (5.88)

where

P
(i)
+ =

∑

~s

∏

j∈Bi

γ
sj

j . (5.89)

If we introduce the shorthand notation

max
i
P

(i)
+ =

∑

~k∈{0,1}n

|~k〉〈~k| max
i=1,...,m

〈~k|P (i)
+ |~k〉 , (5.90)

we can write the operator of Eq. (5.17) as

W =
1

2
1− |G〉〈G| − 1

2
max
i
P

(i)
+ . (5.91)

We need to prove that this is indeed a fully decomposable witness. In order to do so,
we proceed in two steps. First, we prove that there is a positive operator PM for every
M which is independent from i such that (Wi − PM )TM ≥ 0 holds for all i. Second, we
use the positive operators PM of the first step to prove that the operator of Eq. (5.91)
is a fully decomposable witness.
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5 Entanglement witnesses for graph states

First step — Let us show that, for a given M , there exists a positive operator PM
independent from i that obeys

(Wi − PM )TM ≥ 0 (5.92)

for all i. In order to prove this, we apply the algorithm for the construction of such
operators given in the proof of Lemma 34. However, instead of applying it to any of the
sets Bi directly, we construct a new set A out of these sets Bi. Although the set A will
contain at least as many qubits as the largest one of the sets Bi, in most cases even more
qubits, it still obeys the condition that no two qubits in A have a neighbor in common.
Therefore, we can then apply the algorithm to it.

First, we assume that for any qubit β
(i)
j from any subset Bi, there is, in every other

set Bk a qubit β
(k)
l that has the same neighborhood as β

(i)
j . In principle, according to

condition (ii) of Lemma 36, there can also be subsets Bk in which no qubit has the same

neighborhood as β
(i)
j . However, adding the qubit β

(i)
j itself to such a subset Bk causes

the mentioned assumption to hold. After this addition, Bk still fulfills condition (i), since

there was no qubit in Bk that had a neighbor in common with β
(i)
j before the addition

according to condition (ii).

Furthermore, for a more convenient notation, we relabel the qubits β
(i)
j in such a way

that the two qubits β
(i)
j ∈ Bi and β

(k)
j ∈ Bk with the same subscript j also have the same

neighborhood. According to the assumption in the last paragraph, there is exactly one

qubit in Bk that has the same neighborhood as β
(i)
j .

Before constructing A and applying the algorithm, we perform the aforementioned
transformation G → G′ (cf. Sec. 5.6) for the given partition M by deleting all edges
that connect qubits in the same partition. Note that two qubits that had the same
neighborhood in G do not need to have the same neighborhood in G′ anymore.

As argued after Eq. (5.51), this transformation changes Eq. (5.92) into

〈~k|
(
W ′
i − P ′

M

)TM |~k〉 ≥ 0 , (5.93)

which has to be shown for all vectors |~k〉 of the basis given by the transformed generators
g′i = (A⊗B)gi(A

† ⊗B†), for all i and for all M . Here, W ′
i = (A⊗B)Wi(A

† ⊗B†) and
P ′
M = (A ⊗ B)PM (A† ⊗ B†), where A =

∏
(j,l)Cj,l and B =

∏
(j,l)Cj,l are the unitary

operators that correspond to the deletion of the edges in M and in M , respectively.
Therefore, A acts on qubits in M and B on qubits in M (which is not obvious from our
above notation). Also, we have used that W ′

i and P ′
M are diagonal in the basis given by

the vectors |~k〉.
Then, we construct a set A = {αi} in the following way.

1. Start with the empty set A = {}.

2. Let j = 1.

3. If all qubits β
(i)
j , i = 1, . . . ,m, from the M subsets Bi are in the same partition,
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then add β
(1)
j to the set A. Otherwise, there exists a qubit β

(x)
j that is in the

opposite partition as β
(1)
j . Then, add both β

(x)
j and β

(1)
j to A.

4. Increase j by one. If j ≤ |B1|, repeat the last step. Otherwise, the construction is
finished. Note that any other set Bi contains the same number of qubits as B1.

Step 3 is the crucial one and we note the following points: If all qubits β
(i)
j , i =

1, . . . ,m, are in the same partition, we add β
(1)
j from B1 to A. In principle, in this case

one can instead add the jth qubit β
(i)
j from any other set Bi to A, since all of them have

the same neighborhood even after the transformation G → G′, as they are all in the
same partition.

In the other case, there are two qubits β
(1)
j and β

(x)
j in opposite partitions. Then,

both of them are added to A. However, since they are in opposite partitions and had
the same neighborhood in graph G, they cannot have a neighbor in common after the
transformation G → G′. Such a neighbor in common would have to be in the opposite

partition as β
(1)
j , in order to be its neighbor in graph G′, but at the same time in

the opposite partition as β
(x)
j . This is impossible since β

(1)
j and β

(x)
j are in opposite

partitions.
Together with the fact that any two qubits of the set B1 do not have a neighbor in

common according to the conditions of Lemma 36, this shows that no two qubits in
A have a neighbor in common (in graph G′). Also, there cannot be two qubits in A
which are neighbors of each other, since these must have also been neighbors in G, which
contradicts the conditions of Lemma 36.

Now, we use the algorithm presented after Eq. (5.57) to construct P ′
M , but we apply

it the qubits αi in the set A instead of the qubits in set B as in the original algorithm.
Again, P ′

M is a sum over projectors onto graph basis states [cf. Eq. (5.60)].

Since P
(i)
+ is invariant under partial transposition, Eq. (5.52) implies that P

′(i)
+ =

(A ⊗ B)P
(i)
+ (A† ⊗ B†) is also invariant. Using the explicit form of W ′

i , we can thus
rewrite Eq. (5.93) as

1

2
− 1

2
〈~k|P ′(i)

+ |~k〉 − 〈~k|(|G′〉〈G′| + P ′
M )TM |~k〉 ≥ 0 . (5.94)

For a given i and M , we consider two cases for the vectors |~k〉. Then, the reasoning
is analogous to the two cases in Sec. 5.6.

1. 〈~k|P ′(i)
+ |~k〉 = 1

Since P
′(i)
+ has the form of Eq. (5.89), but with the transformed generators g′i, and

is therefore a sum of projectors as in Eq. (5.60), in this case there are two qubits
j, l ∈ Bi with kj = kl = 1. Moreover, Eq. (5.94) reduces to

−〈~k|(|G′〉〈G′| + P ′
M )TM |~k〉 ≥ 0 . (5.95)
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Per construction, A contains qubits j and l or qubits that have the same neigh-
borhood as qubits j and l. Therefore, the algorithm constructs an operator P ′

M

that contains only projectors |~a〉〈~a| that obey aj = al = 0. This can be seen in
step 3 of the algorithm for the construction of P ′

M , in which only qubits in the
neighborhood of qubits in A are flipped. Note that |G′〉 = |0 . . . 0〉 and therefore
also here, the jth and the lth bit equal zero. For this reason, Lemma 41 implies
that

−〈~k|(|G′〉〈G′| + P ′
M )TM |~k〉 = 0 (5.96)

and that Eqs. (5.95) and (5.94) hold.

2. 〈~k|P ′(i)
+ |~k〉 = 0

If P ′
M 6= 0, it has 2r−1 terms, where r is the number of qubits αi that have a

neighbor in graph G′. Since no two qubits in A have a neighbor in common,
one can invoke Lemmata 42 and 44 to show that Eq. (5.94) holds for |~k〉 with

〈~k|P ′(i)
+ |~k〉 = 0.

In the case PM = 0, there must be at least one pair of qubits in G′ which are
connected with each other and in opposite partitions. These can be transformed
into a Bell pair via LOCC, such that Eq. (5.94) holds.

Thus, Eq. (5.92) holds for all i and the constructed operators PM =
(
A† ⊗B†)P ′

M (A⊗B).

Second step — In the second step, we can now use the positive operators PM con-
structed in the last step to show that the operatorW of Eq. (5.91) is a fully decomposable
witness. In order to do so, we show that, for every M , the positive semidefinite oper-
ator PM of the last step fulfills (W − PM )TM ≥ 0. Since W and the operators PM are
graph-diagonal, it is enough to show the positivity of 〈~k| (W − PM )TM |~k〉 for all |~k〉.

We define
Ri = max

j
P

(j)
+ − P

(i)
+ . (5.97)

Note that Ri is invariant under partial transposition, as P
(i)
+ does not contain generators

of neighboring qubits, and is therefore invariant, and maxj P
(j)
+ is invariant according to

Lemma 45. Moreover, for a given |~k〉, let i0 be the value of i that maximizes 〈~k|P (i)
+ |~k〉.

Then, we have
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〈~k| (W − PM )TM |~k〉

= 〈~k|
(
Wi0 −

1

2
Ri0 − PM

)TM

|~k〉

= 〈~k| (Wi0 − PM )TM |~k〉 − 1

2
〈~k|Ri0 |~k〉

≥ 0 . (5.98)

In the first line, we have employed the definitions in Eqs. (5.88), (5.91) and (5.97). In
the second line, we have used the invariance of Ri under partial transposition. Finally,
for the positivity, we used Eq. (5.92) and

〈~k|Ri0 |~k〉 = 〈~k|max
j
P

(j)
+ |~k〉 − 〈~k|P (i0)

+ |~k〉

= 〈~k|P (i0)
+ |~k〉 − 〈~k|P (i0)

+ |~k〉
= 0 . (5.99)

Thus, the operator W of Eq. (5.17) is a fully decomposable witness.

Fully PPT witnesses for arbitrary graph states (Lemma 37)

Proof. The proof that we present here is similar to the proof of Lemma 34 (cf. Sec. 5.6).
In fact, it is much shorter, since we do not have to provide a construction algorithm for
the positive operators PM , as these equal zero for fully PPT witnesses.

Here, we have to prove that
W TM
G ≥ 0 (5.100)

holds for every strict subset M of the set of all qubits [cf. Eq. (5.49) in the proof of
Lemma 34]. Since P+ =

∑
~s

∏
i∈B γ

si
i is invariant under partial transposition and W TM

G

is graph-diagonal, one can plug Eq. (5.20) into Eq. (5.100) to obtain

1

2
− 〈~k| (|G〉〈G|)TM |~k〉 −

(
1

2
− 1

2m(~k)

)
〈~k|P+|~k〉 ≥ 0 (5.101)

which has to hold for all M and all graph state basis vectors |~k〉 [cf. Eq. (5.69)]. Here,
m(~k) denotes the number of ones in the binary vector ~k that are on qubits contained in
B. These correspond to −1s in a sign vector ~s (and zeros in ~k correspond to +1s in ~s).
In formulas, m(~k) =

(
b−∑i∈B(−1)ki

)
/2.

As before [cf. Eq. (5.53)], we transform graph G into the graph G′ by deleting all
edges that connect qubits in the same partition. As in the proof of Lemma 34, we now
distinguish two cases.

1. 〈~k|P ′
+|~k〉 = 0
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In this case, Eq. (5.101) can be rewritten as

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 1

2
. (5.102)

This equation holds, as we have already argued after Eq. (5.78), since there must
at least be two neighboring qubits in opposite partitions.

2. 〈~k|P ′
+|~k〉 6= 0 ⇔ 〈~k|P ′

+|~k〉 = 1

Here, we need to prove that

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 1

2m(~k)
, (5.103)

where m(~k) is the number of ones in ~k on qubits in B. If there is a qubit i ∈ B
with ki = 1 with only neighbors that are in the same partition as qubit i, then
Lemma 41 applies and the left-hand side of Eq. (5.103) vanishes.

In the case in which no qubit i ∈ B with ki = 1 has only neighbors in the same
partition, Lemmata 42 and 44 imply that

〈~k|
(
|G′〉〈G′|

)TM |~k〉 ≤ 1

2b
, (5.104)

where b = |B|. Since m(~k) ≤ b, Eq. (5.103) holds.

Extended construction of fully PPT witnesses (Lemma 38)

Proof. Here, we prove that the operator W of Eq. (5.22) is a fully PPT witness. To this
end, we write the given fully PPT witnesses Wi as

Wi =
1

2
1− |G〉〈G| − P

(i)
+ , (5.105)

with the definition

P
(i)
+ =

∑

~s

(
1

2
− 1

2m(~s)

) ∏

j∈Bi

γ
sj

j . (5.106)

Here, m(~s) is the number of elements sj = −1 in ~s, i.e., m(~s) =
(
|Bi| −

∑|Bi|
j=1 sj

)
/2.

As we did before, we now introduce the shorthand notation
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max
i
P

(i)
+ =

∑

~k

|~k〉〈~k| max
i=1,...,m

〈~k|P (i)
+ |~k〉 , (5.107)

and can thus write the operator of Eq. (5.22) as

W =
1

2
1− |G〉〈G| − max

i
P

(i)
+ . (5.108)

Now, we proceed similarly to the proof of Lemma 36 (Sec. 5.6), but, since fully PPT
witnesses have PM = 0, we do not need to construct such operators here. Therefore, the
proof in this section is much shorter.

Again, we define

Ri = max
j
P

(j)
+ − P

(i)
+ , (5.109)

which is invariant under any partial transposition due to Lemma 45. For a given |~k〉, let

i0 be the value of i that maximizes 〈~k|P (i)
+ |~k〉. Then, we have

〈~k|W TM |~k〉 = 〈~k| (Wi0 −Ri0)
TM |~k〉

= 〈~k|W TM
i0

|~k〉 − 〈~k|Ri0 |~k〉
≥ 0 . (5.110)

In the first line, we plugged in the definitions in Eqs. (5.105), (5.108) and (5.109). In
the next step, we used that Ri is invariant under partial transposition. Finally, for the
positivity, we used that the operators Wi are fully PPT witnesses and that

〈~k|Ri0 |~k〉 = 〈~k|max
j
P

(j)
+ |~k〉 − 〈~k|P (i0)

+ |~k〉

= 〈~k|P (i0)
+ |~k〉 − 〈~k|P (i0)

+ |~k〉
= 0 . (5.111)

Thus, the operator W of Eq. (5.22) is a fully PPT witness.

Fully PPT witness for the 2D cluster state (Lemma 39)

Proof. In order to show that the operator of Eq. (5.32) is a fully PPT witness, we
provide two lemmata first. The first one specifies some conditions, under which the
overlap of the partially transposed 2D cluster state with another basis vector vanishes
for certain bipartitions. The second lemma provides an upper bound for the largest
Schmidt coefficient of the 2D cluster state for bipartitions in which no partition contains
less than two qubits. Note that both lemmata hold for 2D cluster states of n×n qubits
with n > 2 and it is therefore straightforward to see that the proof presented here also
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holds for more than 16 qubits.

Lemma 46. Given a 2D cluster |Cln×n〉 of n2 qubits. Consider an arbitrary qubit q of
these. Let |~a〉 be a state of the corresponding graph state basis. If there is a qubit i 6= q
with ai = 1 and there is a qubit j ∈ N (q) with aj = 0, then

〈~a| (|Cln×n〉〈Cln×n|)Tq |~a〉 = 0 . (5.112)

Proof. First, note that |Cln×n〉 can be written as |0 . . . 0〉 in its graph basis. Thus,
according to Lemma 41, Eq. (5.112) holds if i /∈ N (q), independent of the condition on
qubit j.
Thus, it remains to show Eq. (5.112) for the case i ∈ N (q). Due to Eq. (2.69), we can
write Eq. (5.112) as

〈~a| (|0 . . . 0〉〈0 . . . 0|)Tq |~a〉

= Tr





[
∏

l

1

2
(1 + gl)

]Tq ∏

k

1

2
[1 + (−1)akgk]



 . (5.113)

To simplify this expression, we note that

∏

k

1

2
[1 + (−1)akgk] =

∑

~x

(−1)~a~x
∏

k

gxk
k , (5.114)

where the sum runs over all binary vectors ~x of length n2.

Moreover, we define a boolean function f that characterizes the action of the partial
transposition on products of generators in the following way:

f : {0, 1}n2 → {0, 1} (5.115)

~x 7→ f(~x) =





0, if

(
n∏
i=1

gxi
i

)Tq

=
n∏
i=1

gxi
i

1, if

(
n∏
i=1

gxi
i

)Tq

= −
n∏
i=1

gxi
i

.

Note that f depends on q. With these definitions, we can write

(
∏

l

gyl
l

)Tq

= (−1)f(~y)
∏

l

gyl
l . (5.116)

Applying Eqs. (5.114) and (5.116) to simplify Eq. (5.113) results in
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〈~a| (|0 . . . 0〉〈0 . . . 0|)Tq |~a〉

= 4−n
2
Tr






∑

~y

(−1)f(~y)

(
∏

k

gyk
k

)

[
∑

~x

(−1)~a~x
∏

l

gxl
l

]


= 2−n
2

∑

~x∈{0,1}n2

(−1)~a~x+f(~x) . (5.117)

In the last step, we have used Tr(
∏
~k
gyk
∏
~l
gxl) = 2nδ~x,~y vanishes if ~x 6= ~y. Since

both generators gi and gj have Z operator on qubit q, their product gigj acts trivially
on qubit q. Therefore,

f(x1, . . . , xi, . . . , xj , . . . , xn2)

= f(x1, . . . , xi ⊕ 1, . . . , xj ⊕ 1, . . . , xn2) . (5.118)

Furthermore, since ai = 1, aj = 0, a term in the sum of Eq. (5.117) with xi = 1, xj = 1
will have the opposite as the same term with xi and xj flipped. Also, flipping xi = 1,
xj = 0 to xi = 0, xj = 1 changes the sign of the corresponding term. Thus, the sum in
Eq. (5.117) vanishes.

Lemma 47. Given a 2D cluster state |Cln×n〉 with periodic boundary conditions, n > 2
and a bipartition M |M . Let λi be the Schmidt coefficients of |Cln×n〉 with respect to this
bipartition. If |M | ≥ 2 and |M | ≥ 2, then

max
i
λ2
i ≤

1

4
. (5.119)

Proof. To prove this claim, we provide an LOCC protocol for every possible case which
results in two disconnected Bell pairs. Since LOCC does not decrease the largest Schmidt
coefficient and a single Bell pair has a Schmidt coefficient of 1/

√
2, the upper bound of

Eq. (5.119) follows from it.
Due to the assumptions, there are at least two qubits i, k ∈M which each must have

a neighbor in M , say j ∈ N (i), l ∈ N (k) and j 6= l. Let us now describe how one
can create a Bell pair between i and j and one between k and l, both of which are
disconnected from the rest of the graph.

If i and k can be chosen in such a way that the qubits i, j, k, l are not connected with
each other except for the two edges between i and j, k and l, measuring out all qubits
besides i, j, k and l results in the desired two Bell pairs.

Now, consider the case that the qubits i, j, k, l have more connections amongst each
other than the two connections that will be used for the Bell pairs. Then, we first delete
all edges that connect qubits of the same partition, which is an LU operation. Then,
there are four possible situations as shown in Fig. 5.6. Note that edges that connect the
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four qubits with other qubits are drawn dashed and in gray, since they might have been
deleted by the last operation (and are not needed for the protocol anyway). Moreover,
situations a) and b) are equivalent to a number of other ones that we did not explicitly
draw, in which all the qubits i, j, k, l form a one-dimensional chain [and not a square
as in c) and d)]. Note that, if i and k are disconnected in d), j and l must also be
disconnected, as i and k being in the same partition implies that also j and l are in the
same one.

In cases a) and d), simply measuring out all qubits besides i, j, k, l results in the two
Bell pairs.

For cases b) and c), the procedure is slightly more complicated. In case b), we create
an edge between the qubits j and l, which are in the same partition, via an LU oper-
ation. Then, local complementation on l deletes the unwanted edge between j and k.
Afterwards, we can delete the edge between j and l again. Note that the local comple-
mentation possibly also creates (or deletes) other edges between neighbors of l. Note
that, however, it does not delete the important edges between i and j, k and l. Moreover,
our last step is to measure all qubits besides i, j, k, l which also deletes any such edges
that might have been created.

Finally, consider case c). Here, it is not enough to simply consider the qubits i, j, k, l,
since the four-qubit ring cluster that they build (disregarding any connections to other
qubits) is LU-equivalent with a single Bell pair. However, a closer look at situation c)
shows that it actually implies that there are four qubits as in b) or in d).

Assume that there is any qubit that neighbors any of the qubits i, j, k or l — say k —
and is in the opposite partition as k. Note that this qubit could not be, in the case of a
3× 3-cluster, a neighbor of j or l, since these qubits also lie in the opposite partition as
k (and edges between qubits that are in the same partition have been deleted). Thus,
we have a situation as in b).

Assume now that there is no neighbor of any of the qubits i, j, k, l that is in the
opposite partition as the qubit it neighbors. In other words, each of the four qubits has
only neighbors in the same partition. Then, there is another pair of qubits which is in
opposite partitions, namely a neighbor of k and one of l. This means that there we have
a situation as in d).

Thus, we always obtain two Bell pairs and the proof is finished.

Now, we return to the proof of Lemma 39 which is easy to prove having the last two
lemmata in mind. We consider a 2D cluster state of n× n qubits with n ≥ 3. As in the
proofs before, we write the witness in the form

Wn×n =
1

2
1− |Cln×n〉〈Cln×n| −

1

4
P+ , (5.120)

where we defined P+ =
∑

~k
|~k〉〈~k|max(i,j)〈~k|D(i,j)|~k〉 with the operatorsD(i,j) of Eq. (5.31).

Every generator in P+ is neighbored by either two or no other generator. Therefore,
P+ does not have a Y on any qubit in M . Thus, P+ is invariant under any partial
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Figure 5.6: In a 2D cluster state and for any bipartition M |M , where there are at least
two qubits in each partition, one can always obtain two Bell pairs via LOCC
operations. Here, we illustrate all possible cases, in which the two Bell pairs
are connected to each other in the original 2D cluster state. Note that edges
between qubits in the same partition have been deleted. Also, edges that
lead to qubits which are not part of the Bell pairs are shown as dashed lines.

transposition. Since the witness of Eq. (5.120) is diagonal in the graph state basis, we
need to prove that

1

2
− 〈~k| (|Cln×n〉〈Cln×n|)TM |~k〉 − 1

4
〈~k|P+|~k〉 ≥ 0 (5.121)

holds for all partitions M and all graph basis vectors |~k〉.
In the case of a vector |~k〉 with 〈~k|P+|~k〉 = 0, we need to show, according to Lemma 42,

that the largest Schmidt coefficient of |Cln×n〉 with respect to M |M is smaller than (or
equal to) 1/

√
2. This is trivial, since every connected graph state can be distilled to at

least one Bell pair via LOCC operations.

In the case of a vector |~k〉 with 〈~k|P+|~k〉 = 1, we have to prove that

〈~k| (|Cln×n〉〈Cln×n|)TM |~k〉 ≤ 1

4
. (5.122)

If |M | ≥ 2 and |M | ≥ 2, we can apply Lemma 47 (and Lemma 42) to show this.

Thus, it remains to show Eq. (5.122) for the case that |M | = 1 or |M | = 1. Since
W TM ≥ 0 ⇔ W TM ≥ 0, we can assume w.l.o.g. that |M | = 1 and write M = {q}.
Moreover, 〈~k|P+|~k〉 = 1 together with the form of P+ [cf. Eq. (5.32)] implies that there

are two diagonals which we denote by D(x)
/ and D(y)

\ here (cf. Fig. 5.7), on which |~k〉 has
an odd number of ones. In formulas,
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Figure 5.7: The proof of the fully PPT witness for an n×n 2D cluster state considers a
one-particle partition M = {q} and distinguishes different cases as depicted
here. In red, we mark the diagonals D/ and D\ mentioned in the text. For

more details, see text.

∏

l∈D(x)
/

gl|~k〉 = − |~k〉, (5.123)

∏

l∈D(y)
\

gl|~k〉 = − |~k〉 . (5.124)

Note that Lemma 46 can be used to show that Eq. (5.122) holds if there exists another
qubit i 6= q with ki = 1 and a qubit j in the neighborhood of q with kj = 0.

Since it is impossible that all qubits i 6= q are zero as this would contradict Eqs. (5.123),

(5.124) and the fact that D(x)
/ and D(y)

\ have non qubit in common, the only other case
is that all qubits in the neighborhood of q equal one.

In this case, we only need to consider the five qubits in Ñ (q) = N (q)∪ q (marked by a
blue, dashed line in Fig. 5.7). Note that the following argumentation is independent from

the value of kq itself. Since D(x)
/ and D(y)

\ have no qubit in common, it is impossible to

choose q in such a way that both the intersection of Ñ (q) with D(x)
/ and the intersection

of Ñ (q) with D(y)
\ consist of an odd number of qubits. One of the two intersections always

has two or zero qubits. Without loss of generality, we assume that the intersection of

Ñ (q) with D(x)
/ has an even number of qubits. An example for this situation is given

in Fig. 5.7. Then, due to Eq. (5.123), there is a qubit in D(x)
/ which equals one and to

which therefore Lemma 46 can be applied.

This shows that Eq. (5.122) holds in all cases and finishes the proof.
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Values of the entanglement monotone for graph states (Lemma 40)

Proof. (Lemma 40) — We define the set of all appropriately normalized witnesses that
are decomposable with respect to bipartition M |M as

WM =
{
W
∣∣∃ P,Q such that

0 ≤ P,Q ≤ 1 andW = P +QTM
}
, (5.125)

such that the set of all similarly normalized, fully decomposable witnesses W of Eq. (4.5)
obeys W = ∩M WM . Since W ⊆ WM0 for any fixed bipartition M0|M0, we have

(̺) ≤ − min
W∈WM0

Tr(W̺) . (5.126)

According to Lemma 29, minW∈WM0
Tr(W̺) equals the negativity with respect to the

bipartition M0|M0. If all particles are qubits, we now choose any bipartition M0|M0 in
which M0 only contains one particle, e.g. the bipartition A|BCD . . . . Then,

N(̺) ≤ − min
W∈WM0

Tr(W̺)

≤ max
|ϕ〉

(
− min
W∈WM0

Tr(W |ϕ〉〈ϕ|)
)

=
1

2
. (5.127)

Here, we use that the expectation value is a linear function and must therefore attain
its maximum on a pure state |ϕ〉. Moreover, the last equality stems from the fact that
the negativity with respect to a bipartition A|BCD . . . , where A is a single qubit, can
maximally take on the value one half. This maximum is obtained for the Bell state
|ψ+〉 = (|00〉 + |11〉) /

√
2.

If not all particles are qubits, one chooses M0 to consist of a particle that has the
smallest dimension of all occurring particles. For example, if A and B are four-level
particles and C and D are qutrits, then M0 = C is a valid choice. In this case, the value
of one half in the last line of Eq. (5.127) must be replaced by (dmin − 1)/2, where dmin is
the dimension of the particle with lowest dimension. This maximum is obtained for the
state |ψ〉 =

∑d−1
i=0 |ii〉⊗n/√dmin. It is the maximal value for the negativity with respect

to the given bipartition as can be easily seen using the Schmidt decomposition and the
fact that |ψ〉〈ψ|TM0 has dmin(dmin − 1)/2 negative eigenvalues that all equal −1/dmin.

We now know that the entanglement measure is upper-bounded by one half for states
that consist only of qubits. Let us now show that, for graph states, the lower bound is
also one half. This is easy to see, since we only have to pick one witness WG ∈ W for
the given graph state |G〉〈G|. Such a witness is the projector witness
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G =
1

2
1− |G〉〈G| (5.128)

which is even a fully PPT witness. It remains to show that this witness also obeys

1 ≥W TM
G =

1

2
1− (|G〉〈G|)TM ≥ 0 . (5.129)

Here, positivity follows from the projector witness being a fully PPT witness. For the
inequality on the left, we need to show that

〈~k| (|G〉〈G|)TM |~k〉 ≥ −1

2
(5.130)

holds for all |~k〉, since the partial transpose of |G〉〈G| is again graph-diagonal.

In order to prove Eq. (5.130), we use the Schmidt decomposition |G〉 =
∑

i=1 λi|µi〉 ⊗
|νi〉 with respect to bipartition M |M with positive and real Schmidt coefficients λi.
Performing the partial transpose in the basis |µi〉 ⊗ |νj〉 allows to derive a lower bound

on 〈~k| (|G〉〈G|)TM |~k〉 in terms of the Schmidt coefficients in the following way:

〈~k| (|G〉〈G|)TM |~k〉 ≥ min
i6=j

(−λiλj)

≥ min
i

(−λi
√

1 − λ2
i )

≥ − 1

2
. (5.131)

In the second line, we used that, as an entangled state, |G〉 has at least two non-zero
Schmidt coefficients and that the squares of all coefficients must sum up to one. The
last line follows from the fact that 0 < λi < 1.

Consequently, Eq. (5.129) holds and WG lies in W. Therefore,

N(|G〉〈G|) ≥ −Tr(WG|G〉〈G|) =
1

2
. (5.132)

Therefore, when considering the entanglement measure of Eq. (4.4), the connected
graph states are the maximally entangled states. For them, the measure equals one
half.

5.7 Witnesses

Note that all witnesses are presented in their graph state basis. As before, we defined
γ±i = 1±gi

2 . Since all witnesses are diagonal in the graph basis, we use the shorter

notation |~k〉〈·| = |~k〉〈~k|. Moreover, for some states one can make use of their translational
symmetry. In these cases, T (~k) denotes all translations of the bit string ~k = k1 . . . kn.
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For example,

|k1k2T (k3k4k5k6)〉〈·| = |k1k2k3k4k5k6〉〈·| + |k1k2k6k3k4k5〉〈·|
+ |k1k2k5k6k3k4〉〈·| + |k1k2k4k5k6k3〉〈·| (5.133)

No. 1, Bell state

W =
1

2
− |G〉〈G|

No. 2, GHZ3

W =
1

2
− |G〉〈G|

No. 3, GHZ4

W =
1

2
− |G〉〈G|

No. 4, Cl4

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4

No. 5, GHZ5

W =
1

2
− |G〉〈G|

No. 6, Y5

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
4 γ

−
5

No. 7, Cl5

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
5 − 1

4
γ+
1 γ

−
2 γ

−
5 − 1

4
γ−1 γ

−
4 γ

+
5

No. 8, R5

W = 3
[
− |G〉〈G| + |T (00001)〉〈·| + |T (00101)〉〈·| + |T (00111)〉〈·|

]

− |11111〉〈·| + |T (11110)〉〈·| + |T (11010)〉〈·| + |T (11000)〉〈·|

No. 9, GHZ6

W =
1

2
− |G〉〈G|

No. 10

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
2 γ

−
4 − 1

2
γ+
1 γ

+
2 γ

−
3 γ

−
4
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No. 11, H6

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
2 γ

−
4 − 1

2
γ−2 γ

−
3 γ

+
4 − 1

2
γ−1 γ

+
2 γ

−
3 γ

+
4

No. 12, Y6

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
5 − 1

2
γ−1 γ

−
4 γ

+
5 − 1

2
γ+
1 γ

−
4 γ

−
6 − 1

2
γ+
1 γ

+
4 γ

−
5 γ

−
6

No. 13, E6

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
5 − 1

2
γ−1 γ

+
5 γ

−
6 − 1

2
γ+
1 γ

−
5 γ

−
6

− 1

4
γ+
1 γ

−
2 γ

−
5 γ

+
6 − 1

4
γ−1 γ

−
4 γ

+
5 γ

+
6

No. 14, Cl6

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
4 − 1

2
γ+
1 γ

−
3 γ

−
6 − 1

2
γ−1 γ

+
4 γ

−
6

− 1

4
γ+
1 γ

−
2 γ

+
3 γ

−
6 − 1

4
γ−1 γ

+
4 γ

−
5 γ

+
6 − 1

4
|011110〉〈·|

No. 15

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
2 γ

+
3 γ

−
5 − 1

2
γ−1 γ

−
2 γ

−
3 γ

+
5

− 1

3

[
|00 T (0011)〉〈·| + |01 T (0011)〉〈·| + |10 T (0011)〉〈·| + |010001〉〈·| + |010010〉〈·|

+ |010101〉〈·| + |010111〉〈·| + |011000〉〈·| + |011011〉〈·| + |011101〉〈·| + |011111〉〈·|
+ |100010〉〈·| + |100100〉〈·| + |100101〉〈·| + |100111〉〈·| + |101000〉〈·| + |101101〉〈·|
+ |101110〉〈·| + |101111〉〈·| + |110000〉〈·| + |110001〉〈·| + |110100〉〈·| + |110101〉〈·|
+ |111010〉〈·| + |111011〉〈·| + |111110〉〈·| + |111111〉〈·|

]

No. 16

W =
1

2
− |G〉〈G| − 1

2
γ−1 γ

−
5 − 1

2
γ−1 γ

+
5 γ

−
6 − 1

2
γ+
1 γ

−
5 γ

−
6

− 1

4
γ+
1 γ

+
2 γ

−
4 γ

+
5 γ

−
6 − 1

4
γ+
1 γ

−
2 γ

+
4 γ

+
5 γ

−
6 − 1

4
γ+
1 γ

+
2 γ

−
3 γ

−
5 γ

+
6 − 1

4
γ+
1 γ

−
2 γ

+
3 γ

−
5 γ

+
6

− 1

4
γ−1 γ

+
3 γ

−
4 γ

+
5 γ

+
6 − 1

4
γ−1 γ

−
3 γ

+
4 γ

+
5 γ

+
6
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No. 17

W =
1

2
1− |G〉〈G| − 1

2

(
γ+
2 γ

−
5 + γ−2 γ

+
5

)
γ−6

− 1

2

[
|001101〉〈·| + |010110〉〈·| + |011010〉〈·| + |011110〉〈·| + |011111〉〈·|

+ |101101〉〈·| + |110110〉〈·| + |111010〉〈·| + |111110〉〈·| + |111111〉〈·|
]

− a
(
γ+
2 γ

+
5 + γ−2 γ

−
5

) (
γ+
3 γ

−
4 + γ−3 γ

+
4

)
γ−6

− b
[
|000110〉〈·| + |011000〉〈·| + |100010〉〈·| + |101010〉〈·| + |101110〉〈·|

+ |110000〉〈·| + |110100〉〈·| + |111100〉〈·|
]
,

a ≈ 0.336, b ≈ 0.163

No. 18, R6

W =
1

2
1− |G〉〈G|

− 1

3

[
|T (000011)〉〈·| + |T (001011)〉〈·| + |T (001101)〉〈·| + |T (001111)〉〈·|

]

− a|111111〉〈·| − b
[
|T (011111)〉〈·| + |T (010111)〉〈·|

]

− c
[
|T (001001)〉〈·| + |T (011011)〉〈·| + |T (010101)〉〈·|

]
,

a ≈ 0.455, b ≈ 0.363, c ≈ 0.272

Note that expressions like T (001001) only sum over distinct translations,
i.e. |T (011011)〉〈·| = |011011〉〈·| + |101101〉〈·| + |110110〉〈·|.

No. 19

W =
1

2
1− |G〉〈G|

− 1

3

[
+ |T (111110)〉〈·| + |T (000011)〉〈·| + |T (000101)〉〈·| + |T (000111)〉〈·|

+ |T (001001)〉〈·| + |T (011011)〉〈·|
+ |001101〉〈·| + |010011〉〈·| + |010110〉〈·| + |011010〉〈·|
+ |011101〉〈·| + |011110〉〈·| + |100101〉〈·| + |101001〉〈·|
+ |101011〉〈·| + |101100〉〈·| + |101110〉〈·| + |110010〉〈·|
+ |110011〉〈·| + |110101〉〈·| + |111111〉〈·|

]

Again, expressions like T (001001) only sum over distinct translations.
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6 Necessary and sufficient criteria for
graph state entanglement

In this chapter, we characterize genuine multipartite entanglement for certain families
of graph-diagonal states by providing necessary and sufficient criteria for its presence in
these states and, by doing so, presenting cases in which the criterion introduced in Sec. 4
is necessary and sufficient for entanglement. We prove the presence of entanglement
by applying some of the methods introduced in Sec. 5 and show the biseparability by
constructing explicit biseparable decompositions. This chapter is based on Ref. [111].

The graph-diagonal states that we consider are illustrated in Figure 6.1. Interest in
graph-diagonal states is physically motivated: they occur naturally upon the decoher-
ence of pure graph states [112–114], and, more importantly, any state can be brought
into graph-diagonal form by local operations (cf. Sec. 2.5.2 and Ref. [76]). As local
operations do not affect entanglement properties, this means that if the corresponding
graph-diagonal state is entangled the original state was entangled. Thus, entanglement
criteria for graph-diagonal states produce entanglement criteria for general states. Note
that, for GHZ states, which are particular instances of graph states, the characterization
of genuine multiparticle entanglement has already been solved [16].

This chapter is organized as follows: In Sec. 6.1 we consider the four-qubit cluster state
and states diagonal in the corresponding basis. We provide a necessary and sufficient
criterion for genuine multipartite entanglement, and, for states without multipartite en-
tanglement, we provide an explicit decomposition into biseparable states. In Sec. 6.2
we discuss separability conditions for all five-qubit graph states mixed with white noise.
Again, we provide necessary and sufficient criteria for these families and explicit decom-
positions when the states are separable.

Then, in Sec. 6.3, we relate our results to the approach of Sec. 4 to characterize
multiparticle entanglement via PPT mixtures (cf. Definition 26). Our result for the
four-qubit cluster state implies that this criterion is necessary and sufficient for the four-
qubit case. The question arises whether this is true in general. We argue that this may
not be the case. Nevertheless, in Sec. 6.4 we discuss in detail the five-qubit Y-shaped
graph state for which we can prove that the method of PPT mixtures does deliver a
complete solution. In Sec. 6.5 we discuss generalizations of the Y-shaped graph to an
arbitrary number of qubits. Our conclusions and a discussion of possible extensions of
our work is presented in Sec. 6.6.

Before starting, we refer the reader unfamiliar with the notion of graph states to
Sec. 2.5, where the necessary definitions are introduced. Note that all binary vectors
like |0011〉 in the following are given in the graph state basis of the corresponding state
under consideration. Also, for the sake of brevity, we write |ψ〉〈·| instead of |ψ〉〈ψ|.
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6 Necessary and sufficient criteria for graph state entanglement

Figure 6.1: The graphs of the states discussed in this chapter. a) and c): star graphs
corresponding to GHZ states. For GHZ-diagonal states with an arbitrary
number of qubits, the problem of detecting multiparticle entanglement was
already solved in Ref. [16]. b) The graph of the four-qubit cluster state.
Theorem 50 gives a necessary and sufficient criterion for multipartite entan-
glement in states which are diagonal in the corresponding graph-state basis.
d), e), f): five-qubit graph states |Y5〉, |Cl5〉, |R5〉. In Sec. 6.2, we determine
the border of separability when the graph diagonal generalizations of these
states are mixed with white noise. For graph-diagonal states corresponding
to the Y5-graph, we also obtain a complete characterization of multiparti-
cle entanglement (Theorem 57), which can be generalized to an arbitrary
number of qubits (Theorem 59).

6.1 Cluster-diagonal states of four qubits

In this section, we will derive a necessary and sufficient criterion for the presence of gen-
uine multipartite entanglement in cluster-diagonal states of four qubits. Before proving
our main result, we need two lemmas. The first one characterizes a set of entangle-
ment witnesses for genuine multipartite entanglement, while the second one identifies a
large class of biseparable quantum states that will simplify the search for biseparable
decompositions.

Lemma 48. The observables

W1 =
1

2
− |Cl4〉〈Cl4| −

1

2

1− g1
2

1− g4
2

=
1

2
− |0000〉〈·| − 1

2

∑

ij

|1ij1〉〈·|, (6.1)

W2 =
1

2
− |0000〉〈·| − |1αβ1〉〈·|, (6.2)

are entanglement witnesses for genuine multipartite entanglement. That is, Tr(̺Wk) < 0
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6.1 Cluster-diagonal states of four qubits

implies the presence of genuine multipartite entanglement in ̺. This holds for arbitrary
α, β ∈ {0, 1} in W2.

Proof. It was proven in Lemma 34 that W1 is a witness [cf. Eq. (5.3)]. The fact that W2

is a witness can be demonstrated in a similar way. It suffices to show that (W2)
TM ≥ 0 for

all possible bipartitions M. The operators (W2)
TM are diagonal in the graph state basis.

Thus, it is enough to show that 〈ijkl|(W2)
TM |ijkl〉 ≥ 0 holds for all elements of the graph

state basis. This, however, is a direct consequence of Lemma 42 and Lemma 43.

Lemma 49. The quantum states

σ =
1

2
(|ijkl〉〈·| + |αβγδ〉〈·|) (6.3)

are biseparable, unless i 6= α and l 6= δ both hold at the same time.

Proof. First, we note that if i 6= α and l 6= δ the state is definitely not biseparable, since
it is detected by a witness of the type W2 (and also by W1). Now, we show explicitly
that all other states are biseparable. We can assume without loss of generality that
|ijkl〉 = |0000〉, since any |ijkl〉 can be transformed into |0000〉 by local transformations
according to Eq. (2.70) and we neglect the normalization of σ. The first example is
presented in great detail so as to demonstrate our methodology.

a) Consider the state σ = |0000〉〈·| + |1000〉〈·|. There are two ways to see that σ is
biseparable with respect to the A|BCD partition and we will discuss both of them, in
order to illustrate the different methods.

(a1) The first method starts with the fact that for two qubits any mixture of two Bell
states with equal weight (e.g., η = |Φ+〉〈Φ+| + |Φ−〉〈Φ−|) is separable [115]. The graph
corresponding to a Bell state is the connected two-qubit graph. The four-qubit state σ
can be considered as a separable mixture of the two Bell states |00〉〈·| + |10〉〈·| on the
first two qubits AB, where the qubits CD have been subsequently added to B via some
local interaction. Clearly, the state σ remains biseparable between A and the rest of the
qubits.

(a2) The second method uses Eq. (2.69) to write

σ ∝ (1 + g2)(1 + g3)(1 + g4)

∝ (1 + ZXZ1)(1 + 1ZXZ)(1 + 11ZX)

∝ (1 + Z111)︸ ︷︷ ︸
∝|0〉〈0|

(1 + gred
2 )(1 + g3)(1 + g4)︸ ︷︷ ︸

stabilizer state on qubits 2,3,4

+

+ (1 − Z111)︸ ︷︷ ︸
∝|1〉〈1|

(1− gred
2 )(1 + g3)(1 + g4)︸ ︷︷ ︸

stabilizer state on qubits 2,3,4

, (6.4)

where gred
2 = 1XZ1 denotes the restriction of the stabilizer g2 to the qubits 2,3,4. In

this form the state is clearly biseparable, since it is written as a sum of two terms, which
are both biseparable with respect to the A|BCD-partition. This rewriting is possible,
since in the expansion σ ∝ (1+g2)(1+g3)(1+g4) only the identity and one of the Pauli
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6 Necessary and sufficient criteria for graph state entanglement

matrices (here: Z) occur on the first qubit as seen in Eq. (6.4). This statement holds
for any Pauli operator. With these two methods at hand we now prove that the other
states σ are also biseparable.

b) We consider σ = |0000〉〈·|+|0100〉〈·|. Using (a1) this is clearly separable with respect
to the A|BCD partition, but it is also separable with respect to the B|ACD-partition,
as can be seen using the idea of (a2).

c) The state σ = |0000〉〈·| + |1100〉〈·| is biseparable with respect to the A|BCD-
partition according to (a1).

d) The state σ = |0000〉〈·| + |1010〉〈·| ∝ (1+ g1g3)(1+ g2)(1+ g4) is biseparable with
respect to the B|ACD partition, as can be seen using (a2).

e) The state σ = |0000〉〈·|+ |0110〉〈·| can be shown to be biseparable using the method
of (a1) with qubits B and C as the Bell pair. Consequently, it is separable with respect
to the AB|CD-partition.

f) Finally, we consider σ = |0000〉〈·| + |1110〉〈·| ∝ (1 + g1g2 + g2g3 + g1g3)(1 + g4).
First, using the method of (a2) one can directly calculate that this state is separable with
respect to the B|ACD-partition. However, one can also apply the method of (a1): On
the first three qubits, one can consider the state σ = |000〉〈·|+ |111〉〈·|. This corresponds
to a mixture of two three-qubit GHZ states, and it is known that such mixtures are
always biseparable [16]. For σ only one qubit is added similar to (a1), so σ has to be
biseparable, too. Up to symmetries these are all the relevant cases.

We can now formulate and prove our main result. We denote the fidelities of the graph
basis states as F0000 = 〈0000|̺|0000〉 etc. We can then state:

Theorem 50. A cluster-diagonal four-qubit state ̺ is biseparable, if and only if for all
indices α, β, γ, δ

2Fαβγδ ≤
∑

i,j

Fαijδ +
∑

i,j

Fᾱijδ +
∑

i,j

Fαijδ̄ (6.5)

holds and for all indices α, β, γ, δ, µ, ν the inequalities

2Fαβγδ + 2Fᾱµνδ̄ ≤
∑

i,j

Fαijδ +
∑

i,j

Fᾱijδ +
∑

i,j

Fαijδ̄ +
∑

i,j

Fᾱijδ̄ (6.6)

are satisfied. Note that ᾱ = 0 for α = 1 (and vice versa).

Before proving this result, let us interpret the conditions in Eqs. (6.5) and (6.6). In
light of Lemma 49, Eq. (6.5) compares the weight of the state |αβγδ〉〈·| with the sum
of the weights of all other states, which can be used to build a biseparable pair with
|αβγδ〉〈·|. If the overall state is biseparable, the first weight has to be smaller than
the other weights, otherwise a decomposition with the methods of Lemma 49 cannot
be found. The condition Eq. (6.6) then compares the weights of two states, |αβγδ〉〈·|
and |ᾱβγδ̄〉〈·| (which, according to Lemma 49, do not constitute a separable pair) with
all other weights. Using the normalization of the state, Eq. (6.6) can be rephrased as
Fαβγδ + Fᾱµνδ̄ ≤ 1/2, which has a natural meaning: if the weight of one “inseparable”
pair exceeds all other weights, then the state cannot be separable.
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6.1 Cluster-diagonal states of four qubits

Proof. We will use a shorthand notation for the sums such that Eq. (6.5), 2F0000 ≤∑
ij F0ij0 +

∑
ij F1ij0 +

∑
ij F0ij1, is abbreviated as 2F0000 ≤∑00 +

∑
01 +

∑
10 .

We first have to show that if one of the conditions in Eqs. (6.5), (6.6) is violated, then
̺ is genuinely multipartite entangled. This follows directly from Lemma 48 since the
conditions (6.5), (6.6) are nothing but a rewriting of Tr(Wk̺) ≥ 0.

It remains to show that a state is biseparable, if Eqs. (6.5), (6.6) hold. Clearly, this is
the difficult part. Our proof is split into four cases:

Case 1 — Let us first assume that the state ̺ acts only on the four-dimensional
space spanned by the vectors |1ij1〉 and that the relevant four fidelities fulfill F1αβ1 ≤
F1αβ̄1 + F1ᾱβ1 + F1ᾱβ̄1 for all α, β. Then, the state ̺ is separable with respect to the
AB|CD partition. The reason is the following: a mixture of two-qubit Bell states,
σ = λ00|Φ+〉〈Φ+| + λ01|Φ−〉〈Φ−| + λ10|Ψ+〉〈Ψ+| + λ11|Ψ−〉〈Ψ−|, is easily seen to be
separable iff λαβ ≤ λαβ̄ + λᾱβ + λᾱβ̄ for all α, β [115]. The four-qubit state ̺ is nothing
but a mixture of such Bell states between B and C, with qubits A and D added [see
also case (a1) in the proof of Lemma 49].

Case 2 — Now we assume that equality holds for one of the conditions of Eq. (6.5).
Without loss of generality, we assume that 2F0000 =

∑
00 +

∑
01 +

∑
10 while the other

conditions in Eqs. (6.5), (6.6) are fulfilled, but not necessarily with equality.

In this case, Eq. (6.6) becomes F1αβ1 ≤ F1αβ̄1 + F1ᾱβ1 + F1ᾱβ̄1, the same relation

discussed in Case 1. If we consider now the projection ̺R of the original state ̺ on the
four-dimensional space spanned by the vectors |1ij1〉, then it is clear that this state ̺R

is separable according to Case 1. It remains to show that the orthogonal part ̺− ̺R is
separable too. For this part, we have F0000 = F0110 +F0010+F0100 +

∑
01 +

∑
10, so it can

be directly decomposed with the help of Lemma 49, by using all possible combinations
of the type |0000〉〈·| + |αβγδ〉〈·|. This finishes the proof of Case 2.

Case 3 — In this case, we assume that equality holds for one of the conditions
of Eq. (6.6): 2F0000 + 2F1111 =

∑
00 +

∑
01 +

∑
10 +

∑
11 . The other inequalities in

Eqs. (6.5), (6.6) are satisfied, but not necessarily with equality. We rewrite the equal-
ity as (2F0000 −∑00) + (2F1111 −∑11) =

∑
01 +

∑
10 . Using this together with the

inequalities given by Eq. (6.5) we can also deduce the conditions 2F1111 ≥ ∑
11 and

2F0000 ≥∑00.

Now, we can decompose ̺ as follows: Consider the space spanned by |1ij1〉, and a
state σ− with a fidelity F ′

1111 that equals F ′
1111 =

∑
11 −F1111 = F1101 +F1011+F1001 and

the other fidelities obey F ′
1ij1 = F1ij1. This state is separable according to Case 1, since

F ′
1111 = F ′

1101 +F ′
1011 +F ′

1001. The restriction ̺R of ̺ onto the four-dimensional subspace
is now given by ̺R = σ− + (F1111 − F ′

1111)|1111〉〈·| = σ− + (2F1111 −
∑

11)|1111〉〈·|. We
can make a similar construction on the space spanned by |0ij0〉 with a separable state
σ+. A projector onto |0000〉 with weight (2F0000 −

∑
00) will remain.

Therefore, we can decompose ̺ into the two separable states σ− and σ+ on the four-
dimensional spaces and a remaining state η. The state η has only two contributions on
the two four-dimensional spaces, which have the fidelities F η0000 = 2F0000 −∑00 and
F η1111 = 2F1111 −∑11 . From our assumption, it follows that η fulfills F η0000 + F η1111 =∑

01 +
∑

10. This remaining state η can then be decomposed using states of the form
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6 Necessary and sufficient criteria for graph state entanglement

σ = |1111〉〈·| + |1kl0〉〈·| and σ = |1111〉〈·| + |0kl1〉〈·| etc.

Case 4 — Let us finally discuss the case where equality holds for none of the conditions
of Eqs. (6.5) and (6.6). We consider the state

̺new = ̺− εσ, (6.7)

where σ is one of the separable states from Lemma 49 . Since ̺ = ̺new + εσ, the state
̺ is separable, if ̺new is separable and positive.

The idea is to choose possible biseparable states σ and subtract them step by step such
that ̺new remains positive. Note that during these subtractions, the inequalities (6.5),
(6.6) become tighter. But one does not have to worry that they become violated: If they
become violated, at some point equality must have held in one of the two Eqs. (6.5) and
(6.6) first, while the other conditions still hold. This means that at this point ̺new (and
hence ̺) is separable, according to Cases 2 and 3.

What can be achieved with the iterative subtractions? First, by subtracting the
biseparable states σ = |0ij0〉〈·| + |0kl0〉〈·| one can set three of the four fidelities F0αβ0

to zero. Similarly, in each of the sets {F0αβ1}, {F1αβ0} and {F1αβ1} three fidelities can
be made to vanish, such that overall only four Fijkl are nonzero. The structure of the
fidelities is now such that all the sums in Eqs. (6.5), (6.6) contain only a single term.
Then, however, Eq. (6.6) must either be violated for some set of indices or equality must
hold.

Using this theorem, one finds that cluster states mixed with white noise, ̺(p) =
p|Cl4〉〈Cl4|+ (1− p)1/16, are entangled if and only if p > 5/13. This confirms a numer-
ically established threshold from Table 4.1 in Sec. 4.4.

Furthermore, the theorem demonstrates that for cluster-diagonal states there are effec-
tively only two entanglement witnesses, namely the ones from Lemma 48. It is interesting
to compare this with the results of Ref. [16], where a necessary and sufficient criterion
for GHZ-diagonal states was found. This criterion can be interpreted in the sense that
for GHZ-diagonal states (of an arbitrary number of qubits) only one entanglement wit-
ness is relevant, namely W = 1/2 − |GHZN 〉〈GHZN |. For cluster states, the witness
W = 1/2− |Cl4〉〈Cl4| is not optimal, since both of the witnesses in Lemma 48 are finer.
One can expect that for more complicated graph states of more qubits, a significantly
higher number of witnesses is relevant, hence a complete classification becomes difficult.

6.2 Five-qubit graph states

In this section, we derive optimal criteria for all five-qubit graph states mixed with white
noise. Doing this demonstrates that the witnesses obtained with the PPT approach of
Sections 4 and 5 have the highest white-noise tolerance possible and are in this sense
optimal. In the next section, however, we will argue that the success of the PPT approach
in finding optimal witnesses might be specific to these states. Nevertheless, we present
a full solution of the cluster state Y5 in Theorem 57 of Sec. 6.4.
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6.2.1 The state Y5

For the five-qubit Y5 state (cf. Fig. 6.1) mixed with white noise we find:

Lemma 51. The state

̺(p) = p|Y5〉〈Y5| + (1 − p)
1

32
(6.8)

is genuinely multipartite entangled if and only if p > 9/25 = 0.36.

Proof. First, for the case that p > 9/25 the state ̺(p) is detected by the witness of
Eq. (5.11) constructed according to Lemma 36,

WY 5 =
1

2
− |Y5〉〈Y5| −

1

16

[
(1− g1)(1− g4)(1 + g5)

+ (1− g1)(1 + g4)(1− g5) + (1 − g1)(1 − g4)(1 − g5)
]

(6.9)

and, hence, genuine multipartite entangled.
In the other direction, we first have to identify the separable states as we did in

Lemma 49. In fact, for many states this lemma can directly be generalized. For instance,
the state σ = |00000〉〈·| + |ijk00〉〈·| is biseparable, since for the four-qubit cluster state
σ′ = |0000〉〈·| + |ijk0〉〈·| is separable, and the fifth qubit is added as in case (a1) in the
proof of Lemma 49 . In fact, the only combinations which are not separable are of the
form χ1 = |00000〉〈·| + |1jk10〉〈·| and χ2 = |00000〉〈·| + |1jkl1〉〈·|. Note that the state
σ = |00000〉〈·| + |0jk11〉〈·| is biseparable, because it can be considered as a separable
four-qubit GHZ state on BCDE where one qubit is added [see case f) in the proof of
Lemma 49].

The state at the critical value of p is

̺ ∝ 19|00000〉〈·| +
∑

ijklm6=00000

|ijklm〉〈·|, (6.10)

and it remains to show that this state is separable. First, the state

̺′ = 19|00000〉〈·| +
( ∑

ijklm6=00000

|ijklm〉〈·|−

−
∑

ij

|1ij10〉〈·| −
∑

ij

|1ij01〉〈·| −
∑

ij

|1ij11〉〈·|
)

(6.11)

is biseparable, since in the sums in the brackets exactly 19 terms remain, and a de-
composition with σ from above is then straightforward. The remaining term ̺ − ̺′ =∑

ij |1ij10〉〈·| +
∑

ij |1ij01〉〈·| +
∑

ij |1ij11〉〈·| is also clearly separable, since the sum of
any two of the occurring states is separable.

6.2.2 The linear cluster state Cl5

For the five-qubit linear cluster state |Cl5〉 [cf. Fig. 6.1 e)] mixed with white noise, the
threshold is the same as for the Y5-state:
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Lemma 52. The state

̺(p) = p|Cl5〉〈Cl5| + (1 − p)
1

32
(6.12)

is genuinely multipartite entangled if and only if p > 9/25 = 0.36.

Proof. First, the witness constructed according to Lemma 36,

WCl5 =
1

2
− |Cl5〉〈Cl5| −

1

32

[
4(1− g1)(1− g5)+

+ (1 + g1)(1− g2)(1 − g5) + (1− g1)(1− g4)(1 + g5)
]
, (6.13)

detects the state for p > 9/25, proving one part of the claim.
For the other direction, we have to again identify the biseparable states. First, in a

generalization of Lemma 49, states of the form σ = |00000〉〈·|+ |ijklm〉〈·| are separable,
unless they are of the form χ1 = |00000〉〈·| + |1jk10〉〈·|, χ2 = |00000〉〈·| + |01jk1〉〈·|, or
χ3 = |00000〉〈·| + |1jkl1〉〈·|. There are 16 terms of this type which are not biseparable.

The state at p = 9/25 is given by ̺ = 19|00000〉〈·| +
∑

ijklm6=00000 |ijklm〉〈·| (up to a
normalization). Generalizing Lemma 49 we can subtract many pairs of terms such that
what remains is to show that

̺′ =4|00000〉〈·| +
∑

ij

|1ij10〉〈·|+

+
∑

ij

|01ij1〉〈·| +
∑

ijk

|1ijk1〉〈·| (6.14)

is separable. In order to do so, we consider the four states

η1 = |00000〉〈·| + |01001〉〈·| + |10010〉〈·| + |11011〉〈·| ,
η2 = |00000〉〈·| + |01011〉〈·| + |11010〉〈·| + |10001〉〈·| ,
η3 = |00000〉〈·| + |01101〉〈·| + |11110〉〈·| + |10011〉〈·| ,
η4 = |00000〉〈·| + |01111〉〈·| + |10110〉〈·| + |11001〉〈·| . (6.15)

The state η1 is separable for the following reason: it is known that the four-qubit Smolin
state σ = |Φ+〉〈Φ+|AB ⊗ |Φ+〉〈Φ+|A′B′ + |Φ−〉〈Φ−|AB ⊗ |Φ−〉〈Φ−|A′B′ + |Ψ+〉〈Ψ+|AB ⊗
|Ψ+〉〈Ψ+|A′B′ + |Ψ−〉〈Ψ−|AB ⊗ |Ψ−〉〈Ψ−|A′B′ is separable with respect to the AA′|BB′

partition [116]. The state η1 is simply a Smolin state between the qubits ABDE, where
the qubit C has been added [see case (a1) in Lemma 49]. Therefore, it is separable with
respect to the AE|BCD-partition. Similarly, η2 is a Smolin state up to local unitary
operations and therefore separable with respect to the same partition.

It can be directly verified that the state η3 is PPT with respect to the BD|ACE
partition. This implies separability via the following argument: For the considered
partition, η3 is acting on a 4 × 8 (effectively 4 × 4) space. The PPT entangled states in
this scenario have at least a rank of five [117]. Hence, η3, which is of rank four, must be
separable with respect to the partition1. Similarly, η4 is separable with respect to the

1Alternatively, one can see the separability of η3 as follows: Applying a local complementation on qubit
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BD|ACE-partition.

So we can write

̺′ =
4∑

k=1

ηk +
∑

ij

|1i1j1〉〈·| (6.16)

where the sum of the remaining four projectors is clearly separable according to Lemma 49.
This finishes the proof.

6.2.3 The ring cluster state R5

For the five-qubit ring cluster state mixed with white noise the separability problem can
be solved as follows:

Lemma 53. The state

̺(p) = p|R5〉〈R5| + (1 − p)
1

32
(6.17)

is genuinely multipartite entangled if and only if p > 7/19 ≈ 0.368.

Proof. Due to the symmetry of this state, it is convenient for our discussion to define
T (x) as the sum over all five translations of the term x, corresponding to a rotation
of the ring graph. For example, T (|00001〉〈·|) = |00001〉〈·| + |00010〉〈·| + |00100〉〈·| +
|01000〉〈·| + |10000〉〈·|.

A witness for the ring cluster state of five qubits can be found in Sec. 5.7 (state No. 8).
It is given by

WR5 = 3
[
T (|00001〉〈·|) + T (|00101〉〈·|) + T (|00111〉〈·|)

]

+ [T (|00011〉〈·|) + T (|01011〉〈·|) + T (|01111〉〈·|)]
− |11111〉〈·| − 3|00000〉〈·|. (6.18)

This witness detects the entanglement in the state for p > 7/19, proving one direction
of the claim.

For the other direction, we have to identify separable states. First, states like σ1 =
|00000〉〈·| + |00001〉〈·|, σ2 = |00000〉〈·| + |00101〉〈·| and σ3 = |00000〉〈·| + |00111〉〈·| are
clearly separable in analogy to Lemma 49: σ1 is separable in analogy to case (a2), σ2 and
σ3 can be considered as states on the qubits BCDE which are separable with respect
to the D|BCE partition [cases d) and f) in Lemma 49], where the qubit A is added by

2 and then on qubit 1 exchanges qubits 1 and 2. Similarly, a local complementation first on qubit
4 and then on qubit 5 exchanges qubits 4 and 5. The signs of the states |ijklm〉 in the graph-state
basis are not invariant under these transformations. Applying the rules of a local complementation
(cf. Sec. 2.5.3 and Ref. [64]), a complementation on qubit a flips the signs in the neighborhood N (a)
if and only if the sign on a is −1. With this rule, one sees that after a complementation on the qubits
2, then 1, then 4, then 5 the state is like a Smolin state between the qubits ABDE, and the qubit C
is connected to the qubits A and E, so it is separable with respect to the BD|ACE partition. The
same argument can be applied to η4.
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6 Necessary and sufficient criteria for graph state entanglement

a local transformation. Furthermore, the states

η1 = |00000〉〈·| + |01100〉〈·| + |11010〉〈·| + |10110〉〈·| ,
η2 = |00000〉〈·| + |11000〉〈·| + |00110〉〈·| + |11110〉〈·| ,
η3 = |00000〉〈·| + |11000〉〈·| + |10111〉〈·| + |01111〉〈·| ,
η4 = |00000〉〈·| + |11010〉〈·| + |01101〉〈·| + |10111〉〈·| (6.19)

are also separable. The state η1 is separable with respect to the BC|ADE-partition, as
can be seen from the separability properties of the Smolin state (similar to the state η1

defined for the linear cluster state Cl5 above). η2 is PPT with respect to the BC|ADE-
partition, and hence separable (due to a rank argument as in the proof of Lemma 52.).
The separability of η3 (and η4) can be inferred from the fact that they are PPT with
respect to the CE|ABD (and AC|BDE) partition.

The state at p = 7/19 is given by ̺ = 59|00000〉〈·| + 3
∑

ijklm6=00000 |ijklm〉〈·| which
can be written as

̺ = 3

3∑

k=1

T (σk) +
14

20

4∑

k=1

T (ηk) + ̺′ (6.20)

with

̺′ =
1

5
T (|00011〉〈·|) +

1

5
T (|01011〉〈·|) +

1

5
T (|01111〉〈·|) + 3|11111〉〈·| . (6.21)

This state, however, can directly be decomposed in terms of the σk with all signs inverted.

6.3 Connection with the theory of PPT mixtures

In order to place our results within a wider framework, we discuss possible connections
with the theory of PPT mixtures, introduced in Definition 26 of Sec. 4. With respect
to the results reported here, it is remarkable that all the witnesses used in this chapter
[Lemma 48 and Eqs. (6.9), (6.13) and (6.18)] were derived from the theory of PPT
mixtures. Any PPT mixture within the considered subclass (e.g., the cluster-diagonal
states) will therefore fulfill the conditions set by the witnesses [e.g., Eqs. (6.5), (6.6)]
and must be biseparable. In other words, we have shown that for the families of graph-
diagonal states considered here, biseparability is equivalent to being a PPT mixture.

This leads to the question, whether it is generally true that graph-diagonal states are
biseparable if and only if they are PPT mixtures. If this conjecture were true, it would
solve the problem of characterizing multiparticle entanglement for a huge class of states
with an arbitrary number of qubits. Moreover, for graph-diagonal states the problem
can be solved with linear programming, which is significantly simpler than semidefinite
programming (cf. Lemma 33) and which could deal with larger qubit systems. However,
there is evidence that the conjecture is not correct, as we explain in the following.

First, note that when looking for a decomposition of a graph-diagonal state into bisep-
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6.4 PPT mixtures and the five-qubit Y5 state

arable (or PPT) states, one can assume that the terms in the decomposition are also
graph-diagonal. If one finds a decomposition where this is not the case, one can always
apply the local operations described in Sec. 2.5.2 and Ref. [76], which turn a general state
into a graph-diagonal state without changing its fidelities with respect to the graph ba-
sis vectors. The graph-diagonal state is invariant under these operations, but terms in
the decomposition which are not diagonal become diagonal after application of these
operations. Since this operation is local, the state remains biseparable or PPT.

Therefore, if any graph-diagonal state which is PPT with respect to a given bipartition,
is also separable with respect to the same bipartition, the conjecture would be correct.
However, this is not always the case. Examples can be given from bound entangled states
known in the literature [118,119]. For instance, consider the four-qubit cluster-diagonal
state

˜̺ =
1

6
(|0011〉〈·| + |1001〉〈·| + |1110〉〈·| + |0101〉〈·| + |0111〉〈·| + |0110〉〈·|) . (6.22)

Although this state is PPT with respect to the AD|BC-bipartition, it is entangled with
respect to the same bipartition. This follows from Ref. [118], in which the four-qubit
state ˆ̺, a mixture of Bell states

ˆ̺ =
1

6
(|Φ+〉〈·|AB ⊗ |Ψ−〉〈·|A′B′ + |Ψ+〉〈·|AB ⊗ |Ψ+〉〈·|A′B′ + |Ψ−〉〈·|AB ⊗ |Φ−〉〈·|A′B′

+ |Φ−〉〈·|AB ⊗ |Ψ+〉〈·|A′B′ + |Φ−〉〈·|AB ⊗ |Ψ−〉〈·|A′B′ + |Φ−〉〈·|AB ⊗ |Φ−〉〈·|A′B′ , )
(6.23)

is shown to be PPT, but still entangled, with respect to the AA′|BB′-partition. Since the
Bell states can be interpreted as two-qubit graph states, this is a graph-diagonal state.
Adding a connection between the qubits B and B′ via a controlled phase gate leads to the
four-qubit cluster-diagonal state ˜̺ in Eq. (6.22) which is PPT for the AD|BC-partition,
but nevertheless entangled. Similar examples could be constructed for higher numbers
of qubits [119]. This demonstrates that for higher numbers of qubits there might be
graph-diagonal states which are PPT mixtures, but nevertheless genuinely multipartite
entangled.

6.4 PPT mixtures and the five-qubit Y5 state

In the previous section, we have argued that, in general, one cannot expect that the
criterion of PPT mixtures is necessary and sufficient for entanglement in graph-diagonal
states. In this section, however, we show that for graph-diagonal states associated to the
five-qubit Y5 graph, the criterion of PPT mixtures is, in fact, necessary and sufficient
for entanglement.

The basic idea of our proof is that for the Y5 state, bound entangled states such as
those given in Eqs. (6.22), (6.23) play no role in the decomposition. To start, note
that the state ˜̺ in Eq. (6.22), despite being entangled for AD|BC, is biseparable and a
decomposition can directly be written down with the help of Lemma 49. This highlights
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6 Necessary and sufficient criteria for graph state entanglement

an interesting detail in the proof of Theorem 50. For the biseparable decompositions
identified in Lemma 49, only the bipartitions A|BCD (and permutations) and AB|CD
have been used, but not the bipartitions AD|BC and AC|BD. Interestingly, there is
a fundamental difference between these types of bipartitions. For the first set, the
entanglement between the two partitions in the pure graph state |Cl4〉 is equal to one
Bell-pair (or one e-bit). This can be seen from the Schmidt decomposition of |Cl4〉 with
respect to that partition (where the Schmidt coefficients are both 1/

√
2). Alternatively,

this follows from the structure of the graph, since, after suitable transformations which
are local for the given bipartition, there is only one connection between the parties. In
the second set, namely the bipartitions AD|BC and AC|BD, the entanglement between
the partitions is equal to two Bell pairs. Consequently, we refer to the first type of
bipartitions as 1BP and the second type as 2BP.

We can now formulate a fundamental observation linking PPT to separability. If we
have a graph-diagonal state and a 1BP bipartition, then the PPT criterion is clearly
necessary and sufficient for separability since, after suitable local operations, the state
can be viewed as a two-qubit state2. On the other hand, for a 2BP bipartition, this is
definitely not the case, as the examples in Eqs. (6.22), (6.23) demonstrate. We formulate
this as follows:

Corollary 54. For any biseparable cluster-diagonal state of four qubits there is a decom-
position using 1BP bipartitions only. Consequently, when looking for a decomposition
for a given four-qubit cluster-diagonal state, it suffices to consider 1BP bipartitions only.

This statement directly follows from the proof of Theorem 50, since only 1BP bipar-
titions have been used there. It is straightforward to generalize this slightly as follows:

Lemma 55. Let ̺ be a four-qubit graph-diagonal state for an arbitrary graph, which is
PPT with respect to a given bipartition. Then, ̺ can be written as a PPT mixture using
1BP bipartitions only.

Proof. First, note that the statement is only non-trivial if the given bipartition is 2BP.
Furthermore, note that up to local complementations (or local unitaries) there are only
two different graphs, the GHZ4-graph and the linear cluster graph Cl4. For the GHZ4-
graph any bipartition is 1BP. For the cluster graph, however, being PPT for the given
partition implies that the state is biseparable, since then the expectation values of the
witnesses in Lemma 48 are non-negative. Then the claim follows from Corollary 54.

In order to apply similar ideas to the Y5 state, we need to generalize the above state-
ment to five qubits. For five qubits, one can similarly consider 1BP and 2BP bipartitions.
There are no bipartitions with three Bell pairs, as this would require at least six qubits.

2To give a precise argument, consider a three-qubit graph-diagonal state ̺ using the linear graph 1—
2—3 which is PPT with respect to the A|BC-bipartition. After a controlled phase gate between
qubits 2,3, which is a local operation for the A|BC-bipartition, the state is transformed to ˜̺ =
̺+

AB ⊗ |+〉〈+|C + ̺−
AB ⊗ |−〉〈−|C where |±〉 = (|0〉 ± |1〉)/

√
2 and the states ̺±

AB are two-qubit
graph-diagonal states for the graph 1—2. Since one can deterministically prepare ̺+

AB and ̺−
AB

by measuring X on the third qubit, both the ̺±
AB must also be PPT and hence separable. This

demonstrates that the original state ̺ was also separable. A similar argument is used in the proof of
Lemma 56.
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6.4 PPT mixtures and the five-qubit Y5 state

Lemma 56. Consider a connected five-qubit graph and a two- vs. three-qubit bipartition
where one of the qubits in the three-qubit part of the bipartition is connected with only
one other qubit in the same three-qubit part. Let ̺ be a graph-diagonal five-qubit state
being PPT for the given partition. Then, ̺ is a PPT mixture using 1BP partitions only.

First, to give an example where the condition on the graph holds, consider the Y5

graph in Fig. 6.1 d) and the ACE|BD (or 135|24) partition. Then, the qubit E (or 5) is
connected only with one qubit in the same part of the partition, namely the qubit C (or
3). Thus, the condition on the graph is fulfilled. Note that in this case, the bipartition
is a 2BP bipartition, so the statement of the lemma is not trivial.

Proof. To prove Lemma 56, we assume without loss of generality that the bipartition
is the AB|CDE bipartition and E is the singular qubit connected only with qubit D.
By a suitable local transformation (acting on DE only), one can decouple qubit E from
the rest. This means that the state ̺ is transformed to ˆ̺ = ̺+ ⊗ |+〉〈+|E + ̺− ⊗
|−〉〈−|E where the ̺± are unnormalized states on the qubits ABCD. Note that |+〉 and
|−〉 here are the eigenstates of the Pauli operator X. Since ˆ̺ is PPT with respect to
the AB|CDE partition, the states ̺± must also be PPT with respect to the AB|CD
partition. Otherwise, it would be possible to generate non-positive partial transpose
(NPT) entanglement from a PPT state by measuring E and distinguishing between ̺+

and ̺−. This is known to be impossible [120]. Hence, according to Lemma 55, the
states ̺+ and ̺− form PPT mixtures with respect to 1BP bipartitions on the qubits
ABCD. Reconnecting the qubit E on the side of D in a 1BP bipartition on ABCD
leads to a bipartition on five qubits, which is 1BP, even if E is again connected with D.
This immediately induces a PPT mixture of ̺, where only 1BP bipartitions occur in the
decomposition.

We can now formulate our main result for the Y5 state where all two- vs. three-qubit
bipartitions (2-3-bipartitions) are either 1BP or fulfill the conditions of Lemma 56.

Theorem 57. A Y5-graph-diagonal state is biseparable, if and only if it is a PPT mix-
ture.

Proof. Clearly, a biseparable state is also a PPT mixture, which proves one direction
of the claim. Concerning the other direction, let us consider a PPT mixture and recall
that if a PPT mixture is graph-diagonal, then the terms in the mixture can be chosen
to be graph-diagonal as well (cf. Sec. 5.1). We will argue that the terms belonging to
the 2BP bipartitions in the PPT mixture of the state Y5 can be written as mixtures of
1BP bipartitions. For this we will make use of Lemma 56.

The only candidates for 2BP bipartitions are the 2-3-bipartitions, as the 1-4-bipartitions
are automatically 1BP. For the Y5-graph, several 2-3-bipartitions are in 2BP, however, all
fulfill the conditions of Lemma 56: The ACE|BD-bipartition has already been discussed
and the AE|BCD-bipartition satisfies the condition directly. The BC|ADE-bipartition
is 2BP and does not fulfill the condition directly. Nevertheless, after a local complemen-
tation on qubit C and then on qubit E, the qubitD is left connected only with qubit E so
that it meets the conditions of Lemma 56. The same sequence of local complementations
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can be applied to the AC|BDE-bipartition to show that it also meets the conditions of
Lemma 56. These are, up to symmetries, all of the 2BP bipartitions. This implies that
all 2BP bipartitions of Y5 meet the conditions of Lemma 56 and thus the PPT criterion
is necessary and sufficient to demonstrate multiparticle entanglement. This proves the
claim.

From the proof of Theorem 10 it also follows that the search for the decomposition
into PPT states can be restricted to 1BP bipartitions. In practice, one can easily modify
the existing algorithms to consider 1BP bipartitions only [101], which would even make
the numerical program simpler.

An extension of this theorem to other five-qubit graphs is not straightforward. For
instance, for the linear cluster graph [Fig. 6.1 e)] the bipartition BD|ACE is 2BP but
does not fulfill the conditions of Lemma 56 even after local complementation. However,
this bipartition seems to be relevant in the decomposition, since it is used in η3 of
Eq. (6.15).

6.5 Generalizations to more than five particles

So far, we have investigated the separability problem for graph-diagonal states with up
to five qubits and found solutions for many important cases. In this section we provide
two examples that demonstrate how our results can be used to investigate entanglement
in graph-diagonal states with even larger number of qubits.

6.5.1 A generalization to YN-states

In our first example, we consider the YN -state, a generalization of the Y5-state, which
we show in Fig. 6.2a). For this family of states, we can generalize Theorem 57 and show
that the criterion of PPT mixtures is necessary and sufficient. We need the following
lemma:

Lemma 58. Let ̺ be a YN -graph-diagonal state with N ≥ 5 and consider a 2BP
bipartition. Then, if ̺ is PPT with respect to that partition, it can be written as a PPT
mixture using 1BP partitions only.

Proof. We prove the statement by induction. The base case for the induction, n = 5,
has already been proven. For the inductive step, consider the Yn+1-graph and a 2BP
partition [see Fig. 6.2 b)]. We denote the two parts of the bipartition as M and M . One
can directly see that qubits 1 and 2 must belong to different parts of the bipartition,
otherwise the bipartition is only 1BP. We assume that 1 ∈M and 2 ∈M. Furthermore,
among the remaining qubits {3, ..., n+1}, there must be at least one belonging to M and
at least one belonging to M. Otherwise, the bipartition would be a one-vs.-n-bipartition,
which can never be a 2BP bipartition. Since n ≥ 5 there must be either two qubits from
the set {3, ..., n+ 1} in M or two qubits from the set {3, ..., n + 1} in M. Let us assume
that the two qubits i, j ∈ {3, ..., n + 1} belong to M .
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Figure 6.2: a) The graph of a YN -state, a possible generalization of the Y5-state. b) A
possible 2BP bipartition, here we have chosen i = 5 and j = 4. c) After
local complementation on the qubits 3 and i = 5, the qubit 5 is the “central”
qubit. The qubits 4 and 5 then fulfill the condition for fulfill Lemma 56. See
text for further discussion.

Now we apply local complementation on qubit 3 and then on qubit i [see Fig. 6.2
c)]. If i = 3 this changes nothing. Otherwise, the graph is transformed so that qubits
3 and i are interchanged, hence the qubit i is afterwards the “central” qubit. Qubit j
is now only connected to the qubit i, and both qubits belong to the same part of the
bipartition.

This, however, is exactly the situation as described in Lemma 56. As in the proof of
Lemma 56, we can decouple the qubits i and j, and the remaining two states ̺± are
YN -graph-diagonal states of N qubits, which are PPT with respect to the given 2BP
bipartition. By the induction hypothesis, these states are PPT mixtures with respect to
1BP bipartitions. Translating this backwards by inserting again the previously deleted
connection finally proves the claim.

Having proven Lemma 58 we can formulate:

Theorem 59. A YN -graph-diagonal state is biseparable, if and only if it is a PPT
mixture.

Proof. The proof is essentially the same as that of Theorem 57. We only have to consider
1BP bipartitions according to Lemma 58 and for them PPT is necessary and sufficient.
Note that for the YN graph there are only 1BP and 2BP bipartitions, 3BP bipartitions
are not possible.

As for the Y5-state discussed after Theorem 57, one can simplify the search for PPT
mixtures for the YN state by concentrating only on 1BP bipartitions. This makes it
possible to determine separability for YN -graph-diagonal states for larger values of N ,
although the number of 1BP bipartitions still grows fast.
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6.5.2 Biseparable decompositions for linear cluster states

For our second example of separability conditions for graph states of more than five
particles, let us discuss the six-qubit linear cluster state mixed with white noise. Our
goal is to show that the criteria used in this chapter allow estimates of separable regions
in a simple way even for graph-diagonal states with many qubits, and the resulting
estimate is quite accurate.

First, in a straightforward generalization of Lemma 49, many pairs of the form σ =
|000000〉〈·|+|ijklmn〉〈·| are separable, the exceptions are the 44 states χi = |000000〉〈·|+
ηi, with η1 = |1jk100〉〈·|, η2 = |1jkl10〉〈·|, η3 = |1jklm1〉〈·|, η4 = |001jk1〉〈·|, η5 =
|01jkl1〉〈·| and η6 = |01jk10〉〈·|. Furthermore, using the fact that the state from
Eq. (6.14) is separable, one can directly find a biseparable decomposition of

̺(p) = p|Cl6〉〈Cl6| + (1 − p)
1

64
(6.24)

for p = 11/43 ≈ 0.256. Since the state ̺(p) is known to be entangled for p > 51/179 ≈
0.285 (cf. Table 5.1 in Sec. 5), the real threshold cannot be much higher and this simple
estimate already delivers a good approximation.

This method of constructing biseparable decompositions in the graph basis of linear
cluster states can be generalized to an arbitrary number of qubits.

6.6 Conclusion

In conclusion, we have considered the problem of detecting genuine multiparticle entan-
glement in graph-diagonal states for four and five qubits and we have provided complete
solutions for some cases. In addition, we showed how these results allow us to gain
insight into this problem for larger numbers of qubits. Since our results deliver optimal
criteria, they can be used to test the strength of other entanglement criteria.

In this chapter, we have made use of the graph formalism, which allowed us to find the
presented solutions. A natural direction for future research would be to investigate the
entanglement properties of other classes of states. Most promising candidates are states
that exhibit a nice structure, such as invariance under permutations or under other kind
of operations. Also, other kinds of entanglement, like states that are not fully separable
(for first results see Ref. [121,122]), are possible areas of investigation.
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7 Multipartite Leggett models

Finally, we come back to the foundations of quantum mechanics and consider the class
of hidden-variable models proposed by Leggett [28]. For the bipartite case, there exist
some inequalities [59,60,123,124], to one of which the reader was introduced in Sec. 2.4.3.

Very recently, there have been proposals of Leggett inequalities for the multipartite
case. For example, Ref. [125] constructs a Leggett inequality for three qubits by taking
Eq. (2.55) and replacing the observable Ai on the left-hand side by two observables AiCi
on the first and the third qubit, while the right-hand side stays the same. They find
that the resulting inequality is violated by the GHZ state. This inequality can also be
violated by a state like |ψ−〉〈ψ−| ⊗ |0〉〈0| with the observable C1 = C2 = C3 = Z, since
in this case, it reduces to Eq. (2.55).

Another preprint derives a different inequality for four qubits under the assumption
that the reduced two-qubit state of Alice and Bob is pure and that each single-qubit
state of Alice and each single-qubit state of Bob is pure [126].

In the following, similarly to multipartite entanglement or multipartite non-locality
[54, 57], we pursue different approaches as we take into account all bipartitons and,
moreover, introduce different Leggett models in a way similar to the distinction of full
separability and biseparability in the case of entanglement.

7.1 Leggett’s assumption on one qubit

First, we introduce models that impose assumptions on single-qubit states. Analogously
with full separability, we introduce the following notion.

Definition 60. Any probability distribution p(α, β, γ|A,B,C) on the measurement out-
comes α, β, γ when measuring the observables A, B and C describes a full Leggett

model if it can be written as

p(α, β, γ|A,B,C) =

∫
dλ̺(λ)pλ(α, β, γ|A,B,C) , (7.1)

where for each λ with ̺(λ) 6= 0, the distribution pλ(α, β, γ|A,B,C) fulfills the following
two conditions:

1. Its three marginals can be written as

pλ(α|A,B,C) = ~µ~a ,

pλ(β|A,B,C) = ~ν~b ,

pλ(γ|A,B,C) = ~ω~c . (7.2)
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Here, ~µ, ~ν, ~ω ∈ R3 are unit vectors and the unit vectors ~a,~b,~c ∈ R3 are given by
the observables A, B and C.

2. The distribution p(α, β, γ|A,B,C) is no-signalling with respect to Alice, i.e.
p(α|A,B,C) = p(α|A) and the same for Bob and Charlie and p(α, β|A,B,C) =
p(α, β|A,B) and the same for the two other cases.

Note that no-signalling of one-qubit marginals such as pλ(α|A,B,C) is implied by con-
dition (i). However, no-signalling conditions of probability distributions on two parties,
such as p(α, β|A,B,C) = p(α, β|A,B), is not implied by (i). For this reason, condition
(ii) is really needed. Moreover, we note that, in general, measurements on a biseparable
state such as |ψ〉 = |ψAB〉 ⊗ |ψC〉 are enough to produce probabilities that do not obey
condition (i).

As we would like the models that we consider to include a large class of probability
distributions, we can relax condition (i) and, analogously to biseparability and the class
of models that obey the Svetlichny inequality [57], introduce the notion of hybrid Leggett
models.

Definition 61. Any probability distribution p(α, β, γ|A,B,C) on the measurement out-
comes α, β, γ when measuring the observables A, B and C belongs to a hybrid single-

party Leggett model if it obeys the following conditions:

(i) It can be written as

p(α, β, γ|A,B,C) = q1p〈A〉BC(α, β, γ|A,B,C)

+ q2pA〈B〉C(α, β, γ|A,B,C)

+ q3pAB〈C〉(α, β, γ|A,B,C) , (7.3)

with
∑

i qi = 1 and qi ≥ 0, where

p〈A〉BC(α, β, γ|A,B,C) =

∫
dλ̺(λ)pAλ (α, β, γ|A,B,C) , (7.4)

with 〈A〉λ = ~µ~a and

pA〈B〉C(α, β, γ|A,B,C) =

∫
dλ̺(λ)pBλ (α, β, γ|A,B,C) , (7.5)

with 〈B〉λ = ~ν~b and

pAB〈C〉(α, β, γ|A,B,C) =

∫
dλ̺(λ)pCλ (α, β, γ|A,B,C) , (7.6)

with 〈C〉λ = ~ω~c . (7.7)

As before, ~µ, ~ν, ~ω ∈ R3 are unit vectors. Also, the unit vectors ~a,~b,~c ∈ R3 are
given by the observables A, B and C.

(ii) The distribution is no-signalling with respect to any bipartition as in Definition 60
(ii).
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Probability distributions of this kind include all distributions of Definition 60. Note
that, in the case of four parties, there are not only bipartitions with one party on one
and two parties on the other side, but also 2|2-bipartitions. The two present notions of
Leggett models therefore have to be modified for the case of a larger number of parties.
We will do so in Sec. 7.2. Before that, we first derive an inequality which holds for
models as in Definition 61 in the following section.

7.1.1 An inequality for hybrid Leggett models with assumptions on a
single party

Let us consider a setting of three parties. There are two observables A and A′ for Alice,
B and B′ for Bob and C and C ′ for Charlie. Since there are 8 ways to combine these six
observables to one that acts on all three qubits, there are eight probability distributions
of the kind pλ(α, β, γ|A,B,C), but with respect to different observables. Moreover, using
no-signalling, they can be written as

pλ(α, β, γ|A,B,C)

=
1

8
(α〈A〉 + β〈B〉 + γ〈C〉 + αβ〈AB〉 + βγ〈BC〉 + αγ〈AC〉 + αβγ〈ABC〉) . (7.8)

Adding them with appropriately chosen values for α, β and γ and using the positivity
the distributions and therefore of their sum, one arrives at

|〈ABC〉λ + 〈ABC ′〉λ + 〈AB′C〉λ + 〈A′BC〉λ
+ 〈A′B′C〉λ + 〈A′BC ′〉λ + 〈AB′C ′〉λ + 〈A′B′C ′〉λ|

≤ 8 − 4|〈A〉λ − 〈A′〉λ| . (7.9)

Note that, in principle, such an upper bound of the left-hand side has to be derived for
each of the three terms in Eq. (7.3). However, since the left-hand side of Eq. (7.9) is
invariant under permutation of qubits, one immediately knows that the right-hand side
is also an upper bound when replacing A by B and A′ by B′ or by C and C ′. These
three possible upper bounds can be used for the three terms in Eq. (7.3). Thus, let us
consider distribution pAλ (a, b, c|A,B,C) [cf. Eq. (7.4)], where the form of the one-qubit
expectation values for Alice is fixed.

Integration
∫
dλ̺(λ) of both sides of Eq. (7.9) and the use of |

∫
.| ≤

∫
|.| then results

in

|〈ABC〉 + 〈ABC ′〉 + 〈AB′C〉 + 〈A′BC〉
+ 〈A′B′C〉 + 〈A′BC ′〉 + 〈AB′C ′〉 + 〈A′B′C ′〉|

≤ 8 − 4

∫
dλ̺(λ)|〈A〉λ − 〈A′〉λ| (7.10)

Now, we pass to a larger number of different settings for each observables. In other
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i ~ai,~bi,~ci ~a′i,~b
′
i,~c

′
i

1 cos(ϕ/2)~ex + sin(ϕ/2)~ey cos(ϕ/2)~ex − sin(ϕ/2)~ey
2 cos(ϕ/2)~u + sin(ϕ/2)~u⊥ cos(ϕ/2)~u − sin(ϕ/2)~u⊥

3 cos(ϕ/2)~u + sin(ϕ/2)~ez cos(ϕ/2)~u − sin(ϕ/2)~ez

Alice, Bob and Charlie each choose the same six settings. Here, ~u = −1
2~ex −

√
3

2 ~ey and

~u⊥ =
√

3
2 ~ex − 1

2~ey.

words, we do not only consider expectation values like 〈ABC〉, 〈ABC ′〉 etc., but instead
〈AiBiCi〉, 〈AiBiC ′

i〉 etc., where i can take values from 1 to 3. For brevity, let us denote
the left-hand side of Eq. (7.10) for the ith setting of observables by Li = |〈AiBiCi〉 +
〈AiBiC ′

i〉 + . . . |. Using Eq. (7.4), we then obtain

1

m

m∑

i=1

Li ≤ 8 − 4
1

m

m∑

i=1

∫
dλ̺(λ)|(~ai − ~a′i)~µ| . (7.11)

Choosing m = 3 and the settings of Table 7.1.1, we can write

1

3

3∑

i=1

Li ≤ 8 − sin(ϕ/2)
8

3

3∑

i=1

∫
dλ̺(λ)|~vi~µ| . (7.12)

Here, the unit vectors ~vi are given by ~v1 = ~ey, ~v2 = ~u⊥ and ~v3 = ~ez. Using the theorem

of Ref. [127], one can see that
∑m

i=1 |~vi~µ| ≥
√

3
2 . This bound is actually obtained for

~µ = ~ex. When we also plug in the GHZ state and the settings of Table 7.1.1 on the
left-hand side, we obtain

8 cos3(ϕ/2) ≤ 8 −
√

3
4

3
sin(ϕ/2) . (7.13)

As mentioned before, the expression on the left-hand side of Eq. (7.10) is invariant under
any permutations. When, e.g., permuting parties A and B, the inequality still holds,
but this time for probability distributions pBλ (α, β, γ|A,B,C) and after replacing ~ai and

~a′i by ~bi and ~b′i on the right-hand side. In this way, it is possible to find upper bounds
for all three terms in Eq. (7.3). Since the settings of Table 7.1.1 are the same for each
party, the upper bound is always the same and Eq. (7.13) therefore holds for all hybrid
single-party Leggett models.

The maximal value of the left-hand side Eq. (7.13) is reached for ϕ ≈ 11.26◦ and
equals 7.88, while the right-hand side is 7.77. The left- and right-hand side are shown
in Figure 7.1 b).

Note that the above construction in principle also works for others state under certain
conditions. For a state |ψ〉, one only needs a triple A, B, C of observables, such that
A ⊗ B ⊗ C|ψ〉 = |ψ〉 and another triple Ã, B̃ and C̃ with Ã ⊗ B̃ ⊗ C̃|ψ〉 = |ψ〉, where
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7.2 An assumption on two qubits

Alice’s two observables are orthogonal, i.e. obey Tr(AÃ) = 0 and the same holds for Bob
and Charlie. In this case, one can choose the measured observables as in Table 7.1.1,
with ~ex being replaced by the vector associated to A, ~u replaced by the vector associated
with Ã and the three contributions containing sin(ϕ/2) must be linearly independent.

5 10 15 20 25 30

7.4

7.6

7.8

8.0

Figure 7.1: By choosing the six settings visualized in a) for each party, one obtains a
Leggett bound that is shown as a blue dashed line in b). The quantum
mechanical value for the GHZ state and the given observables is depicted by
a red solid line. The maximal violation is reached for ϕ ≈ 11.26◦.

7.2 An assumption on two qubits

For three qubits, each bipartition is made up of one party on one side and two parties
on the other side. Thus, for every possible bipartition, one can impose Leggett’s original
assumption on the one-qubit side. For a larger number of parties, however, there are
other bipartitions, such as the bipartition AB|CD in the four-party case. Although it is
not possible to apply the original assumption of Leggett, one can naturally extend the
model by postulating that reduced two-party states behave as pure qubit states.

Before we can define this class of models properly, we need to find a general form for
two-party expectation values that stem from a pure two-qubit state. This can be done
using the Schmidt decomposition (cf. Lemma 2 in Sec. 2.1.1). In this case, it states that
any pure two-qubit state is LU-equivalent with the state

|ψ〉 = cos(φ)|00〉 + sin(φ)|11〉 (7.14)

for some value of φ. In terms of Pauli matrices, this state can be written as
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7 Multipartite Leggett models

|ψ〉〈ψ| =
1

2
cos(φ) sin(φ)X1X2 −

1

2
cos(φ) sin(φ)Y1Y2 +

1

4
Z1Z2 +

1

2
1112

+
1

4

[
cos2(φ) − sin2(φ)

]
(Z112 + 11Z2) (7.15)

=
1

4

3∑

i,j=0

ψi,j σi ⊗ σj . (7.16)

In the last line, we wrote |ψ〉 in terms of the Pauli matrices σ1, σ2 and σ3 and the
identity σ0. The expectation value with respect to some two-qubit observable A ⊗ B
with A =

∑3
i=1 aiσi and B =

∑3
j=1 bjσj is given by

|ψ〉〈ψ| =

3∑

i,j=1

aiψi,jbj . (7.17)

Thus, the only relevant part of the matrix (ψi,j) are the indices from 1 to 3.

As |ψ〉 is any two-qubit state up to local unitaries, we still need to take them into
account. As every unitary U with negative determinant can be written as eiϕŨ , where
Ũ has positive determinant, and also U |ψ〉〈ψ|U † = Ũ |ψ〉〈ψ|Ũ †, it is sufficient to con-
sider local unitaries with positive determinant. Furthermore, any unitary transformation
(with determinant 1) on |ψ〉〈ψ| corresponds to an orthogonal three-by-three matrix (with
determinant 1) acting on ψi,j [128]. Thus, the expectation value of any pure two-qubit
state with respect to any observable A⊗B can be written as

Tr(A⊗B UA ⊗ UB|ψ〉〈ψ|U †
A ⊗ U †

B) = ~aO−1ψÕ~b , (7.18)

where ψ is a diagonal matrix with diagonal (2 cos(φ) sin(φ),−2 cos(φ) sin(φ), 1) and O
and Õ are orthogonal matrices with determinant 1. All three matrices are determined by
the state of the system, while the vectors ~a, ~b ∈ R3 are determined by the observables.

Thus, we can now extend the Leggett model on two parties as follows.

Definition 62. Any probability distribution p(α, β, γ, δ|A,B,C,D) on the measurement
outcomes α, β, γ, δ when measuring the observables A, B, C and D describes a hybrid

Leggett model if it obeys the following conditions:

(i) The probability distribution can be written as

p(α, β, γ, δ|A,B,C,D) = q1p〈A〉BCD + q2pA〈B〉CD + q3pAB〈C〉D + q4pABC〈D〉
q5pAB〈CD〉 + q6pA〈BC〉D + q7p〈AB〉CD + q8p〈A〉B〈C〉D
q9pA〈B〉C〈D〉 + q10p〈A〉BC〈D〉 , (7.19)

where the dependencies have been left out, with
∑

i qi = 1 and qi ≥ 0. Here, we
impose an assumption on one party on the first four terms, namely that they are
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7.3 Conclusion

of the type

p〈A〉BCD(α, β, γ, δ|A,B,C,D) =

∫
dλ̺(λ)pAλ (α, β, γ, δ|A,B,C,D) (7.20)

with 〈A〉λ = ~µ~a, where ~µ and ~a are unit vectors in R3. Moreover, on the last six
terms we impose a two-party assumption, namely that they are of the form

p〈AB〉CD(α, β, γ, δ|A,B,C,D) =

∫
dλ̺(λ)pABλ (α, β, γ, δ|A,B,C,D) (7.21)

with 〈AB〉λ = ~aO−1ψÕ~b, where ~a, ~b ∈ R3 are unit vectors, O, Õ ∈ SO(3) and

ψ =




2 cos(φ) sin(φ) 0 0
0 −2 cos(φ) sin(φ) 0
0 0 1


 (7.22)

(ii) The distribution is no-signalling with respect to any bipartition as in Definition 60
(ii).

To derive an inequality for such a model, one could start with two observables for each
of the four parties and consider the sum of all possible combinations,

|〈ABCD〉 + 〈ABCD′〉 + 〈ABC ′D〉 + · · · + 〈A′B′C ′D〉 + 〈A′B′C ′D′〉| . (7.23)

Since this is symmetric, it is enough to find an upper bound for the two bipartitions
A|BCD and AB|CD, i.e. for the probability distributions p〈A〉BCD and p〈AB〉CD. While
for A|BCD, an upper bound similar as in Eq. (7.10) can be used, for AB|CD, an upper
bound like

|〈ABCD〉 + 〈ABCD′〉 + 〈ABC ′D〉 + · · · + 〈A′B′C ′D〉 + 〈A′B′C ′D′〉|
≤ 16 − 4|〈AB〉 − 〈A′B′〉| − 4|〈A′B〉 − 〈AB′〉| (7.24)

can be used. Introducing several settings and summing over them, one eventually has
to bound a term of the form

∑m
i=1 |~eiO−1ψÕ ~fi|, where the vectors ~ei and ~fi are given

by the chosen settings. This can be done using operator norms. At the same time, the
inequality should be violated for some quantum mechanical state. So far, however, an
appropriate inequality that is violated by quantum mechanics remains to be found.

7.3 Conclusion

In this chapter, we have presented several ways to extend Leggett’s assumption from
Ref. [28] to the multipartite case. We have introduced a rather large and general class of
multipartite Leggett models, in that we do not only consider one fixed bipartition, but
convex combinations of probability distributions of different bipartitions. For one of the
presented multipartite Leggett models, namely one for three parties with assumptions on
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7 Multipartite Leggett models

single-party marginals, we have introduced an inequality which is violated by quantum
mechanics.

As this is work in progress, a natural future direction would be to search for inequalities
to test models that make assumptions on two-party expectation values or involve a larger
number of parties.
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8 Conclusion

In this thesis, different aspects of multipartite entanglement and non-locality have been
investigated. Mainly, we focused on its characterization and detection.

In Sec. 3, we started with an analysis of the statistical error and the statistical signif-
icance in experiments that test for quantum correlations. It showed that the maximal
possible violation is not a meaningful measure for the statistical strength of a non-locality
test. This was due to the fact that the Mermin inequality, which only allows for a com-
paratively small violation, resulted in a higher statistical significance than the Ardehali
inequality. For experiments that aim at the verification of non-locality or entanglement
and which achieve a certain fidelity with respect to the target state, this finding moti-
vates the use of inequalities which contain stabilizing operators of the target state (cf.,
e.g. Ref. [72]). Moreover, we could show in the case of white noise that the fidelity that
needs to be reached decreases exponentially fast with a growing number of qubits.

Our findings can therefore be employed for developing statistically strong entangle-
ment tests. Besides the mentioned exponential decrease in the required fidelity for white
noise, the fact that the measured count numbers are decreasing for a higher number of
photons means that the statistical error plays a more and more important role. Note
that also for other implementations the count numbers per measurement setting usually
decrease with a growing number of particles, as the number of required measurement
settings for, say, a full tomography increases and the time spent on measuring can, for
practical reasons, not be increased equally.

Then, we presented a criterion for genuine multipartite entanglement and the idea
behind it, along with its most important properties, in Sec. 4. Most importantly, we
introduced an entanglement monotone for genuine multipartite entanglement and we
showed that our criterion is necessary and sufficient for three-qubit permutation-invariant
states. We also applied it to several example states to illustrate its performance, to
present an analytical witness for the W3 state and to show its application in the case of
partial information.

In order to obtain analytical tests for entanglement, we applied the criterion to graph
states in Sec. 5. This resulted in a list of witnesses for all LU-equivalence classes for
graph states of up to six qubits and in general construction methods for two different
classes of entanglement witnesses. These witnesses were much stronger than the usual
projector witness. Indeed their white noise tolerance approached one in many cases
for an increasing number of qubits. Also, we evaluated the presented entanglement
monotone on graph states.

Finally, in Sec. 6, we used the graph state witnesses constructed before and the ap-
proach introduced in Sec. 4 to construct necessary and sufficient conditions for entangle-
ment in some classes of graph-diagonal states. These conditions were strongly connected
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8 Conclusion

to the entanglement criterion introduced in Sec. 4 and, therefore, our approach resulted
in more classes of states for which this criterion is necessary and sufficient.

We believe that both the presented criterion — including its applications, such as the
graph state witnesses — and the entanglement monotone will be useful for different tasks.
First, the approach that lead to our criterion can be applied to other bipartite criteria,
such as the criterion of symmetric extensions by Doherty [95,96]. Second, the presented
form of the criterion is an easy way to verify entanglement of an arbitrary state and can
be applied to quickly check for entanglement in experimental states. And finally, the
plethora of graph state witnesses presented provides much stronger entanglement tests
than known so far, with only one experimental setting to be measured in addition to make
the projector witnesses stronger. Besides this, our entanglement monotone provides an
easy way to quantify genuine multipartite entanglement present in interesting states,
such as thermal states in spin chain models.

To conclude this thesis, we presented some generalizations of the Leggett model of
two parties to the multiparty case [28]. We provided an inequality which shows that
quantum mechanics is incompatible with a version of such a model that is a convex
combination of models which impose an assumption on the one-particle marginals. There
are still many open questions and many possible ways to continue these investigations,
such as inequalities for other versions of this model, in particular the ones that impose
assumptions on two-party expectation values, and an extension to an arbitrary number
of qubits. We hope that these investigations help to characterize and understand the
properties of quantum mechanics better.
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pelmeyer, M., and Zeilinger, A. Nature 446, 871 – 875 (2007).

[60] Branciard, C., Brunner, N., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Ling, A.,
and Scarani, V. Nature Physics 4, 681 – 685 (2008).

[61] Schlingemann, D. and Werner, R. F. Phys. Rev. A 65, 012308 (2001).

131



Bibliography
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pelmeyer, M., and Zeilinger, A. Phys. Rev. Lett. 99, 210406 (2007).

[124] Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., and Scarani,
V. Phys. Rev. Lett. 99, 210407 (2007).

[125] Deng, D.-L., Wu, C., Chen, J.-L., and Oh, C. H. arXiv:1111.4119v1.
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