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Abstract

The Kadison-Singer problem is a question in operator theory and was posed 1959 by R.
Kadison and I. Singer. It asks whether every pure state on a maximal abelian subalge-
bra of the algebra of bounded linear operators B(H) on a Hilbert space H has a unique
pure extension to a pure state onB(H). Between the original formulation and its solution
in 2013 many equivalent problems were formulated, settled in vastly different areas of
mathematics such as discrepancy theory, graph theory and operator theory. We present
the mathematical foundations necessary in order to formulate the Kadison-Singer prob-
lem, its equivalent formulations as well as its solution. Further, we discuss the particu-
lar formulation of the problem, how Kadison and Singer exclude the case of continuous
maximal abelian subalgebras and the equivalent formulations in the form of Anderson’s
paving conjecture andWeaver’s conjecture. Thereupon, followingMarcus, Spielman and
Srivastava, we present the proof of Weaver’s conjecture implying a positive solution to
the Kadison-Singer problem. Finally, we discuss the consequences of the result for the
existence of infinite families of Ramanujan graphs of any degree as well as for problems
in harmonic analysis.
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Chapter 1

Introduction

The Red-Haired Man

There was a red-haired man who had no eyes or ears.
Neither did he have any hair, so he was called red-haired by convention.
He couldn’t speak, since he didn’t have a mouth. Neither did he have a nose.
He didn’t even have any arms or legs. He had no stomach and he had no
back and he had no spine and he had no innards whatsoever.
He had nothing at all!
Therefore there’s no knowing whom we are even talking about.
In fact it’s better that we don’t say any more about him.

Daniil Charms

The exploitation of new mathematical fields is intimately connected to the discovery of
new physical theories, or more precise, to the attempts of describing observed events
within a mathematical framework [1]. Most popular examples include the correspon-
dence between calculus and classical mechanics, electrodynamics and Fourier-Analysis
as well as general relativity and differential geometry. A similar fruitful interplay be-
tween mathematics and physics can also be observed in the case of quantum mechanics
and C∗-algebras. Here, C∗-algebras were considered for their use to model algebras of
physical observables. In particular, the line of research began with Heisenberg’s matrix
mechanics and in amoremathematically developed formwith thework of Jordan around
1933 [2, 3]. Afterwards, von Neumann established a general framework for these alge-
bras, which culminated in a series of papers on rings of operators [4, 5, 6] as well as his
influential book on quantum mechanics [7].

At the same time, alsoDirac attempted to compose a completemathematical treatise of
quantum mechanics with an additional focus on the quantization of the electromagnetic
field. In difference to von Neumann, Dirac, strongly influenced from the Kopenhagen
interpretation, formulated the theory in terms of Hilbert space vectors. In particular, one
associates to a physical system a Hilbert space, where the state of the system is described
by a unit vector and dynamical variables or observables correspond to self-adjoint op-
erators. It is important to note, that this formalism is only capable of dealing with pure

Daniil Charms, born 1905 in Petersburg as Daniil Iwanowitsch Juwatschow was an early Soviet-era
avant-gardist and absurdist poet, writer and dramatist. He was member of the artistic circle Oberiu, known
for its futuristic art. He died 1942 under arrest, probably during the siege of Leningrad.
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states, while the von Neumann formalism includes mixed states in a natural way, namely
as positive, normalized linear functionals on the algebra of observables [8, 9]. More pre-
cisely, taking convex mixtures of states has the operational interpretation of randomiza-
tion in physics. While pure states are seen as states of maximal knowledge, so called
ontic, mixed states include uncertainties in the preparation, so called epistemic states 1.
Due to the measurement postulate of quantum mechanics, one cannot in general assign
a dispersion free value simultaneously to multiple observables. But one can give a mean-
ing to several commuting observables having values at the same time. In this context,
the notion of a complete set of commuting observables plays an important role. In order
to characterize a quantum state uniquely, it is often necessary to consider multiple ob-
servables, e.g., for the hydrogen atom it is not sufficient to only specify the energy E, but
also the absolute of the angular momentum l and its z-component m, such that a state is
uniquely characterized by |E, l,m〉. Therefore, Dirac wanted to find representations, that
are orthonormal bases, for a compatible family of obervables, that is a commuting family
of self-adjoint observables. He states [17]:

To introduce a representation in practice:

(i) We look for observables which we would like to have diagonal, either
because we are interested in their probabilities or for reasons of mathe-
matical simplicity;

(ii) Wemust see that they all commute- a necessary condition since diagonal
matrices always commute;

(iii) We then see that they form a complete commuting set, and if not, we add
somemore commuting observables to them tomake them into a complete
commuting set;

(iv) We set up an orthogonal representation with this complete commuting
set diagonal.

The representation is then completely determined by except for the arbitrary
phase factors. For most purposes the arbitrary phase factors are unimportant
and trivial, so that we may count the representation as being completely de-
termined by the observables that are diagonal in it.

In amathematically precise form, Dirac claims that each pure state on a complete commut-
ing set has a unique extension toB(H), whereH is a separableHilbert space. If theHilbert
space is finite dimensional, i.e., H = `2(I) with |I| = n ∈ N, this statement is unsuspi-
cious, since up to isomorphisms there is only one maximal abelian subalgebra. However,
in general there are more. For instance, the so called discrete maximal abelian subalge-
bra of B(`2(N)), which can be identified with `∞(N), or the continuous maximal abelian
subalgebra ofB(`2(N)), identifiedwithL∞([0, 1]). An interesting peculiarity occurs if one
considers observables where the spectrum is given by closed intervals, a special instance
of operators with a continuous spectrum. In fact, this problem led Dirac to introduce the
famous δ-function, in order to resolve the problem of normalization.

1The realization that the state space of quantum mechanics is given by a convex set of positive linear
functionals led to a further abstraction, which is nowadays called generalized probabilistic theories. Here,
any compact convex set can serve as the state space of a theory, hence comprising classical and quantum
theory but also vastly different ones. For instance, the so called Popescu-Rohrlich box [10], spin factors [11]
and theories corresponding to Jordan algebras [12]. For a more detailed description see [13, 14, 15, 16].
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The uniqueness of extension claimed by Dirac was questioned by Kadison and Singer
and led to the famous Kadison-Singer problem as well as to their seminal paper [18] in
1959. It was already known at this time, that Dirac’s claim holds for vector pure states,
that is, states ωx given by ωx(A) = 〈Ax, x〉, where x ∈ H unit vector. According to quan-
tum theory, ωx(A) is the expectation value of the observable A if the physical system
is in state x. Apart from this type of states there are much more pure states on `∞(N).
More precisely, the set of all pure states on `∞(N) equipped with the w∗-topology can
be identified with β(N), the Stone-Čech compactification of N. However, whether these
kind of states still have a physical interpretation can be questioned from an operational
perspective. In particular, the preparation of states whose description involves the ax-
iom of choice, hence a highly non constructive component, seems problematic. Therefore
the question of uniqueness of extension is more about a certain mathematical apparatus
around quantum mechanics, rather about the physics itself.

Kadison and Singer showed [18], that for the continuous maximal abelian subalgebra
of B(`2(N)), which can be identified with L∞([0, 1]) via multiplication operators (cf. Ex-
ample 2.48), the extension of states is not unique. Their proof relies on so called diagonal
processes, an operator theoretic generalization of taking the diagonal of a matrix, intro-
duced by von Neumann in 1940. Further they proved for the discrete case, i.e., where
the commutative subalgebra is identified with `∞(N), that each pure state of `∞(N) has
a unique extension to the norm closure of the algebra of linear operators Tπ defined by
Tπei = eπ(i), where π is a permutation ofN. Though a lot of efforts, they were neither able
to prove the uniqueness of state extension nor to construct an explicit counterexample as
for the continuous case. However, they state that they incline to the view that the exten-
sion is non unique. A more detailed description of those states which have the unique
extension property was given 1970 by Reid [19]. By using recent results about ultrafil-
ters, which were developed in 1968 by Choquet [20, 21], he proved that those pure states
corresponding to so called rare ultrafilter have a unique extension to B(`2(N)). Unfortu-
nately, it was unknown whether or not all the points of β(N) \ N are in correspondence
to rare ultrafilters, hence not providing a solution to the problem. A new impetus to-
wards a solution was given in 1979 by Anderson [22], who approached the problem from
a more general perspective. Namely, he starts with an arbitrary subalgebra B ⊂ A of an
C∗-algebra A and asks for the characterization of those pure states on B, which uniquely
extend toA. To do so, he introduced the property of anC∗-algebraA to beB-compressible
modulo ϕ, where B is a subalgebra and ϕ a state on B. With this at hand, he could give a
complete characterization of pure states on B which extend uniquely to A. In particular,
only statesϕ onB forwhichA isB-compressiblemoduloϕ extenduniquely. The question
whether B(`2(N)) is `∞(N)-compressible for any pure state on `∞(N) became known as
Anderson’s infinite paving conjecture and was also reformulated in a finite dimensional
version [23].

In the following years many different equivalent versions of the Kadison-Singer prob-
lemwere found, mainly by Feichtinger, Paulsen, Akemann, Bourgain and Tzafriri [24, 25,
26]. However, the most important equivalent formulation was found in 2002 by Weaver,
who related the problem to a question in discrepancy theory, i.e., the branch of mathe-
matics that seeks to understand how well a continuous object can be approximated by a
discrete one. Weaver’s approach is based on the Anderson paving reduction but using
orthogonal projections with near-zero diagonal.

Finally, in 2013 the conjecture ofWeaver was proven byMarcus, Spielman and Srivas-
tava [27] using a technique of randompolynomials and thus gave an affirmative answer to
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the Kadison-Singer problem. Using the probabilistic method, first introduced by Erdös in
1959, the crucial point is to realize that showing that a randommatrix has all small eigen-
values with nonzero probability is a special case of the more generic problem of showing
that some polynomial from a collection must have all small roots. To achieve this, they
develop the method of interlacing families, a device that allows one to draw the desired
conclusion by studying the roots of the average of the polynomials in such a collection.

That this method is indeed powerful has also turned out, when it was applied to
graph theory [28]. In 1988 Lubotzky, Phillips and Sarnak [29] defined so called Ramanu-
jan graphs to be d-regular graphs, where the largest nontrivial eigenvalue is bounded by
2
√
d− 1, which is independent of the number of vertices. The importance of these graphs

comes from the fact, that they are optimal in the sense that the spectrum of their adjacency
matrix is contained in the smallest possible interval. Indeed, by the Alon-Boppana bound
[30, 31] for d-regular graphs, for an ε > 0 given, one can always find a n ∈ N such that
all d-regular graphs on n vertices have one eigenvalue at least 2

√
d− 1 − ε. While the

construction of Ramanujan graphs of degree d ∈ N is easy for a small number of vertices,
it is difficult as the number of vertices grows. In particular, it was a long standing prob-
lem whether there exist infinite families of Ramanujan graphs for all degrees. Obviously,
one option would be to start with a small d-regular graph which is Ramanujan and then,
via an appropriate duplication procedure, create new larger d-regular graphs in such a
way, that no new eigenvalues larger then 2

√
d− 1 are introduced. This idea is formalized

by the notion of 2-lifts, where one assigns to each edge an element of {±1}, and construct
from this a graphwith twice the vertices. The totality of the sign assignments is called sig-
nature. That this procedure works indeed, is the content of a conjecture of Bilu and Linial
[32]. Marcus, Spielman and Srivastava proved a weak version of this conjecture which
applies to bipartite graphs, namely that every d-regular graph has a signing in which all
of the new eigenvalues are at most 2

√
d− 1.

The aim of this thesis is to give a systematic introduction into the abstract mathemat-
ical framework needed in order to formulate the Kadison-Singer problem, its equivalent
statements and its solution. For this purpose Chapter 2 introduces topological notions
such as compactification of a topological space, filters and nets. In addition, also local
convex topological spaces are introduced via a family of seminorms. We then proceed
by recapitulate the basic facts from the theory of C∗-algebras, including an analysis of the
structure of the state space as well as the classification of C∗-algebras based on the GNS-
construction. Subsequent, we focus on von Neumann algebras and its characterization
by vonNeumann’s double commutant theorem. Further we present a classification of the
maximal abelian ∗-algebras in B(H). In Section 3 we first introduce the Kadison-Singer
problem in the form posed in [18]. We then ask the question why this particular formu-
lation of the problem was chosen. More precise, we start with a more general question
and processing the question using the content of Section 2 in order to obtain the Kadison-
Singer problem. We proceed by deriving themost popular equivalent formulations of the
Kadison-Singer problem, namely the Anderson’s finite- and infinite paving conjecture as
well as Weaver’s conjecture. Section 4 deals with the proof of an affirmative answer of
the Kadison-Singer problem. In particular, following the work of Marcus, Spielman and
Srivastava [27], we introduce the concepts of interlacing families, real stable polynomi-
als as well as the so called multivariate barrier argument to prove Weaver’s conjecture.
Concluding with Section 5, we present how the machinery used in the proof of Weaver’s
conjecture could also be utilized in order to resolve a long standing problem in spectral
graph theory, namely the existence of infinite families of Ramanujan graphs of any degree.
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Chapter 2

The Language of the Problem

Before we are able to formulate the Kadison-Singer problem in Section 3 it is necessary
to introduce the language within this problem is formulated. First, we will revisit the
topological aspects such as compactifications, filters and nets. We will then proceed to
consider the operator algebraic formalism, where the notion of C∗- and von Neumann al-
gebras and states thereof play a crucial role. Finally, we turn to so called frames, that can
be seen as an overcomplete basis, where the generating vectors still obey certain geomet-
rical relations. In particular, Parseval frames are a key ingredient in order to formulate
and solve Weaver’s conjecture which implies a positive solution to the Kadison-Singer
problem. For a complete treatise on topological spaces we refer to [6, 33, 34], while a clas-
sical course on operator algebras are [35, 36, 37, 38]. A more modern and recent approach
is given in [39, 40]. An introduction to frames and their applications can be found in [41].

2.1 Compactifications, filters and nets

Definition 2.1. Let (X, T ) be a topological space1.

(a) (X, T ) is a T2-space if points x, y ∈ X can be separated by neighbourhoods, i.e., one
can find neighbourhoodsNx, Ny ⊂ X with x ∈ Nx and y ∈ Ny such thatNx∩Ny = ∅

(b) (X, T ) is called regular, if for any closedA ⊂ X and any x ∈ X with x ∈ X \A there
exist neighbourhoods Nx, NA ⊂ X such that x ∈ Nx, A ⊂ NA and Nx ∩NA = ∅. A
regular T2-space is called a T3-space.

(c) (X, T ) is called completely regular, if for any closed set A ⊂ X and any point x ∈
X \ A there exists a real-valued continuous function f : X → R such that f(x) = 1
and f |A = 0. A completely regular T2-space is called a T3 1

2
-space or Tychonoff-

space.

(d) (X, T ) is called a normal space, if given two disjoint closed subsets A,B ⊂ X there
are neighbourhoodsNA, NB ⊂ X such thatA ⊂ NA,B ⊂ NB such thatNA∩NB = ∅.
A normal T2-space is called a T4-space.

1 This list of separation axioms of topological spaces is just a collection of special properties needed to
develop the concept of Stone- Čech compactifications. Except the four different axioms listed here, there are
at least four more different separation axioms, namely T1, T2 1

2
, T5 and T6. For a more detailed account of

separation axioms in topological spaces see [33].
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Definition 2.2. Let (X, T ) be a topological space. X is called compact, if each of its open
covers has a finite subcover, i.e., for every collection (Cλ)λ∈Λ of open subsets of X with
Λ 6= ∅ index set, there exists a finite subset I ⊂ Λ such that X = ∪i∈ICi. A subset A ⊂ X
is said to be compact if it is compact as a subspace.

It is easy to see that there exist topological spaces which are not compact. For instance,
consider the space (N,P(N)). Clearly every subset A ⊂ N is open as a countable union of
open sets and thus

N ⊂
∞⋃
n=1

{n} (2.1)

is an open cover of N. But it is not possible to choose a finite collection of sets from the
cover in (2.1) and hence (N,P(N)) is not compact.

Definition 2.3. Let (X1, T1), (X2, T2) be topological spaces and ι : X1 → X2 a map. We
call the triple (X2, T2, ι) a compactification of (X1, T1) if the following holds

(a) (X2, T2) is compact

(b) ι is an embedding, i.e., a homeomorphism onto its image

(c) ι(X1) = X2, i.e., ι(X1) is dense in X2

If (X2, T2) is an addition a Hausdorff space, we call (X2, T2, ι) a T2-compactification. Fur-
ther we say that two compactifications (X2, T2, ι2) and (X3, T3, ι3) of (X1, T1) are isomor-
phic, if there exists a homeomorphism φ : X2 → X3 such that φ ◦ ι2 = ι3.

If (X, d) is ametric space andU ⊂ X a subset, we can turnU into a topological space by
equipU with the inducedmetric d̃ := d |U×U . The open sets of (U, d̃) are then intersections
of open sets of X with U . In the same spirit we can proceed if we exchange (X, d) by a
topological space (X, T ). Is U ⊂ X , one can easily show that one defines via TU :=
{A∩U |A ∈ T } a topology onU . This topology is called the subspace or induced topology
and (U, TU ) is called a subspace of X .

Theorem 2.4. A subspace of a Ti-space is again a Ti space if i ∈ {2, 31
2}.

Proof. LetX be a T2-space and Y ⊂ X a subspace ofX . SinceX is a T2-space we can find
for x, y ∈ Y with x 6= y neighbourhoods Nx, Ny ⊂ X such that Nx ∩Ny = ∅. But Nx ∩ Y
and Ny ∩ Y are also disjoint neighbourhoods of x, y in Y and thus, Y is a T2-space. Let
now be X a T3 1

2
-space, Y ⊂ X and A ⊂ Y a closed set in Y . Then we can find B ⊂ X

closed such thatA = Y ∩B. In particular, we also have y ∈ Y \A implies y ∈ X \B. Since
X is a T3 1

2
-space and B closed, we can find ϕ : X → R continuous, such that ϕ|B = 0 and

ϕ(y) = 1. But ϕ|Y is also a continuous function with respect to the subspace topology on
Y . Hence we have ϕ : Y → R continuous with ϕ|A = 0 and ϕ(y) = 1.

Lemma 2.5. Let (X, T ) be a T2-space. If K ⊂ X is a compact subspace of X , then K is
closed in X .

Proof. Let X be a T2-space and K ⊂ X a compact subspace. It is sufficient to prove that
X \K is open inX . For x ∈ X \K fixed and y ∈ K we can find disjoint open neighbour-
hoodsUy of x and Vy of y. Note that the neighbourhoodUy of xmay depend on the chosen
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y and carries therefore the index y. The family (Vy)y∈K of such neighbourhoods is then
a cover for K. Since K is assumed to be compact, there exists a finite subcover (Vy)y∈K0

with K0 ⊂ K and |K0| < ∞. Consequently, the set ∩y∈K0Uy is an open neighbourhood
of x which is disjoint withK. But such an open neighbourhood exists for any x ∈ X \K
and therefore X \K is open in X .

Lemma 2.6. Let (X1, T1) be a compact topological space, (X2, T2) a topological space and
f : X1 → X2 a continuous map. Then f(X1) is a compact subspace of (X2, T2).

Proof. We have to prove that f(X1) is a compact subspace of X2. To do so, let (Uk)k∈K
be an open cover of f(X1) with K 6= ∅ index set. By definition of the subspace topology
there are open sets Vk of X2 such that Uk = X2 ∩ Vk for all k ∈ K. The pre-images
(f−1(Vk))k∈K provide then an open cover for X1. Since X1 is compact by assumption,
there exists K0 ⊂ K with |K0| < ∞ such that (f−1(Vk))k∈K0 is a finite subcover for X1.
It remains to show that (Uk)k∈K0 is an open cover for f(X1). Suppose y ∈ f(X1). Then
there exists x ∈ X1 such that y = f(x) and by the previous discussion there is k ∈ K0

such that x ∈ f−1(Vk). But then y ∈ f(f−1(Vk)) = Vk ∩ f(X1) = Uk for this k ∈ K0.

Lemma 2.7. Let (X, T ) be a compact T2-space.

(a) (X, T , idX) is a T2-compactification of (X, T )

(b) Each pair of T2-compactifications of (X, T ) are isomorphic

Proof. Since idX is a homeomorphism, the properties (a), (b) and (c) of Definition (2.3)
are trivially fulfilled and hence (a) follows. To show (b) let (X2, T2, ι2) be an arbitrary T2
compactification of (X, T ). Since ι2 is continuous, we can conclude from Lemma 2.6 that
the set ι2(X) is as the image of a compact set compact and by virtue of Lemma 2.5 closed
in (X2, T2). Hence we can conclude from ι2(K) = ι2(K) = X2 that ι2 is a homeomor-
phism. Since (X2, T2, ι2) was arbitrary, any T2-compactification of (X, T ) is isomorphic
to (X, T , idX).

Theorem 2.8. Let (X, T ) be a topological space. The following statements are equivalent:

(a) (X, T ) is a T3 1
2
-space

(b) (X, T ) admits a T2-compactification

(c) There exists an index set I and an embedding ι : X → [0, 1]I where [0, 1] is equipped
with the euclidean topology and [0, 1]I with the corresponding product topology.

Proof. We first prove (c) ⇒ (b). By virtue of the Tychonoff theorem 2 we can conclude
that [0, 1]I is a compact topological space, since [0, 1] is compact if equipped with the eu-
clidean topology. Further, [0, 1]I is as a product of T2-spaces itself a T2-space. Hence
(ι(X), T I , ι) is a T2-compactification of (X, T ). (a) ⇒ (c). Let A := C(X, [0, 1]) be the set
of all continuous functions ϕ : X → [0, 1]. Consider the map

ι : X → [0, 1]A , x 7→ ι(x) := (ϕ(x))ϕ∈A (2.2)

where we equip [0, 1]A with the product topology and ι(X) ⊂ [0, 1]A with the subspace
topology. We will now show, that ι is an embedding. For this let πϕ be the projection of

2 Let (Xλ)λ∈Λ be an arbitrary family of compact topological spaces. Then the product space Πλ∈ΛXλ is
also a compact topological space. See also [33].
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[0, 1]A onto the component ϕ. Clearly, this implies πϕ ◦ ι = ϕ. Therefore we can conclude
from the universal property 3 of the product topology, that ι is continuous. Suppose that
there exist x, y ∈ X with x 6= y such that ι(x) = ι(y). By definition of ι that means
that ϕ(x) = ϕ(y) for all x ∈ A. By assumption (X, T ) is a Tychonoff space, hence there
exists a continuous function A 3 κ : X → [0, 1] such that κ(x) = 0 6= 1 = κ(y). This
is a contradiction to the assumption ι(x) = ι(y) and thus ι is injective. Let A ∈ T and
y ∈ ι(A). Further let x ∈ A such that ι(x) = y. Then we can separate x from the closed set
X \A by a function ϕ ∈ A, i.e., there exists ϕ ∈ A such that ϕ(x) = 0 and ϕ(X \A) = {1}.
Therefore y ∈ π−1

ϕ ([0, 1)]) and π−1
ϕ ([0, 1)]) is open in the product topology. In addition y ∈

π−1
ϕ ([0, 1))∩ ι(X) and π−1

ϕ ([0, 1))∩ ι(X) is open in the subspace topology. By construction
we have

ι−1(π−1
ϕ ([0, 1))) ∩ ι(X) ⊂ A⇒ y ∈ π−1

ϕ ([0, 1)) ∩ ι(X) ⊂ ι(A) (2.3)

Hence ι(A) is a neighbourhood of y and since y ∈ ι(A) arbitrary we have ι(A) open in the
subspace topology and ι is an embedding. (b) ⇒ (a): Let (X, T ) be a topological space
with T2-compactification (X2, T2, ι2). Thus (X2, T2, ι2) is T2 and compact and therefore
also normal. As a subspace of a normal space is not necessary normal but T3 1

2
we can

conclude that ι2(X) is Tychonoff.

Lemma 2.9. Let (X, T ) be a compact topological space.

(a) If A ⊂ X then A is compact

(b) If (X, T ) is a T2-space, then (X, T ) is also a T4-space. In particular, a compact topo-
logical T2-space is also normal.

Proof. To (a): Let (Oi)i∈I be an open cover of A. To this cover we add the open set Ac

and obtain an open cover for X . Since X is a compact space there exists a finite subset
of {Oi ∈ T | i ∈ I} ∪ {Kc} which covers X . Since K ∩Kc

= ∅, also K has a finite cover.
To (b): Obviously it is sufficient to show that (X, T ) is T4 to obtain that X is a normal
space. For this we have to show that for arbitrary A,B ⊂ X with A ∩ B = ∅ we can find
OA, OB ∈ T with A ⊂ OA and B ⊂ OB such that OA ∩ OB = ∅. Let a ∈ A be arbitrary
but fixed. Since X is T2, we can find a ∈ Oa ⊂ T , such that for each b ∈ B there exists
b ∈ O

(a)
b ∈ T such that Oa ∩O(a)

b = ∅. Further

B ⊂
⋃
b∈B

O
(a)
b (2.4)

is an open cover of B and by the compactness of B there is finite number of points bj ∈ B

with j = 1, ...,m such that UB
a = B ⊂ ∪m

j=1O
(a)
j . Thus Ua

B is an open set which separates
a ∈ A and B. The same procedure applies for a given point b ∈ B and one obtains an
open covering of A i.e.,

A ⊂
⋃
a∈A

O(b)
a =⇒ A ⊂

n⋃
j=1

O(b)
aj =: UA

b (2.5)

3Roughly speaking in the language of category theory, a universal property is a property which an object
can have, that can be described solely through the morphism into the object or out of the object. For instance,
the subspace topology can be regarded as a universal property, by utilising the set of all continuous functions
ϕ that map to (X, T ). For a comprehensive treatise of universal properties we refer to [42, 43].
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by the compactness of A. Then we define the neighbourhood V A := ∩m
k=1U

A
bk
. Thus V A is

an open set which contains A and for any bj with j = 1, ...,m there is bj ∈ Obj ∈ T such
that V A ∩Obj = ∅. But ∪m

j=1Obj is an open set which contains B.

Definition 2.10. Let (X, T ) be a completely regular space. We call a T2-compactification
(β(X), Tβ, ιβ(X)) of (X, T ) a Stone-Čech compactification of (X, T ) if for all f ∈ Cb(X)
there exists a g ∈ C(β(X),Kf ) such that g ◦ ιβ(X) = f . In short: For any bounded contin-
uous function f : X → R there exists a continuous function g : β(X) → R such that g is
an extension of f to β(X).

Corollary 2.11. Let (X, T ) be a completely regular space. TheT2- compactification (X1, T1, ι)
constructed in Theorem 2.8 is a Stone-Čech compactification.

Proof. Let f ∈ Cb(X). Define α := maxx∈X |f(x)| and

h :=
f(x) + α

2α
∈ A (2.6)

Then g := 2απh|X1 − α ∈ C(Y ) and fulfills g ◦ ι = f .

Theorem 2.12. Let (X, T ) be a T3 1
2
-space. Then each pair of Stone-Čech compactifications

of (X, T ) are isomorphic.

Proof. Let (X1, T1, ι1) and (X2, T2, ι2) be twoStone-Čech compactifications of (X, T ), where
(X1, T1, ι1) is as constructed as in Theorem 2.8. We have to prove the existence of a home-
omorphism τ : X1 → X2, such that τ ◦ ι1 = ι2. Similar to the proof of Theorem 2.8 we
denote with A the set of all continuous functions from X into [0, 1]. By definition of a
Stone-Čech compactification, we can find to ϕ ∈ A a function ϕ̃ ∈ C(X2, [0, 1]) such that
ϕ̃ ◦ ι2 = ϕ. Similar to the construction of ι, consider the map

τ : X2 → A with x 7→ τ(x) := (κ(x)) (2.7)

Since X2 is T4 it is also T3 1
2
and we can prove the injectivity of τ in the same way we did

for ι in Theorem 2.8. The continuity of τ follows from πϕ ◦ τ = ϕ̃. By construction we
have τ ◦ ι2 = ι1 what implies ι(X) ⊂ τ(X2). On the other hand we have

τ(X2) = τ(ι2(X)) ⊂ τ(ι2(X)) = ϕ(X)ϕ∈A = ι(X) (2.8)

and this τ(X2) = ι(X). Since τ(X2) is compact in the subspace topology and A is T2, we
can conclude by virtue of Lemma 2.5 that τ(X2) is also closed, hence τ(X2) = ι(X) = X1.
We have thus proven that τ is a continuous bijectivemap fromX1 toX2. Furtherwe know
that the inverse function of a continuous, bijective function is also continuous, therefore
τ is a homeomorphism.

The content of Theorem 2.12 and Corollary 2.11 can rephrased in terms of a univeral
property of the Stone-Čech compactification. The Stone–Čech compactification of the
topological space X is a compact Hausdorff space βX together with a continuous map
ι : X → βX that has the following universal property: any continuous map ϕ : X → Y
where Y is a compact Hausdorff space, extends uniquely to a continuousmap βϕ : βX →
Y , i.e., βϕ ◦ ι = ϕ. In terms of a commutative diagram this means

X βX

Y

ι

ϕ
βϕ

11



2.1.1 Filter convergence

Definition 2.13. Let X be a set. A system F of subsets of X is called a filter on X if

(1) ∅ /∈ F and X ∈ F

(2) F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F

(3) F ∈ F and F ⊂ G⇒ G ∈ F

A subset F0 ⊂ F is called a filter basis or prefilter, if any element from F contains an
element from F0 i.e., for every F ∈ F there exists G ∈ F0 such that G ⊂ F . A filter is
called free, if ∩F∈F = ∅, otherwise fixed. If two filters F1 and F2 on X are given we call
F1 finer than F2 if F2 ⊂ F1. We say that F is an ultrafilter, if it is a maximal filter with
respect to inclusion partial order, i.e., there exists no filter on X which is finer than F .

Let B be a nonempty system of nonempty sets of X . Then B is a filter basis for some
filter F on X , if for B1, B2 ∈ B there is B3 ∈ B such that B3 ⊂ B1 ∩B2.

Example 2.14. Let X be a nonempty set.

(1) If ∅ 6= A ⊂ X , then the system of sets

F := {F ⊂ X |A ⊂ F} (2.9)

is a filter onX . Obviously, the filter is fixed with ∩F∈FF = A and B = {A} is a filter
basis for F .

(2) If X is in addition a topological space, i.e., X = (X, T ), the set Ux of all neighbour-
hoods of a point x ∈ X is a fixed filter on X . We call this filter the neighbourhood
filter of x.

(3) Let (xk)k≥1 ⊂ X be a sequence in X and consider the system B of sets defined via
Bk := {xi | k ≤ i} for k ≥ 1. The system B does not constitute a filter but a filter
basis for some filter F on X . We call F the filter induced by the sequence (xk)k≥.

Definition 2.15. Let (X, T ) be a topological space and F a filter on X .

(1) The filter F converges to x ∈ X , if Ux ⊂ F . In this case we call x the limit of F and
write F → x.

(2) A point x ∈ X is called an adherent point ofF , if F ∩U for all U ∈ Ux and all F ∈ F .

Theorem 2.16. Let (X, T ) be a topological space.

(a) Every filter F is contained in some ultrafilter

(b) F is an ultrafilter on X if and only if for each A ⊂ X either A ∈ F or X \A ∈ F .

Proof. We first show (a). Let denote by Γ the set of all filters on X that are finer than F .
Clearly (Γ,⊂) is a partially ordered set. Is Γ1 a totally ordered subset of Γ also⋃

F∈Γ1

F (2.10)

is a filter and an upper bound of Γ1. Thus Γ contains upper bounds for every chain and
therefore admits by Zorn’s lemma a maximal element G. Clearly, this element G is an
ultrafilter. We now prove (b). Since A ∩ (X \A) = ∅ there cannot exist two sets ∈ F

12



Lemma 2.17. Let (X, T ) be a topological space andA ⊂ X . If F is an ultrafilter on F then
A ∈ F or X \A ∈ F .

Proof. Suppose there exists F ∈ F such thatA∩F = ∅. Then F ⊂ X \A and by definition
of a filter we have X \ A ∈ F . If there is no such F ∈ F , i.e., all members of the filter
intersect A, the system of sets

G := {F ∩A |F ∈ F} (2.11)

is a filter containing A and all sets from F . Hence G = F and A ∈ F .

The notion of compactness of a space (X, T ) and the concept of a filter are closely
connected. While in metric spaces one has for A ⊂ X that x ∈ A if and only if there
exist some (xn)n≥1 ⊂ A such that xn

n→∞−−−→ x ∈ A, this can be replaced by an equivalent
statement using ultrafilters.

Theorem 2.18. The following claims are equivalent:

(a) X is compact

(b) Any ultrafilter on X converges

Proof. Suppose that there exists an ultrafilter F on X that is not convergent. In this case
we can find for each x ∈ X an open neighbourhood U(x) such that U(x) /∈ F . In par-
ticular, the family (U(x))x∈X is an open cover for X . Since X is assumed to be compact,
there exist finitely many x1, ..., xn ∈ X , such that U(x1), ..., U(xn) is a cover for X . From
Lemma 2.17we can conclude fromU(xk) /∈ F thatX \U(xk) ∈ F . But from this we obtain

F 3
n⋂

k=1

(X \ Uxk
) = X \

n⋃
k=1

Uxk
= X \X = ∅ /∈ F (2.12)

what is a contradiction. Assume that there exists a cover (Ui |i ∈ I) of X such that no
finite subcover exists. The system of sets

{X \
⋃
i∈E

Ui |E ⊂ Iwith |E| <∞} (2.13)

constitutes a filter. Let F be an ultrafilter with limit x which contains this filter. But then
there exists i0 such that x ∈ Ui0 and thus Ui0 ∈ F yielding a contradiction, since a filter
can not contain a set and its complement as their intersection is empty.

Corollary 2.19. Let (X, T1) be a compact space and f : X → Y a continuous mapping.
Then also f(X) is compact.

Proof. Let (Ui)i∈I ⊂ T1 be an open cover of f(X). Since f is continuous, we have that
(f−1(Ui))i∈I is an open cover of X which contains by virtue of the compactness of X a
finite subset L ⊂ I such that also (f−1(Ui))i∈L is an open cover of X . Hence (Ui)i∈L is a
finite open cover of f(X) and thus f(X) is compact.

Since we are mostly interested in filters and ultrafilters on N, we will investigate the
structure of these objects in more detail. In fact, filters over N are a special case of fil-
ters over a at most countable set [44]. The following definitions were first introduced in
Choquet [20, 21], who made important contributions on the fields of ultrafilters over N.
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Definition 2.20. Let F be an filter over N. We call F

(1) δ-stable, if it is an ultrafilter and for any given countable collection of sets in U there
exists U ∈ U which is almost contained in every set of the collection.

(2) rare, if for a given arbitrary partition N1, N2, ... of N with |Nj| < ∞ for all i, there
exists U ∈ U such that |Nj ∩ U | ≤ 1 for all j.

(3) absolute, if it is δ-stable and rare.

Even if the definition of an δ-stable ultrafilter and a rare ultrafilter seems to be quite
different, it turns out that they can be placed on the same footing.

Lemma 2.21. Let U be an ultrafilter on N.

(1) U is δ-stable

(2) For any partition N1, N2, ... of N there exists X ∈ U such that either there exists
j ∈ {1, 2, ...} such that Nj ∈ U or there exists U ∈ U such that |Nj ∩ U | < ∞ for all
j ∈ {1, 2, ...}.

(3) For any function f : N → [0, 1] there exists X ∈ U such that f(X) contains at most
one accumulation point.

Lemma 2.22. Let F be a filter on N. The following statements are equivalent.

(1) F is rare

(2) For any partition N1, N2, ... of N into finite intervals i.e., for all k ≥ 1 there exist
n
(k)
1 , n

(k)
2 ∈ Nwith n(k)1 < n

(k)
2 andNk = N∩ [n

(k)
1 , n

(k)
2 ], such that there existsX ∈ F

with |Nk ∩ U | ≤ 1 for all k.

Concerning the existence of ultrafilters that share the properties of δ-stability, rareness
and absolutness, Chouqet proved [21] modulo the continuum hypothesis 4, that all possi-
bilities can in fact occur. In particular, there exist absolute ultrafilters, ultrafilters that are
δ-stable and not rare as well as ultrafilters that are neither stable nor rare.

2.1.2 Net convergence

Aswe have already seen, one possibility to introduce a notion of convergence is via filters
and ultrafilters. Another possibility is via nets and subsets which is more popular in the
context of C∗-algebras.

Definition 2.23. A binary relation in a setX is given by a subsetR ⊂ X×X . Wewill write
x ≤ y to indicate that (x, y) ∈ R. An order in X is a binary relation, denoted by ≤ which
is transitive, reflexive and antisymmetric. In this case, we say that (X,≤) is an ordered
set. Given a subset Y ⊂ X , we call x ∈ X a majorant for Y if y ≤ x for every y ∈ Y . We
say that an ordering is filtering upward, if every pair in X has a majorant.

4 The continuums hypothesis is a hypothesis in set theory and deals with the possible sizes of infinite sets.
In particular, it states that there is no set whose cardinality is strictly between that of the integers and the real
numbers.
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Definition 2.24. Anet in a spaceX is a pair (Λ, i), whereΛ is a non-empty upward-filtering
ordered set and i : Λ → X is a map. A net is denoted by (xλ)λ∈Λ where we put xλ = i(λ)
and indicate the domain of i. Is in addition (X, T ) a topological space, we say that a net
(xλ)λ∈Λ converges to x ∈ X , written (xλ)λ∈Λ → x if for any neighbourhood U of x there
exists a i0 ∈ Λ such that xi ∈ U for i ≥ i0.

Clearly the most important example arises if we set Λ = N what yields the common
concept of a sequence in X . Sequences are sufficient to handle all convergence problems
in spaces which satisfy the first axiom of countability which includes all metric spaces.
Apart from that, there are spaces which require the more general notion of nets. These
includes for instance Hilbert spaces in the weak topology, which arising frequently in the
context of C∗- and von Neumann algebras. That the notion of a net is indeed the correct
instrument in order to characterize convergence is the content of the following

Theorem 2.25. Let X,Y be topological spaces.

(a) x ∈ A for A ⊂ X if and only if there exists a net (xλ)λ∈Λ with xλ ∈ A such that
(xλ)λ∈Λ → x.

(b) A function f : X → Y is continuous in x ∈ X if and only if for any net (xλ)λ∈Λ ⊂ X
with (xλ)λ∈Λ → xwe have (f(xλ))λ∈Λ → f(x) in Y .

So far, we have introduced two different concepts to define a notion of convergence.
Even not further used in this thesis, wewill show for the sake of completeness that they are
equivalent in a very strongway. To do so, wewill first describe a procedure for producing
a filter from a given net and as well as for producing nets from a given filter. We will then
show that the convergence properties of one carry over to the other and vice versa. IfX is a
set andF a filter onX , we define an ordering≤ onF by F1 ≤ F2 if F1 ⊃ F2 for F1, F2 ∈ F .
This turns (F ,≤) in a directed set. Any net i : F → X with the property i(F ) ∈ F for
every F ∈ F is called a derived net of F . It is important to note that derived nets are not
unique. Further, if A ⊂ X and i : Λ → X a net, we say that i is eventually in A, if A
contains some tail of the net, i.e., there exists d ∈ Λ such that Td := {i(e) | d ≤ λ ∈ Λ} ⊂ A.
If Λ is a directed set and i : Λ → X a net on X , we define

Fi := {F ⊂ X | i is eventually inF} (2.14)

and call F(Λ,i) a derived filter of the net (Λ, i). It can be easily seen that the derived filter
F(Λ,i) is indeed a filter in the sense of Definition 2.13. We have ∅ /∈ F(Λ,i) and it is closed
upwards, i.e., if (Λ, i) is eventually in F and F ⊂ G, then (Λ, i) is eventually in G. It
remains to show that F(Λ,i) is closed under finite intersections. For F1, F2 ∈ F(Λ,i), we
know that there exist d1, d2 ∈ Λ such that Td1 and Td2 are tails of (Λ, i) in F1 and F2

respectively. Since Λ is a directed set, we can find d ∈ Λ such that d1 ≤ d and d2 ≤ d.
Then we have Td ⊂ F1 ∩ F2 and thus F1 ∩ F2 ∈ F(Λ,i).

Theorem 2.26. Let (X, T ) be a topological space and x ∈ X .

(1) If (Λ, i) is a net in X , then (xλ)λ∈Λ → x if and only if the derived filter F(Λ,i) → x

(2) If F is a filter onX , then F → x if and only if every derived net of F converges to x.

Proof. To (1): This follows directly from the definition. To (2): Assume that F → x and
let (Λ, i) be a derived net of F . Further let U ∈ T such that x ∈ U . We have to show that
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there exists a tail of the net which is contained in U . Since F → x implies that F contains
every open set containing x, we have U ∈ F . We will now prove that TU ⊂ U . For V ∈ F
with U ≤ V ⇔ V ⊂ U , we have i(V ) ∈ V ⊂ U . Hence TU ⊂ U and (xλ)(Λ,i) → x. To
show the other implication, assume that every derived net (Λ, i) in X converges to x ∈ X .
Suppose that F not converges to x. Then we can find A ⊂ X containing an open set U
with x ∈ U such that A /∈ F . More precise, U /∈ F or equivalently F 6= U for all F ∈ F .
Let i be any derived net of F such that i(V ) ∈ V \ U for all V ∈ F . Then, this derived net
does not converge to x, since no point of F gets mapped into U by i. This contradicts the
assumption, so that all derived nets of F do converge to x.

2.1.3 Seminorms and local convexity

Often when vector spaces appear in the context of analysis, the notion of convergence of
a sequence is defined with respect to a given norm. For instance, a popular example is
the uniform convergence in C[0, 1] by virtue of the supremum norm || · ||∞. However,
within this framework the concept of pointwise convergence of a sequence of functions
(fk)k≥1 ⊂ C[0, 1] can not be formulated. But in order to be able to talk about convergence,
a norm is far too much, i.e., a topological structure is already sufficient. Therefore, for
t ∈ [0, 1] and (fk)k≥1 ⊂ C[0, 1] define the map pt(fk) := |fk(t)|, that is, the evaluation of
the function fk at point t. The statement that the sequence of functions (f)k≥1 converges
pointwise to f ≡ 0, can then be stated as pt(fk)

k→∞−−−→ 0 for all t ∈ [0, 1]. In the following
we mean by a vector space a vector space over K, where K = {R,C}.

Definition 2.27. Let X be a vector space. A seminorm p : X → R is a function on X such
that

(a) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

(b) p(λx) = |λ| p(x) for all λ ∈ K and x ∈ X .

A family P of seminorms on X is called separating if for each x 6= 0 there exists p ∈ P
such that p(x) 6= 0. A convex set A ⊂ X is called absorbing for X , if every x ∈ X lies
in tX for some t = t(x) > 0. Further we call A balanced, if λA ⊂ A for any λ ∈ K with
|λ| ≤ 1. The Minkowski functional µA of A is defined for x ∈ X via

µA(x) := inf {t > 0 | t−1x ∈ A} (2.15)

Lemma 2.28. Suppose that p is a seminorm on a vector space X . Then

(a) |p(x)− p(y)| ≤ p(x− y)

(b) {x ∈ X | p(x) = 0} is a linear subspace of X

(c) The set B := {x ∈ X | p(x) < 1} is convex, balanced,absorbing and p = µB

Proof. To (a). By the subadditivity of pwe have

p(x) = p(x+ y − y) ≤ p(x− y) + p(y) ⇔ p(x)− p(y) ≤ p(x− y) (2.16)

Since this also holds if the roles of x, y are interchanged and using p(x−y) = p(y−x), the
claim follows. To (b). If p(x) = p(y) = 0 and λ1, λ2 ∈ K, the non negativity of a seminorm
implies 0 ≤ p(λ1x+ λ2y) ≤ |λ1| p(x) + |λ2| p(y) = 0. To (c). If x ∈ B, then also λx ∈ B for
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|λ| ≤ 1 since p(λx) = |λ| p(x) ≤ p(x) < 1. Therefore B is balanced. Further, if x, y ∈ B
and t ∈ (0, 1), we have

p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y) < 1 (2.17)

what yields the convexity of B. If x ∈ X and s > p(x), then p(s−1x) = s1p(x) < 1, hence
B is absorbing and µB(x) ≤ s, implying µB ≤ p. But if 0 < t ≤ p(x) then p(t−1x) ≥ 1 and
thus t−1x /∈ B. Consequently p(x) ≤ µB(x)what yields p(x) = µB(x).

Theorem 2.29. LetX be a vector space and supposeP is a separating family of seminorms
on X . For each p ∈ P and n ∈ N associate the set

Up,n := {x ∈ X | p(x) < 1

n
} (2.18)

LetB be the collection of all finite intersections of the setsUp,n. ThenB is a convex balanced
local base for a topology T onX , which turnsX into a locally convex space such that the
following properties hold

(a) every p ∈ P is continuous with respect to T

(b) E ⊂ X is bounded if and only if every p ∈ P is bounded on E.

Proof. LetA ⊂ X . We declare the setA to be open if and only if it is an union of translates
of members of B. By construction this defined a translation-invariant topology T on X
as each member if B is convex and balanced and B is a local base for T . Suppose now
that x ∈ X \ {0}. Since the family of seminorms is separating, there exists p ∈ P such that
p(x) 6= 0. If np(x) > 1 then x /∈ Up,n and therefore 0 is not contained in the neighbourhood
x\Up,n of x and consequently x is not in the closure of {0}. Thus {0} is a closed set and by
the translation invariance of T , every set of the form {x}with x ∈ X is a closed set. Further
we have to prove that the vector space operations addition and scalar multiplication are
continuous with respect to T . Let N0 be a neighbourhood of 0 in X . Then there exists
p1, ..., pn ∈ P and n1, ..., nn ∈ N such that

N ⊃ Up1,n1 ∩ · · · ∩ Upn,nn (2.19)

DefineU := Up1,n1∩· · ·∩Upn,nn. Since any seminorm p ∈ P is subadditive, alsoU+U ⊂ N ,
hence addition is continuous. For x ∈ X and λ ∈ K let U and N as be constructed in
(2.19). Then there exists s > 0 such that x ∈ sU >. Set t := s(1 + |λ|s)−1. If y ∈ x + tU
and |κ− λ| < s−1 we have κy − λx = κ(x− y) + (κ− λ)xwhich lies in

|κ|tU + |κ− λ|sU ⊂ U + U ⊂ N (2.20)

since |κ|t ≤ 1 and U is by assumption balanced. Consequently scalar multiplication is
continuous. Summing up, X is a locally convex space. Hence by Lemma 2.28 (a) the
seminorm p is continuous onX with respect to T . To show (b), suppose thatE is bounded
and fix p ∈ P . Since Up,1 is a neighbourhood of 0, we have E ⊂ kUp,1 for a sufficient large
k <∞. Therefore p(x) < k, for every x ∈ E and every p ∈ P is bounded onE. Conversely
assume that E ⊂ X such that all p ∈ P are bounded on E. Let U be a neighbourhood of
0 such that U ⊃ Up1,n1 ∩ ... ∩ Upn,nn. Then there are numbersMi < ∞ such that pi < Mi

on E for i = 1, ..., n. If ` > Mini it follows E ⊂ `U , so that E is bounded.
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2.2 C∗-algebras

Definition 2.30. A Banach algebra is a Banach space (A, || · ||) that is in addition an algebra
in which

||ab|| ≤ ||a|| ||b|| ∀a, b ∈ A (2.21)

An involution on an algebraA is a R-linear map ∗ : A→ Awith a 7→ a∗ such that a∗∗ = a,
(ab)∗ = b∗a∗ and (λa)∗ = λa∗ for all a, b ∈ A and λ ∈ C. An algebra with an involution is
called a ∗-algebra. A C∗-algebra is a Banach algebra Awith an involution in which

||a∗a|| = ||a||2 ∀a ∈ A (2.22)

Example 2.31. There are two main examples of C∗-algebras that will appear frequently
in this thesis.

(1) Let X be a locally compact Hausdorff space and denote with C0(X) the set of all
continuous functions f : X → C that vanish at infinity. If one equips this set with
pointwise operations, i.e., (fg)(x) = f(x)g(x) and (λf + g)(x) = λf(x) + g(x) this
turns C0(X) into an algebra. Furthermore, there is a natural involution inherited
from C, namely f∗(x) = f(x) and a natural norm ||f ||∞ = supx∈X |f(x)|. The al-
gebra C0(X) is unital if and only if X is compact. In this case the identity element
is given by the function f(x) = 1 for all x ∈ X . The most important property of
(C0(X), || · ||∞) is that it constitutes a commutative C∗-algebra.

(2) Let H be a Hilbert space and B(H) the set of all bounded linear operators from H
to itself, with the obvious algebraic operations (+, ·) and the involution given by
the adjoint. The norm is taken to be the operator norm, i.e., for x ∈ B(H) we have
||x|| = sup {||xξ|| | ξ ∈ H , ||ξ|| = 1}. It is a unitalC∗-algebra, where the unit is given
by the identity operator 1H. If dim(H) > 1,B(H) is a non-commutative C∗-algebra.

To be more precise, Definition 2.30 is the definition of an abstract C∗-algebra, which is
strongly motivated by the structure of B(H), as introduced in Example 2.31. Moreover,
each operator norm-closed ∗-algebra in B(H) is a C∗-algebra. In Theorem 2.40 we will
see, that this are in fact all possible examples.

Definition 2.32. Let A be an algebra and S ⊂ A a subset. We call the set

S
′
:= {a ∈ A | sa = as ∀s ∈ S} (2.23)

the commutant of S. The double commutant SS′′ of S is defined by S′ = (S′)′.

Definition 2.33. A homomorphism between C∗-algebras A,B is a linear map ϕ : A →
B such that for all a1, a2 ∈ A we have ϕ(a1a2) = ϕ(a1)ϕ(a2) and ϕ(a∗) = ϕ(a)∗. An
isomorphism between two C∗-algebras is an invertible homomorphism. If A and B are
isomorphic as C∗-algebras, we write A ∼= B.

2.2.1 The structure of states

Definition 2.34. A state on a C∗-algebra A is bounded linear map φ : A→ C that satisfies

(1) φ(a∗a) ≥ for all a ∈ A
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(2) ||φ|| = 1, i.e., it is normalized

A state φ : A → C is called normal if for each collection {pi} of mutually orthogonal
projectors of A one has

φ

(∑
i

pi

)
=
∑
i

φ(pi) (2.24)

The weak operator topology on B(H) is defined by saying that aλ → a for some net
(aλ)λ∈Λ if 〈v, (aλ − a)w〉 → 0 for all v, w ∈ H. The strong operator topology on B(H)
yields convergence of some net (aλ)λ∈Λ if ||(aλ − a)v|| → 0 for each v ∈ H. This can
be seen also in the context of locally convex topologies. One can equivalently define the
weak operator topology onB(H) as the locally convex topology induced by the family of
seminorm {pv,w(A) | v, w ∈ H}with pv,w(A) := |〈Av,w〉| and the strong operator topology
as the topology induced by the family of seminorms {pv(A) | v ∈ H}where pv(A) = ||Av||.

Theorem 2.35. The following conditions on a linear functional on B(H) are equivalent

(1) φ(x) =
∑n

k=1〈xξk|ηk〉 for some ξk, ηk ∈ H and all x ∈ B(H)

(2) φ is weakly continuous

(3) φ is strongly continuous

Proof. The implications (1) ⇒ (3) ⇒ (3) are clear since the weak topology is weaker than
the strong topology which is itself weaker than the norm topology. We proceed by show-
ing that (3) ⇒ (1). Let φ be strongly continuous. Then we can find vectors ξ1, ..., ξn ∈ H
such that maxk||xξk|| ≤ 1 implies |φ(x)| ≤ 1 for all x ∈ B(H). Therefore we have

|ϕ(x)|2 ≤
n∑

k=1

||xξk||2 (2.25)

DefineK := ⊕n
k=1H to be the orthogonal sum of n copies ofH, set ξ = ξ1⊕· · ·⊕ ξn ∈ K as

the orthogonal sum of the ξk. Further define a functional ρ on the subspace ofK consisting
of vectors of the form τ(x)ξ for x ∈ B(H) where τ : B(H) → B(Hn) with τ(x)kk = x and
τ(x)kl = 0 if k 6= l. The functional ψ acts as ψ(τ(x)) = ϕ(x) and by (2.25) it is also
continuous, since |ψ(τ(x)ξ)|2 ≤ ||τ(x)ξ||2. By virtue of the Hahn-Banach theorem we can
extend ψ to the whole space Hn. By the Riesz-representation theorem, there is a vector
η = (η1, ..., ηn) ∈ Hn such that ψ = 〈· | η〉. In particular, we have

ϕ(x) = ψ(τ(x)ξ) = 〈τ(x)ξ|η〉 =
n∑

k=1

〈xξk|ηk〉 (2.26)

Corollary 2.36. Every strongly closed, convex set in B(H) is weakly closed. In particular,
every strongly closed subspace of B(H) is weakly closed.

Theorem 2.37 ([36]). For ω ∈ S(B(H)) the following are equivalent

(a) ω is normal

(b) ω(a) = limλω(aλ) for all aλ ↗ a
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(c) ω(a) = tr[ρa] for some density operator ρ ∈ D(H)

(d) ω is σ-weakly continuous

Corollary 2.38. Let A ⊂ B(H) be a unitary C∗-algebra in B(H) ans let ωA be a pure state
on A. The set

SA := {ω ∈ S(B(H)) |ω|A = ωA} (2.27)

is a compact convex subset of the total state spaceS(B(H)). Further the extreme boundary
∂eSA consists of pure states onB(H), i.e., ∂eSA ⊂ P (B(H)). In particular ωA has a unique
extension to a state on B(H) if and only if it has a unique pure extension.

Proof. It is clear that the set SA is w∗-compact and convex. Let ω ∈ ∂eSA and suppose
ω is not pure, i.e., ω = tω1 + (1 − t)ω2 for some t ∈ (0, 1) and ω1, ω2 ∈ S(B(H)). By
assumption we have that ω|A = tω1|A + (1 − t)ω2|A is pure on A and consequently we
have ωA = ω1|A = ω2|A and ω1, ω2 ∈ SA. Since ω ∈ ∂eSA this implies ω = ω1 = ω2 and
thus ω is pure onB(H). To prove the last claim, observe that SA only contains one element
if and only if ∂eSA contains one element.

Theorem 2.39. There is a bijective correspondence between pure states on `∞(N) and ul-
trafilters on N. In particular, any pure state ω ∈ S(`∞(N)) is of the form

ω(diag(x)) = lim
U
x (2.28)

for all x ∈ `∞(N) and some unique ultrafilter U .

Proof. Suppose that ω is a pure state on `∞(N). For A ⊂ N denote by ΠA the orthogonal
projection of `2(N) onto span({ej | j ∈ A}). Now define U := {A ⊂ N |ω(ΠA) = 1}. We
are now going to show that U is an ultrafilter. By Theorem 2.8, the Stone-Čech compactifi-
cation ofN is amaximal compact Hausdorff space βN, which containsN as a dense subset.
By the universal property of βN, the space `∞(N) is isometric isomorphic to C(βN). By
virtue of the Riesz representation theorem, positive functionals on C(βN) can be identi-
fied with regular Borel measures. Thus, ω corresponds to a probability measure on βN.
Since we assume ω to be pure, this measure has only mass in one point of βN. Con-
sequently we have ω(ΠA) = ω(ΠA)

2 which implies ω(PA) ∈ {0, 1}. Similar we have
ω(ΠA∩B) = ω(ΠA)ω(ΠB) for any A,B ⊂ N and therefore U must be an ultrafilter. We
now show the uniqueness. Every x ∈ `∞(N) can be approximated in norm by simple
functions, i.e., finite linear combinations of indicator functions 1Aj for disjoint subsets
Ai ⊂ N. By definition we have

ω(diag(1Ai)) = ω(ΠAi) = lim
U

1Ai =

{
1 ifAi ∈ U
0 otherwise

(2.29)

Hence (2.28) holds for all indicator functions. Since functions of this type are dense [34],
the claim holds for arbitrary x ∈ `∞(N). It follows that two distinct pure states must
correspond to distinct ultrafilters.
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2.2.2 Classification of C∗-algebras

Theorem 2.40. Each C∗-algebra A is isomorphic to a norm-closed ∗-algebra in B(H), for
some Hilbert spaceH.

The proof of Theorem 2.40 relies on the so called GNS-construction. This ingenious
construction discovered independently by Gelfand and Naimark [45, 46] and I. Segal
[47]is one of the most fundamental ideas of the theory of operator algebras and provides
a method for manufacturing representations of C∗-algebras.
Definition 2.41. A representation of aC∗-algebraA is a ∗-homomorphism fromA toB(H)
for some Hilbert space H. Two representations π and ρ of A on Hilbert spaces X and
Y respectively are unitarily equivalent if there is a unitary operator U ∈ B(X,Y ) with
Uπ(x)U∗ = ρ(x) for all x ∈ A. A subrepresentation of a representation π on H is the
restriction of π to a closed invariant subspace of H. A representation is irreducible if it
has no closed invariant subspaces. If I 6= ∅ index set and πi a representation of A on Hi,
then the sum ⊕iπi of the πi is the diagonal sum acting on ⊕iHi. If each πi is equivalent
to a fixed representation ρ, then ⊕iπi is called amplification of ρ by |I|. A representation
with kernel 0 is called faithful. We call a representation π cyclic, if its carrier space H
contains a cyclic vector ξ for π, i.e., the closure of π(A)ξ coincides with H and it is called
nondegenerate that π(a)v = 0 for all a ∈ A and v ∈ H implies v = 0.
Theorem 2.42 (GNS construction). LetA be a unitalC∗-algebra 5 and φ a state onA. There
exists a cyclic representation πφ ofA on a Hilbert spaceHφ with cyclic unit vector ξϕ such
that

φ(a) = 〈ξφ, πφ(a)ξφ〉 , a ∈ A (2.30)

Proof. We first consider the special case where φ(a∗a) > 0 for all a ∈ A \ {0}. Define a
sesquilinear from (·, ·) on A by (a, b) := φ(a∗b). Since φ is a state, the sesquilinear form is
positive andwe can completeA in the ensuing normgiven by ||a||φ =

√
φ(a∗a) to aHilbert

space Hφ. For each a ∈ A define the map πφ(a) : A → A via πφ(a)b = ab, i.e., the left
multiplication by a ∈ A. Regarding A as a dense subspace ofHφ this defines an operator
πφ(a) on a dense domain in Hφ. This operator is bounded since ||πφ(a)|| ≤ ||a||. Hence
we can extend πφ(a) from A to Hφ by continuity and we obtain a map πφ : A → B(Hφ).
A direct calculation shows that πφ is indeed a representation. The cyclic vector ξφ is given
by the unit 1 ∈ A, seen as an element ofHφ. Clearly, this element is cyclic and we have

||ξφ||2 = 〈ξφ, ξφ〉 = φ(1∗1) = φ(1) = 1 and 〈ξφ, πφ(a)ξφ〉 = φ(1∗a1) = φ(a) (2.31)

Suppose now that there exists states φ on A such that φ(a∗a) = 0 for some a ∈ A. For an
arbitrary state φ define

Nφ := {a ∈ A |φ(a∗a) = 0} (2.32)

and consider the quotient space A/Nφ. If [a]φ denotes the image of a ∈ A under the
projection in A/Nφ we can define an inner product on A/Nφ via 〈[a]φ, [b]φ〉 := φ(a∗b).
This form is well defined and positive definite, hence we can define the Hilbert spaceHφ

as the completion of A/Nφ with respect to this inner product. Furthermore define

πφ(a) : A/Nφ → Hφ with [b]φ 7→ πφ(a)[b]φ := [ab]φ (2.33)

This map πφ(a) is well defined for each a ∈ A, sinceNφ is a left ideal in A. If we define in
addition ξφ = [1]φ, the claim follows.

5The theorem remains true even if A is not unital.

21



It is important to note that the proof of Theorem 2.42 also proves Theorem for the case
that there exists a state φ ∈ S(A) with φ(a∗a) > 0 for all a ∈ A. In this case πφ(a) = 0
implies ||πφ(a)ξφ||2 = 0, where ||πφ(a)ξφ|| = 〈ξφ, πφ(a∗a)ξφ〉 = φ(a∗a). Thus πφ is faithful.
Another important property of the GNS-construction is the link between the purity of a
state φ and irreducibility of the corresponding representation πφ. To be more precise, we
have the following

Theorem 2.43. Let A be a unital C∗-algebra and π = (π,H) be a representation. The
following claims are equivalent

(a) π is irreducible

(b) π(A)′ = C · 1

(c) π(A)′′ = B(H)

(d) Every vector inH is cyclic for π(A)

Furthermore, ifφ ∈ S(A) thenφ is pure if and only if the correspondingGNS-representation
πφ is irreducible.

Proof. Suppose π is irreducible but π(A)′ 6= C · 1. Then π(A)′ must contain a nontrivial
self-adjoint element a ∈ A, since it is a ∗-algebra and therefore also a nontrivial projection
P . But if P ∈ π(A)′, then P (H) is stable under π(A) and thus π cannot be irreducible.
Thus (a)⇒ (b). Conversely assume that π(A)′ = C ·1. Then πmust be irreducible, since if
not, any projection onto some proper stable subspace K ⊂ A for π would be a nontrivial
element of π(A)′. The equivalence (b) ⇒ (c) is clear, since (C · 1)′ = B(H). Assume that
there exists v ∈ H which is not cyclic for π. Then π(A)v would be a proper π(A)-stable
subspace ofH, so that (a)⇒ (d). The converse is obvious, sinceK ⊂ A is stable for π(A),
then (d) cannot hold.

Corollary 2.44. Let A be a unital C∗-algebra and π : A→ B(H) cyclic representation on a
Hilbert spaceH. If v ∈ H is a cyclic unit vector for π, then

φ(a) := 〈v, π(a)v〉 (2.34)

is a state on A, whose GNS-representation πφ is unitarily equivalent to π.

Proof. Define a map u : Hφ → H on the dense subspace πφ(A)ξφ of H by uπφ(a)ξφ =
π(a)v, whereHφ is constructed as in the proof of Theorem 2.42. From this we obtain

||πφ(a)ξφ||2 = φ(a∗a) = 〈v, π(a∗a)v〉 = ||π(a)v||2 (2.35)

Hence u is a well defined map and an isometry, such that we can extent it to Hφ by con-
tinuity. Further im(u) = π(A)v which coincides with H, since v is cyclic by assumption.
Consequently u is a surjective isometry, i.e., unitary. In addition we have for a, b ∈ A

uπφ(a)πφ(b)ξφ = π(a)π(b)v = π(a)uπφ(b)ξφ (2.36)

Therefore uπφ(a) = π(a)u on the dense subspace πφ(A)ξφ and thus they coincide every-
where.

Corollary 2.45. Let A be a unital C∗-algebra and π : A → B(H) nondegenerate represen-
tation on a Hilbert spaceH. Then π is a direct sum of cyclic representations of A.
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Proof. Let I 6= ∅ be some index set and consider families of vectors (vi)i∈I ⊂ H of nonzero
vectors vi such that

〈π(a)vi, π(b)vj〉 = 0 (2.37)

for all a, b ∈ A and i, j ∈ I with i 6= j. Such families are partially ordered by inclusion
and by virtue of Zorn’s Lemma we can conclude that there exists a maximal such family.
Suppose that (vi)i∈I is such a maximal family. We define Hi := π(A)vi ⊂ H . Since π is a
homomorphism, each Hi is stable under π(A) and thus the restriction πi(a) of π(a) to Hi

defines a representation of A itself, which is cyclic by construction. Hence

H =
⊕
i∈I

Hi and π =
⊕
i∈I

πi (2.38)

Proof of Theorem 2.40. Consider the Hilbert space Hc := ⊕φ∈S(A)Hφ, where P(A) de-
notes the pure state space of A. The Hilbert space Hc naturally carries a representation
π = ⊕φ∈P(A)πφ. If π(a) = 0 then also π(a∗a)ξφ = 0 for each φ ∈ P(A). Since φ(a) =

〈ξφ, πφ(a)ξφ〉 this implies φ(a∗a) = 0. From this we can conclude 6 that σ(a∗a) = {0}, from
what we can conclude ||a|| = 0, thus a = 0. Consequently π is injective which proves
Theorem 2.40.

2.3 Von-Neumann algebras

In the following, we will investigate a special instance of a C∗-algebra, that frequently
appears in mathematics as well as in physics, e.g., quantum field theory. The subject of
operator algebras historically started with what is nowadays called von Neumann alge-
bras, in honor of the founder of the subject.

2.3.1 The double commutant theorem

Definition 2.46. Let H be a Hilbert space. If A is a strongly closed ∗-subalgebra of B(H),
i.e., closed in the strong operator topology, we call A a von-Neumann algebra on B(H).

Theorem 2.47 (Neumann). Let A ⊂ B(H) be a unital, self-adjoint ∗-subalgebra of B(H).
Then the following conditions are equivalent

(1) A is a von Neumann algebra

(2) A′′ = A

(3) A is closed in the weak operator topology

Proof. The implication (a) ⇒ (b) follows directly and the equivalence (b) ⇔ (c) follows
from Corollary 2.36. It remains to prove (c) ⇒ (a). For this consider for each ξ ∈ H the
projection p ofH ontoAξ, the norm closure of the set {Aξ | ξ ∈ H}. For each x ∈ A, we then

6In order tomake this conclusion, one needs a theorem of the following kind: LetA be a unitalC∗-algebra.
For any normal element A ∈ A and λ ∈ σ(a) there is a pure state φ ∈ P(A) such that ω(a) = λ. Since the
proof typically relies on Gelfand-theory, i.e., the Gelfand isomorphism for commutative C∗-algebras what
was not introduced so far, we omit the proof. We refer the reader to [34, 35, 36].
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have (xp)(H) ⊂ p(H) whenever (1− p)xp = 0. Choosing x to be self-adjoint, i.e., x = x∗,
this implies that xp = pxp is also self-adjoint whence xp = px. Since A is self-adjoint,
it follows that x ∈ A′. Now let y ∈ A′′. By definition, we have yp = py and therefore
yξ ∈ p(H), since pξ = ξ, as A is assumed to be unital. For each ε > 0 we can therefore
find x ∈ A such that ||yξ − xξ|| < ε. Hence, y can be approximated with elements from
A on each single vector ξ ∈ H. Now take ξ1, ..., ξn ∈ H and define similar to the proof of
Theorem 2.35 ξ ∈ Hn as the orthogonal sum of the ξk. By using B(Hn) ∼= Mn(B(H)) we
see that

(rτ(x)− τ(x)r)kl = rklx− xrkl (2.39)

for every r = (r)kl ∈ Mn(B(H)) and x ∈ B(H). From this it follows that the commutant
of τ(A) in Mn(B(H) consists of the matrices with entries in A′, i.e., τ(A)′ =Mn(A

′). If we
now apply the first part of the proof with Hn, τ(A) and τ(s) in place of H, A and s, we
obtain an element x ∈ A such that

n∑
k=1

||(s− t)ξk||2 = ||(τ(s)− τ(x))ξ||2 < ε2 (2.40)

Consequently, every s ∈ A′′ can be approximated arbitrarily well in the strong topology
with elements from A. Since A was assumed to be strongly closed, we have s ∈ A and
A′′ = A.

Example 2.48. Let Ω be a compact Hausdorff space and suppose that µ is a finite positive
regular Borel measure on Ω, i.e., µ(A) = sup{µ(K) |K ⊂ A , K compact} for all A ∈
B(Ω). We will show that

L∞(Ω, µ) → B(L2(Ω, µ)) , ϕ 7→Mϕ where Mϕ(f) = ϕf (2.41)

for all f ∈ L2(Ω, µ) is an isometric ∗-homomorphism. That the mapMϕ is bounded fol-
lows from

||Mϕ(f)||22 =
∫

Ω
|ϕ(ω)f(ω)|2 dµ(ω) ≤ ||ϕ||2∞

∫
Ω
|f(ω)|dµ(ω) = ||ϕ||2∞||f ||22 (2.42)

By definition of the operator norm it follows from (2.42) that ||Mϕ|| ≤ ||ϕ||∞ <∞. Wewill
callMϕ themultiplication operator. Further the adjoint ofMϕ is given byMϕ and thus the
map ϕ 7→Mϕ is a ∗-homomorphism. Wewill now show that this map is also an isometry,
i.e., we have ||ϕ||∞ = ||Mϕ||. This can be proven by contradiction. So assume that this
map is not an isometry and hence there exists ε > 0 such that ||ϕ||∞ − ε > ||Mϕ||. This
implies the existence of a Borel set S ∈ B(Ω) such that µ(S) > 0 and |ϕ(ω)| > ||Mϕ|| + ε
for all ω ∈ S. Since µ is a regular measure, we can assume that S is compact. Using again
the regularity of µwe also have µ(S) <∞. This implies

||M2
ϕ||µ(S) ≥ ||MϕχS||22 =

∫
Ω
|ϕ(ω)χS(ω)|2 dµ(ω) ≥

∫
Ω
(||Mϕ||+ ε)2χS(ω)dµ(ω)

(2.43)

Since (||Mϕ||+ ε)2 is independent of ω and the integral of a simple function χS(ω) is equal
to the evaluation of the measure µ(S) we obtain after dividing by µ(S), that ||Mϕ|| ≥
||Mϕ|| + ε. But this is a contradiction to ε > 0 and we have ||Mϕ|| = ||ϕ||∞. To sum up,
we have shown that the map ϕ 7→ Mϕ is an isometric ∗-isomorphism of L∞(Ω, µ) onto a
C∗-subalgebra of B(L2(Ω, µ)). In particular, the space C = {Mϕ |ϕ ∈ L∞([0, 1], λ1)} is an
abelian subalgebra of B(L2([0, 1], λ1)).
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Theorem 2.49. Let H be a separable Hilbert space and let A ⊂ B(H) be an abelian von
Neumann algebra. Then A = W ∗(a) for some self-adjoint operator a ∈ B(H), i.e., A is
generated by a single element.

Theorem 2.50. A maximal self-adjoint operator a ∈ B(H) is unitarily equivalent to the
multiplication operator on L2(σ(a), µ), where µ is a probability measure on the spectrum
σ(a) ⊂ R. In particular, the map B(σ(a)) → W ∗(a) induces an isomorphism of von
Neumann algebras

2.3.2 The classification of maximal abelian ∗-algebras in B(H)

In the following we are going to prove a theorem, which classifies all maximal abelian
∗-subalgebras in B(H) up to unitary equivalence. As we will see, in contrast to the finite
dimensional case where themaximal abelian subalgebra ofB(H ) was simply the set of all
diagonal matrices onH and therefore isomorphic toCn with n = dim(H), the uniqueness
is lost on the general case.

Definition 2.51. Let A1 = (X1,Σ1, µ1) and A2 = (X2,Σ2, µ2) be measure spaces.

(a) We call A1 and A2 equivalent if there exists a measurable bijection ϕ : X1 → X2

with a measurable inverse and if the measures ϕ∗µ1 and µ2 are equivalent in the
sense that ϕ∗µ1(A2) = 0 if and only if µ2(A2) = 0 for each A2 ∈ Σ2. Here ϕ∗µ1 is a
measure defined on (X2,Σ2) by virtue of

ϕ∗µ1(A2) = µ1(ϕ
−1(A2)) with A2 ∈ Σ2 (2.44)

(b) We call A1 and A2 isomorphic, if there exists a measurable bijection ϕ : X1 → X2

with measurable inverse and ϕ∗µ1(A2) = µ2(A2) for all A2 ∈ Σ2.

Lemma 2.52. Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be measure spaces, where K1,K2 ⊂ R are
compact subsets and Σi is a σ-algebras on Ki inherited from the Borel structure on R for
i = 1, 2. Further µ1, µ2 are probability measures on (K1,Σ1) and (K2,Σ2) respectively
and suppose that the measure spaces (X1,Σ1, µ1) and (X2,Σ2, µ2) are isomorphic. Then
there exists a unitary operator such that

u : L2(K1, µ1) → L2(K1, µ2) with uL∞(K1, µ1)u
−1 = L∞(K2, µ2) (2.45)

Proof. In the following we will assume that all appearing maps are measurable with re-
spect to the Borel structure on R. First recall that for an invertible map ϕ : K1 → K2 the
substitution formula is given by∫

K2

f ◦ ϕ−1 d (ϕ∗µ1) =

∫
K1

f dµ1 (2.46)

where f : K1 → C. If ϕ is an isomorphism of measure spaces, (2.46) can we rewritten as∫
K2

f ◦ ϕ−1 dµ2 =
∫

K1

f dµ1 (2.47)

If ϕ∗µ1 and µ2 are equivalent, they are also mutually absolutely continuous and thus the
Radon-Nikodym derivatives d(ϕ∗µ1)/dµ2 and d(ϕ−1

∗ µ2)/dµ1 exist. Using the Radon-
Nikodym theorem and (2.47) one obtains that the operator

u : L2(K1, µ1) → L2(K2, µ2) with L2(K1, µ1) 3 ξ 7→ uξ :=

√
d(ϕ∗µ1)

dµ2
ξ ◦ ϕ−1 (2.48)
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is isometric. In addition, the map u also has an inverse given by

u−1 : L2(K2, µ2) → L2(K1, µ1) with L2(K2, µ2) 3 ψ 7→

√
d(ϕ−1

∗ µ2)

dµ1
ψ ◦ ϕ (2.49)

what turns u into a unitary map. From Example 2.48 we already know that for f ∈
L∞(K1, µ1) we have uMfu

−1 = Mf◦ϕ−1. Further Example 2.48 tells us that the map f 7→
Mf injects L∞(K1, µ1) isometrically intoB(L2(K1, µ1) and the analog statement holds for
L∞(K2, µ2). The map f 7→ f ◦ ϕ−1 given then an isomorphism between L∞(K1, µ1) and
L∞(K2, µ2). This follows from the fact that ||f ◦ ϕ−1||ess∞ = ||f ||ess∞ what yields injectivity.
The surjectivity follows then from the invertibility of ϕ, since g ∈ L∞(K2, µ2) is the image
of f = g ◦ ϕ ∈ L∞(K1, µ1).

The next theorem is a deep and fundamental classification theorem in measure theory
and goes back to thework of Kuratowski. In its general form it applies to polish spaces i.e.,
separable completely metrizable topological spaces. In the context of the classification of
maximal abelian ∗-subalgebras if B(H) it is sufficient to state it for probability measures
on compact spacesK ⊂ [0, 1].

Theorem 2.53 (Kuratowski). Let (K,Σ, µ) be a probability space with K ⊂ R compact,
Σ σ-algebra inherited from B(R) such that µ(A) > 0 for infinitely many A ∈ Σ. Then
(K,Σ, µ) is isomorphic to one of the following possibilities:

(a) ([0, 1],B([0, 1]), λ1)

(b) ([0, 1],B([0, 1]), µ)where µ = tλ1 + (1− t)ν and t ∈ (0, 1)

(c) ([0, 1],B([0, 1]), µ)where µ = tλ1 + (1− t)µn, t ∈ (0, 1) and µn

(d) K = ~N = {2−n : n ∈ N} ∪ {1} equipped with any probability measure ν for which
ν({2−n}) > 0 for each n ∈ N and ν({1}) = 0.

where µn is an arbitrary strictly nonzero probability measure on the n-point set ~n :=
{ 1
n , ...,

n−1
n , 1}.

Theorem 2.54. LetH be a separable Hilbert space and letA ⊂ B(H) be a maximal abelian
subalgebra. Then A is unitarily equivalent to one of the following objects:

(a) L∞(0, 1) ⊂ B(L2(0, 1))

(b) `∞(N) ⊂ B(`2(N))

(c) L∞(0, 1)⊕ `∞(N) ⊂ B(L2(0, 1)⊕ `2(N))

(d) L∞(0, 1)⊕Dn(C) ⊂ B(L2(0, 1))⊕ Cn for some n ∈ N

Further all this possibilities are mutually unitarily inequivalent.

Proof. We first show that all this possibilities are mutually unitarily inequivalent. This
can be proven by using the notion of atomic projections in a von Neumann algebraM ⊂
B(H). For the situation here, we can easily classify the projections. The nonzero projec-
tions in L∞([0, 1]) are the characteristic functions on measurable subsets of [0, 1] of pos-
itive Lebesgue measure. Since any such subset properly contains another such subset,
there are no atomic projections in L∞([0, 1]). The nonzero projections in `∞(N) are given
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by the characteristic functions on N, i.e., the one-dimensional projections δx for x ∈ N.
Hence `∞(N) has countably many atomic projections. In particular, each projection ma-
jorizes an atomic one. In the sameway, also L∞(0, 1)⊕`∞(N) has countably many atomic
projections, namely those which stem from `∞(N) as well as uncountably many projec-
tions that do not majorize any atomic one. For the case of L∞(0, 1)⊕Dn(C) first note that
the atomic projections ofDn(C) are the one-dimensional ones and thus L∞(0, 1)⊕Dn(C)
has exactly n atomic projections as well as uncountably many projections that do not ma-
jorize any atomic one, namely the ones in L∞(0, 1). Since unitary equivalence preserves
the structure of atomic projections, each pair of elements from the list (a)-(d) cannot be
unitarily equivalent. The remaining step is to prove that (a)-(d) already covers all possi-
bilities. Due to Theorem 2.49 it is sufficient to consider abelian von Neumann algebras
A = W ∗(a) for some amaximal. Further by virtue of Theorem 2.50 we can restrict to the
case where a is the position operator on L2(K,µ) where K = σ(a) ⊂ R is compact and µ
is a regular probability measure with respect to the Borel structure inherited from R and
supp(µ) = K and therefore

W ∗(a) = L∞(K,µ) ⊂ B(L2(K,µ)) (2.50)

We can now use Theorem 2.53 to obtain that one of the possibilities is given byW ∗(a) =
([0, 1],B([0, 1]), λ1) what implies that A ∼= L∞(0, 1) ⊂ B(L2(0, 1)) and thus gives the first
unitary equivalence (a). To obtain the second define u : L2(~N, ν) → `2(N) via uψ(n) =√
ν(n)ψ(2−n). This operator is unitary and it intertwines UL∞(~N, ν)u−1 = `∞(N). There-

fore we obtain case (b). The cases (c), (d) can be obtained by the following construction.
Denote byA ⊂ K the set of atoms in (K,Σ, µ). Clearly one can decomposeK into disjoint
subsets of the form

K = (K \ A
⊔

A) (2.51)

For a given measure µ this gives rise to an orthogonal decomposition in the sense that
L2(K,µ) = L2(K \ A, µ) ⊕ L2(A, µ). Further if we denote by π = 1K\A the projection
onto the subset K \ A and 1L2(K,µ) − π = 1A we can write L2(K \ A, µ) = πL2(K,µ)
and L2(A, µ) = 1AL

2(K,µ). Since the measure µ can be decomposed into an atomic
part µa and a continuous part µc this gives L2(K,µ) = L2(K,µc) ⊕ L2(A, µa) what in-
duces a decomposition L∞(K,µ) = L∞(K,µc) ⊕ L∞(A, µa), L∞(K,µc) = πL∞(K,µ) =
πL∞(K,µ)π as well as L∞(A, µa) = 1AL

∞(K,µ). This proves that ([0, 1],B([0, 1]), µ)
where µ = tλ1 + (1 − t)ν and t ∈ (0, 1) from Theorem 2.53 yields (c). To obtain (d)
consider the unitary map

u : L2(~n, µn) → Cn with uψm =

√
µn(

m

n
)ψ(

m

n
) for m = 1, ..., n (2.52)

which yields the unitary equivalence uL∞(~n, µn)u
−1 = Dn(C).

2.4 Frame-Theory

In the theory of vector spaces one of the most fundamental concepts is that of a basis.
Given a basis for the vector space, one can write any element in the space in a unique way
as a linear combination of elements in the basis. Thought the conditions to a basis are
very restrictive, e.g., no linear dependence of the basis elements and in certain situations
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one also requires orthogonality. This makes it difficult or impossible to incorporate extra
conditions to a given basis. The notion of a frame weakens these conditions and therefore
provides a more flexible tool. In the notation and representation we mainly follow [41].

Definition 2.55. Let I be a at most countable index set. A family of elements {fi}i∈I ⊂ H
is called a frame forH if there exists constants A,B > 0 such that

A||f ||2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B||f ||2 ∀ f ∈ H (2.53)

The numbers A, B are called frame bounds. The optimal lower and upper frame bound
is the supremum over all lower frame bounds and the optimal upper frame bound is the
infimum over all upper frame bounds. The frame is called normalized, if ||fi|| = 1 for all
i ∈ I .

Here it is important to note that the optimal frame bounds are actual frame bounds.
Further, if |I| = n <∞ the Cauchy-Schwarz inequality yields

n∑
i=1

|〈f, fi〉|2 ≤

(
n∑

i=1

||fi||2
)
||f ||2 =: B ||f ||2 (2.54)

Figure 2.1: Configuration of vectors of theMercedes frame. Each of the vectors is of length
one, i.e., a member of the unit sphere S1. Further they are located equiangular.

Definition 2.56. If only the right hand side of (2.53) is given, we call (fi)i∈I a Bessel se-
quence with Bessel bound B. If A = B, we call it an A-tight frame and if A = B = 1 it
is called a Parseval frame. If ||fi|| = α ∈ R for all i ∈ I it is an equal norm frame and if
||fi|| = 1 for all i ∈ I , it is a unit norm frame.

Obviously, every orthonormal basis for a Hilbert spaceH is a Parseval frame. If (ei)i∈I
denotes this basis and f ∈ H we have∑

i∈I
|〈f, ei〉|2 = 〈f,

∑
i∈I

〈f, ei〉ei〉 = 〈f, f〉 = ||f || (2.55)

Due to this equality we can choose A = B = 1 and obtain therefore a unit norm Parse-
val frame. However, not any Parseval frame is necessarily orthogonal nor a basis. For
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instance, consider the so called Mercedes frame, which is a frame for R2 consisting of
three vectors w1, w2, w3. The exact form of the vectors is given by wk = (cos(2π3 (k −
1)), sin(2π3 (k − 1))) for k = 1, 2, 3. Clearly, this is a unit norm frame which is also tight,
as the upper and lower bound can be easily computed to A = B = 3

2 . A rescaling of
the vectors wk by α =

√
(2/3) yields a new frame (v1, v2, v3) with vk = αwk which is a

Parseval frame for R2, i.e., every vector ξ ∈ R2 satisfies

ξ = 〈ξ, u1〉u1 + 〈ξ, u2〉u2 + 〈ξ, u3〉u3 (2.56)

Note that the coefficients in the linear combination (??) are not unique, i.e., theremay exist
other coefficients κk different from 〈ξ, uk〉, such that ξ = κ1u1 + κ2u2 + κ3u3. However, it
turns out that the frame representation f =

∑
i∈I〈f, fi〉fi shares useful stability properties.

Apart from this easy example, one usually requires much larger sets of vectors that form
a frame, often in very high dimensional spaces.

Theorem 2.57. Let {fi}ni=1 ⊂ H be a sequence. Then {fi}ni=1 is a frame for span{fi}ni=1.

Proof. Without loss of generality we can assume that not all fi are zero. As we have
already seen above, by choosing

B =

n∑
i=1

||fi|| (2.57)

we can fulfill the upper frame condition. Denote byW = span{fi}ni=1 and consider the
mapping

ϕ : H → R , f 7→
n∑

i=1

|〈f, fi〉|2 (2.58)

Recall that H is finite dimensional if and only if the unit ball is compact. SinceW ⊂ H,
also the unit ball ofW is compact and thus we can find a g ∈W with ||g|| such that

A :=

n∑
i=1

|〈g, fi〉|2 = inf
{ n∑

i=1

|〈f, fi〉|2 : f ∈W , ||f || = 1
}

(2.59)

since ϕ reaches as a continuous function its maximum on a compact set. It is clear that
for f ∈W = span{fi}ni=1 we have A > 0. As any f ∈W can be written as a rescaling of a
unit vector we have for 0 6= f ∈W

n∑
i=1

|〈f, fi〉|2 =
n∑

i=1

|〈 f

||f ||
, fi〉|2||f ||2 ≥ A||f ||2 (2.60)

Corollary 2.58. Let {fi}ni=1 ⊂ H be a family of elements in H. Then {fi}ni=1 is a frame for
H if and only if span{fi}ni=1 = H.

By virtue of Corollary 2.58, a frame for a vector space H has to contain at least the
same number of elements as a basis but also can contain more elements. To make this
more precise, let {fi}ni=1 be a frame for H and {gj}mj=1 an arbitrary finite collection of
elements ofH. Then also {fi}ni=1 ∪ {gj}mj=1 is a frame forH. A frame which is not a basis
is said to be overcomplete or redundant.
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Definition 2.59. LetH be a Hilbert space and (f)i∈I ⊂ H a Bessel sequence. The synthesis
operator for (fi)i∈I is the bounded linear operator T : `2(I) → H given by T (ei) = fi for
all i ∈ I . The analysis operator for (fi)i∈I is the adjoint T ∗ of the synthesis operator T .
The frame operator of the frame (fi)i∈I is the operator S := TT ∗ : H → H.
Lemma 2.60. Let (fi)i∈I be a frame for a Hilbert spaceH with frame bounds A,B.
(a) The frame operator S is bounded, invertible, self-adjoint and positive

(b) The family (S−1fi)i∈I is a frame with bounds B−1 and A−1. If A,B are optimal
bounds for (fi)i∈I , then the bounds A−1, B−1 are optimal for (S−1fi)i∈I . The frame
operator for (S−1fi)i∈I is S−1.

Proof. We first prove (a). As (fi)i∈I is a Bessel sequence, the synthesis operator is bounded
which turns the frame operator as the composition of bounded operators into an bounded
operator, since ||S|| = ||TT ∗|| = ||T || ||T ∗|| = ||T ||2 ≤ B. Further the self-adjointness fol-
lows from S∗ = (TT ∗)∗ = TT ∗ = S. By assumption and definition of a frame, we have
A||f || ≤ 〈Sf, f〉 ≤ B||f || for all f ∈ H and thus A1 ≤ S ≤ B1. Since A > 0, we have S
positive. In addition it follows from 0 ≤ 1−B−1S ≤ B−1(B −A)1 that

||1−B−1S|| = sup
||f ||=1

|〈(1−B−1S)f, f〉| ≤ B −A

B
< 1 (2.61)

which shows that S is invertible. It remains to show (b). If f ∈ H we have∑
i∈I

|〈f, S−1fi〉|2 =
∑
i∈I

|〈S−1f, fi〉|2 ≤ B||S−1f ||2 ≤ B||S−1|| ||f || (2.62)

Hence, also (S−1fi)i∈I is a Bessel sequence and the frame operator associated to this frame
is well defined. This operator acts on f ∈ H as∑

i∈I
〈f, S−1fi〉S−1fi = S−1

∑
i∈I

〈S−1f, fi〉fi = S−1SS−1f = S−1f (2.63)

Consequently the frame operator of the frame (S−1fi)i∈I is equal to S−1. Since the op-
erator S−1 commutes with S and 1, a multiplication of A1 ≤ S ≤ B 1 with S−1 yields
B−1 1 ≤ S−1 ≤ A−1 1.

Theorem 2.61. Let (fi)i∈I be a frame for a Hilbert space H with frame operator S. Then
we have

f =
∑
i∈I

〈f, S−1fi〉fi ∀ f ∈ H (2.64)

and

f =
∑
i∈I

〈f, fi〉S−1fi ∀f ∈ H (2.65)

Both series (2.64) and (2.65) converge unconditionally for all f ∈ H.
Proof. Let f ∈ H be arbitrary. By virtue of Lemma 2.60 we have

f = SS−1f =
∑
i∈I

〈S−1f, fi〉fi =
∑
i∈I

〈f, S−1fi〉fi (2.66)

Since (fi)i∈I is a Bessel sequence and (S−1fi)i∈I ∈ `2(N)we conclude that (2.64) converges
unconditionally. The second claim (2.65) follows analog by replacing f = SS−1f by f =
S−1Sf .
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Chapter 3

The Formulation of the Problem

3.1 The Genesis

In 1959 Kadison and Singer posed the following fundamental question, that can be seen
as a mathematical refinement of a claim which dates back to Dirac.

Question 3.1 ([27]). Does every pure state on the (abelian) vonNeumann algebra `∞(N) of
bounded diagonal operators on `2(N) have a unique extension to a pure state onB(`2(N)),
the von Neumann algebra of all bounded operators on `2(N)?

The complete proof of the statement turns out to be difficult and relies on topology,
operator theory and geometrical aspects of polynomials. In this section, we firstly want to
understand why Question 3.1 is formulated in this particular way and why until 2014 it
was the only remaining problem. As not only the solution of problem has a long history,
but also the problem itself, any insight to the original problem leaded also to an adjust-
ment of this question. However, the most natural as well as most naive way posing this
question would be the following.

Question 3.2. Let H be a separable Hilbert space and let A ⊂ B(H) be a commutative
subalgebra. Has any pure state ωA on A a unique extension ω to B(H) such that ω can be
chosen pure?

Theorem 3.3. If some abelian unital C∗-subalgebra A ⊂ B(H) has the Kadison-Singer
property, then A is necessarily maximal.

Proof. The idea behind the proof is to use the Gelfand isomorphism i.e., the relation
A ∼= C(P (A)) where P (A) ⊂ S(A) is the pure state space of A. Suppose that A has the
Kadison-Singer property and that A ⊂ B ⊂ B(H) for some abelian unital C∗-algebra B.
Consequently a pure state ωA on A has then a unique pure extension ω on B(H), which
restricts to some state ωB on B. We will first show that ωB is also a pure state on B. Sup-
pose the contrary, that is ωB = tω1+(1− t)ω2 and ω1, ω2 ∈ S(B(H))). Since ωA is pure by
assumptionwe can conclude from ωA = ωB|A = tω1|A+(1−t)ω2|A that ω1|A = ω2|A = ωA

and hence ω1, ω2 ∈ SA. Since ωA ∈ ∂eSA, this implies ω1 = ω2 = ωB and thus ωB is pure.
Abstractly this gives rise to a unique map P (A) → P (B) with ωA 7→ ωB . The inverse of
this map is given by the pullback of the inclusion A ↪→ B, that is ωB 7→ ωB|A. All this
together says that we have a bijection P (A) ∼= P (B). Since for any pair of C∗-algebras
A ⊂ B the pullback S(B) → S(A) is continuous in the w∗-topology, the map ωB 7→ ωA is
continuous which implies that it is also a homeomorphism. Thus we haveA ∼= B through
the inclusion A ↪→ B what gives A = B and Amaximal.
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Therefore Theorem 3.3 forces one to readjust Question 3.2 in order to obtain a positive
answer and therefore the refined version could be formulated as follows.

Question 3.4. LetH be a separable Hilbert space and letA ⊂ B(H) be a maximal commu-
tative subalgebra. Has any pure state ωA on A a unique extension ω to B(H) such that ω
can be chosen pure?

Now we are in the comfortable situation that we have already classified all maximal
commutative subalgebras in B(H). In particular, Theorem 2.54 tells us that up to unitar-
ily equivalence there only exist four cases, namely L∞(0, 1), `∞(N), Dn(C) for n ∈ N and
direct sums thereof. As we will see in the following, the finite dimensional case Dn(C)
provides a positive answer, i.e., any pure state onDn(C) has a unique extension (c.f. The-
orem 3.12) to B(Cn) ∼= Mn(C). However, the situation dramatically changes if we pass
to L∞(0, 1). Here, already Kadison and Singer constructed a counterexample by using so
called diagonal processes what can be seen as a generalization of taking the diagonal of
an operator. We present the construction of this example in Theorem 3.19. Therefore we
arrive at the following formulation of the problem.

Question 3.5 ([27]). Does every pure state on the (abelian) vonNeumann algebra `∞(N) of
bounded diagonal operators on `2(N) have a unique extension to a pure state onB (`2(N)),
the von Neumann algebra of all bounded operators on `2(N)?

Thus we finally arrived at Question 3.1 which was posed by Kadison and Singer. As
it turns out, we can formulate the problem in an even more precise way. To do so, we
have to recall that the state space S(B(H)) can be divided into two different classes of
states, namely the normal and the singular states. That the Kadison Singer problem has a
positive solution for normal states is the content of the following

Theorem 3.6. Let H be a separable Hilbert space and ωA be a normal pure state on a
maximal commutative unital C∗-algebra A ⊂ B(H). Then ωA has a unique extension to a
state ω on B(H), which is itself necessarily pure and normal.

Proof. First, we will use the fact (cf. II.5.5.17 in [39]) that any state ω admits a convex
decomposition of the form ω = tωn + (1− t)ωs, where ωn is a normal state, ωs a singular
state and t ∈ [0, 1]. Hence if ω is pure, it must be either normal or singular. Since any
normal state can be represented by virtue of a density operator, the possibility that ωA

is normal whereas ω is singular is excluded. Therefore ω must be normal and can be
associated with a density operator ρ, i.e., ω(x) = tr[ρx] for x ∈ B(H). The proof of the
uniqueness is essentially the same as in Theorem 3.12.

3.1.1 The finite dimensional case

To get some insight into the import structures and to see how the extension machinery
works, we first consider the finite dimensional case, i.e., H ∼= Cn. The first step is to
understand the structure of commutative subalgebras of B(H) and their ordering with
respect to inclusion. For a ∈ B(H) we write C∗(a) for the C∗-algebra generated by a and
1, i.e., the algebra of all polynomials in a. We will mainly follow [48].

Theorem 3.7. If a ∈ B(H) is self adjoint then C∗(a) is commutative and the following
properties hold.

(a) C(σ(a)) ∼= C∗(a) where the isomorphism C(σ(a)) 3 f 7→ f(a) is unique if it is
subjected to the condition (1σ(a) : λ 7→ 1) 7→ 1 and (idσ(a) : λ 7→ λ) 7→ a.
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(b) If {eλ} is the set of spectral projections of the operator awe have

C∗(a) = C∗(eλ |λ ∈ σ(a)) (3.1)

(c) With respect to the isomorphism defined in (a) we have the identification eλ = δλ(a)
where δµ is a function on δ(a) defined by δµ : ν 7→ δµν .

Proof. Let a ∈ B(H) be self-adjoint. For each complex polynomial p(x) : R → C with
p(x) =

∑
k ckx

k associate an operator via p(a) :=
∑

k cka
k. Obviously, if p1, p2 are two

polynomials andα ∈ C, we have (αp1+p2)(a) = αp1(a)+p2(a), (p1p2)(a) = p1(a)p2(a) and
p(a)∗ = p(a). Abstractly, we have defined an ∗-algebra homomorphism, or evaluation
Φa : C[x] → C∗(a). Hence, the space ∆∗(a) of all such polynomials in a is a ∗-subalgebra
of B(H). In particular, as a linear subspace of B(H), also ∆∗(a) is finite dimensional and
consequently a C∗-algebra. For p(x) = 1, we obtainΦa(p) = a0 = 1, making∆∗(a) unital.
Choosing p(x) = x implies a ∈ ∆∗(a) and therefore we have ∆∗(a) = C∗(a). To show
the isomorphism property, define the map C(σ(a)) 3 f 7→ f(a). At first, suppose we
restrict to polynomials p, such that f(a) := p(a) as before. Since C∗(a) = ∆∗(a) consists
of polynomials in a, the map C(σ(a)) → C∗(a) is surjective. To see that it is also injective,
suppose that p, q ∈ C(σ(a)) such that p(a) = q(a). If λ ∈ σ(a) and vλ ∈ Hλ, where Hλ is
the eigenspace with respect to λ, we obtain

q(a) = p(a) ⇔ q(a)vλ = p(a)vλ ∀λ ∈ σ(a) ⇔ q(λ)vλ = p(λ)vλ ∀λ ∈ σ(a) (3.2)

and we can conclude that p = q as functions on σ(a). If now f ∈ C(σ(a)) is an arbitrary
function, there exist some polynomial p that coincides with f on σ(a) ⊂ R, such that f(a)
can be defined via p(a). The remaining two claims can be proven by using the orthogo-
nality relation eµeλ = δµνeλ for the spectral projections. Since any polynomial in a is also
self-adjoint, we obtain by the spectral theorem for self-adjoint endomorphisms

f(a) =
∑

λ∈σ(a)

f(λ)eλ (3.3)

Now define G(a) := span({eλ |λ ∈ σ(a)} ∪ {1}). Clearly by the properties of the spec-
tral projections, G(a) itself is a commutative C∗-algebra. In particular, by (3.3) we have
C∗(a) ⊂ G(a) as well as G(a) ⊂ C∗(a) and thus C∗(a) = G(a)what proves the claim.

Definition 3.8. Let ~a = (a1, ..., an) be commuting self-adjoint operators.

(a) A vector v ∈ H\{0} is called a joint eigenvector of~a = (a1, ..., an) such that aiv = λiv

withλi ∈ C for each i ∈ {1, ..., n}. We alsowrite~av = ~λv and call~λ a joint eigenvalue
of ~a.

(b) The joint spectrum σ(a1, ..., an) =: σ(~a) consists of all joint eigenvalues of ~a

(c) C∗(~a) is the smallest unital C∗-subalgebra of B(H) that contains each ai.

Clearly we have σ(~a) ⊂ σ(a1) × ... × σ(an) ⊂ Rn. In general, this inclusion will be
strict. For example consider the case of a1 = σ1 ⊗ σ1, a2 = σ2 ⊗ σ2 and a3 = σ3 ⊗ σ3,
where σ1, σ2, σ3 are the Pauli matrices, i.e., the canonical generators of SU(2) 1. Since
σ(σi) = {−1, 1}, by the tensor product structure we have σ(ai) = {−1, 1}. However,
there is only one joint eigenvector.

1Note that the set of commuting operators is part of the so called Peres-Mermin square, a construction
to demonstrate quantum contextuality, i.e., the property, that the outcome of a measurement does not only
depend on the state of the system, but also on compatible measurements that are simultaneously performed.
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Lemma 3.9. Let ~a = (a1, ..., an) be a family of commuting self-adjoint operators on H.
Then there is a self-adjoint operator a ∈ B(H) such that C∗(~a) = C∗(a).

Proof. Define the operator

a :=
∑

~λ∈σ(~a)

c~λe~λ (3.4)

such that c~λ are different from each other. Therefore we can conclude by using Theorem
3.7, that C∗(a) = C∗(e~λ |~λ ∈ σ(~a)) and the claim follows.

Lemma 3.10. Every unital commutative C∗-algebra A ⊂ B(H) is generated by a single
self-adjoint operator a and the unit 1. In particular, any unital commutative C∗-algebra
A ⊂ B(H) is of the form A = C∗(a).

Proof. Since A is a C∗ algebra it is in particular also a C-vector space. Therefore we can
find a basis (ξk) ⊂ A of A and we can decompose ξk = ak + ibk with ak, bk self-adjoint.
Note that the operators can be constructed easily via ak = 1

2(ξk + ξ∗k) and bk = 1
2(ξk − ξ∗k).

Since we assume that A is commutative, we must have ξkξ∗k = ξ∗kξk and hence ξk is a
normal operator. This is equivalent to the commutativity of ak and bk

As we have already seen for the case of arbitrary separable Hilbert spaces, a unital
commutativeC∗-algebraC ⊂ B(H) is calledmaximal, if it is not contained in some bigger
unital commutative C∗-algebra contained in B(H). In the context of finite dimensional
Hilbert spaces we will call an operator a ∈ B(H) maximal, if |σ(a)| = n = dim(H). In
other words, a ∈ B(H) is maximal if each eigenvalue is nondegenerate. Note that C∗(a)
is maximal if and only if a is maximal. To see this, assume the converse, i.e., that there
exists κ ∈ σ(a)with multiplicitymκ > 1. Thus the corresponding spectral decomposition
eκ can be decomposed into eκ = e1κ+e

2
κ where eiκ are orthogonal projections and therefore

commute. We could then extend C∗(a) to C∗(eλ, eκ1, eκ2) and we obtain a contradiction
to the maximality of C∗(a).

Theorem 3.11. A unital commutative C∗-algebra A ⊂ B(H) is maximal if and only if it is
unitarily equivalent to the algebra Dn(C) of all diagonal matrices.

Proof. Assume that dim(H) = n. ThenDn(C) is indeed a maximal abelian subalgebra in
Mn(C) ∼= B(H). If there would exist a proper extension of Dn(C) then it has to contain
some additional matrix b ∈ Mn(C) which commutes with all a ∈ Dn(C). This operator b
must then fulfill (db)ij = diibij = bijdjj = (bd)ij for all d ∈ Dn(C) what forces b ∈ Dn(C).
By virtue of Lemma 3.10 anyunital commutativeC∗ algebraA can bewritten asA = C∗(a)
for an appropriate self-adjoint operator a ∈ B(H) also themaximal one is of this form, i.e.,
C = C∗(a). In order to make C∗(a)maximal we have to choose amaximal in which case
we can describe a uniquely by the spectrum σ(a) = {λ1, ..., λn} and the corresponding
eigenvectors {vλ1, ..., vλn}. This naturally induces a unitary map u : H → Cn with uvλj

=
uj and therefore we have uau−1 = diag(λ1, ..., λn). Since a is self-adjoint and maximal,
all λj are real and different any vector z = (z1, ..., zn) ∈ Cn can be written as zi = p(λi) for
some suitable polynomial p ∈ C[x]. Hence uC∗(a)u−1 = Dn(C).

Theorem 3.12. LetH be a finite dimensional Hilbert space and let ωA be a pure state on a
maximal commutative unital C∗-algebra A ⊂ B(H). Then ωA has a unique extension to a
state ω on B(H)which is necessary pure.
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Proof. By virtue of Theorem 3.11 we can assume that H = Cn and that A consists of
all diagonal matrices. Since we can regard any vector in Cn as the diagonal of a matrix
in Mn(C) we have Dn(C) ∼= Cn. From this we can conclude that the action of ωA on
some b ∈ Dn(C) is given by ωA(b) = bj for some j = 1, ..., n. Since any state on a finite
dimensional space is normal, the extension must, in the case of existence, be given by
ω(a) = tr[ρa]with a suitable unique operator ρ ∈ Dn(C). If we denote the eigenvectors of
ρ by vi and if ui denotes the standard basis, we have∑

i

pi|〈uj, vi〉|2 = 1 (3.5)

Since
∑

λ∈σ(ρ) λ = 1 and |〈uj, vi〉| ≤ 1, we conclude that (3.5) can only hold for a given j
if |〈uj, vi〉| = 1 for all iwith pi > 0. Therefore we obtain that ρ = viv

∗
i which proves that ρ

exists, is unique and pure.

3.1.2 The case L∞(0, 1)

The aim of this section is to show, that states on L∞(0, 1) do not have the Kadison Singer
property [18]. The proof relies on the concept of diagonal processes, introduced by von
Neumann [6], which can be seen as on operation to take the diagonal part of an operator
relative to amaximal abelian self-adjoint subalgebra. Further, with the help of this abstract
machinery, also the result for the finite dimensional case can be reproduced.

Definition 3.13 ([6]). For any bounded operatorA and anyprojection operatorEwedefine

A|E := EAE + (1− E)A(1− E) (3.6)

Further, if E1, ..., En are projections, we write A|E1|...|En for the iterated version of (3.6).

As already mentioned, the process A|E1|E2|··· should be seen as an analogue of the
process of taking the diagonal of a finite matrix. To see that Definition 3.13 reproduces
the diagonal part for the case B(H) = M2(C). If we set E1 := |0〉〈0| and E2 := |1〉〈1| we
obtain with 1− |1〉〈1| = |0〉〈0|

A|E1|E2 = |1〉〈1|A|E1|1〉〈1|+ |0〉〈0|A|E1|0〉〈0| = 〈0|A|0〉|0〉〈0|+ 〈1|A|1〉|1〉〈1| (3.7)

what exactly gives the diagonal of the matrix A. By induction, it is easy to show that if
B(H) = Mn(C) and Ei = |i〉〈i| is an orthonormal basis, then

A|E1|E2···|En =
n∑

i=1

〈i|A|i〉|i〉〈i| (3.8)

However, if the range of projection operators is not one-dimension but still EiEj = 0 for
i 6= j and the family is a resolution of the identity, one obtain a matrix in block form.

Lemma 3.14. Let A be a bounded operator and E,E1, ..., En a family of projections. Then
the followings statements hold.

(a) A|E commutes with E

(b) If E1, ..., En pairwise commute and π ∈ Sn then

A|E1|E2|···|En = A|Eπ(1)|Eπ(2)|···|Eπ(n) (3.9)
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(c) If E1, ..., En pairwise commute, then A|E1|···|En commutes with all of them

(d) ||A|E1|···|En|| ≤ ||A||

Proof. To (a): We have A|EE = EAE + (1 − E)A(1 − E)E = EAE, since (1 − E)E = 0.
Since the same is true for EA|E , both expressions are equal to EAE and thus they com-
mute. To (b): Since any permutation can be written as a concatenation of transpositions, it
is sufficient to consider the case where π is the transposition of two neighbours, saym and
m+ 1. Define B := A|E1|···|Em−1. If we can prove B|Em|Em+1 = B|Em+1|Em and then apply
the process |Em+2| · · · |En the claim follows. Hence it is sufficient to show A|E|F = A|F |E

for two commuting projections E,F . Since [E,F ] = 0 implies [(1 − E), (1 − F )] = 0 a
direct calculation yields

A|E|F = FA|EF + (1− F )A|E(1− F ) = FEAEF + F (1− E)A(1− E)F

+(1− F )EAE(1− F ) + (1− F )(1− E)A(1− E)(1− F ) = A|F |E (3.10)

To (c): Let i ∈ {1, ..., n} and let π ∈ Sn such that π(n) = i. By (b) we have A|E1|···|En =
A|Eπ(1)|···|Eπ(n) and this commutes by (a) with Eπ(n) = Ei. To (d): We will prove the more
general result that ||A|E1|···|En|| ≤ ||A|E1|···|En−1||. If we define B := A|E1|···|En−1 and E :=
En, we obtain ||B|E|| ≤ ||B||. Therefore we have to prove that for any f, g ∈ H we have

|〈B|Ef, g〉| ≤ ||B|| ||f || ||g|| (3.11)

By definition we have

〈B|Ef, g〉 = 〈BEf,Eg〉+ 〈B(1− E)f, (1− E)g〉 (3.12)

By using Cauchy-Schwarz inequality we obtain

|〈Bf, g〉| ≤ ||A|| (||Ef || ||Eg||+ ||(1− E)f || ||(1− E)g||) (3.13)

Applying Cauchy-Schwarz again at the second factor we can further estimate

||Ef || ||Eg||+ ||(1− E)f || ||(1− E)g||

≤
[(
||Ef ||2 + ||(1− E)f ||2

) (
||Eg||2 + ||(1− E)g||2

)] 1
2

(3.14)

Now it is easy to see that ||Ef ||2 + ||(1 − E)f ||2 = 〈Ef,Ef〉 + 〈(1 − E)f, (1 − E)f〉 =
〈f, f〉 = ||f ||2. Similar we obtain ||Eg||2 + ||(1− E)g||2 = ||g||2. Together this implies

||Ef || ||Eg||+ ||(1− E)f || ||(1− E)g|| ≤ ||f || ||g|| (3.15)

Inserting (3.15) into (3.12) yields (3.11).

Lemma 3.15 ([18]). Let M ⊂ B(H) be an abelian von Neumann algebra generated by
projections {Ei}i∈N. If p ∈ β(N)\N, then there exists a linear operator φp : B(H) → B(H),
such that

(a) for all A ∈ B(H) and all n ∈ N we have [φp(A), En] = 0, i.e., φp(B(H)) ⊂ M ′.
Further, φp(A) is weak closure point of the set of operators {A|E1|···|En} for each
A ∈ B(H).

(b) φp(AB) = Aφp(B) for each A ∈M and B ∈ B(H).
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(c) φp(1) = 1 and φp(A) ≥ 0 if A ≥ 0.

Proof. With respect to the set of projection operators {Ei}i∈N define the function

f : N → B(H) , n 7→ f(n) := A|E1|···|En (3.16)

By Lemma 3.14 (d) we have ||A|E|| ≤ ||A|| and hence f maps N into the weakly compact
ball with radius ||B|| around 0 ∈ B(H). By Theorem 2.8, we know that f has a unique
extension f1 from N to β(N), i.e., f1 : β(N) → B(H) such that f1(n) = f(n) for all n ∈ N.
In particular, f1 is continuous and its range is also contained in ball of radius ||A|| around
the origin. Now define φp(A) to be f1(p). By definition, we have (α+B)|E = αA|E +B|E

and since N is a dense subset of the T2-space β(N), we obtain the linearity of the map
φp. Moreover, this implies that φp(A) is a weak closure point of {A|E1|···|En}. For the case
A = 1, we clearly have 1|E1|···|En = 1 for all n ∈ N and thus φp(1) = 1. If A ≥ 0, we know
that we can find X ∈ B(H) such that A = XX∗. Therefore we have

A|E = EXX∗E + (1− E)XX∗(1− E) = Y Y ∗ + ZZ∗ (3.17)

with Y := EX and Z := (1−E)X . Since the sum of positive operators is positive, we can
conclude that A|E is positive and hence also A|E1|···|En for all n ∈ N. Consequently each
weak closure point of {A|E1|···|En} is positive and thus also φp(A). It remains to show that
φp(A) ∈ M ′ for all A ∈ B(H). For a given n, we know that φp(A) is a weak closure point
of {A|E1|···|Em} form ≥ n and each of which commutes withEn. So, φp(A) commutes with
En for each n and consequently φp(A) ∈M ′.

Definition 3.16. LetM ⊂ B(H) be an abelian von Neumann algebra. A linear order pre-
serving mapping φ : B(H) →M ′ is called a diagonal process relative toM if φ|M = idM .
The diagonal process is called proper, if for allA ∈ B(H) the image φ(A) is a weak closure
point of the operators A|E1|···|En with E1, ..., En ∈M . Otherwise, it is called improper.

Although a diagonal process is defined via a weak closure of sequence elements, for
certain special cases we can directly calculate its image. Namely, if φ is a proper diagonal
process relative to M and A ∈ M ′, then we know by Lemma 3.15 that φ(A) is a weak
closure point of the operators {A|E1|···|En}. But we have A|E1|···|En = A for all n ∈ N and
thus φ(A) = A. However, if the diagonal process fulfills certain continuity conditions, it
turns out to be unique.

Lemma 3.17. LetM ⊂ B(H) be an abelian vonNeumann algebra, {En} a generating fam-
ily of projections forM and φ a diagonal process relative toM . If φ is weakly continuous
on the unit ball, then it is the unique proper diagonal process relative to M and φ(A) is
the weak limit of {An}where An := A|E1|···|En.

Proof. Suppose that φ is weakly continuous on the unit ball and thus on each bounded
ball. Further assume that φ̃ is a proper diagonal process relative to M . By definition, φ̃
must be a weak closure point of {A|E1|···|E1}. Is now T such a weak closure point, we have
that φ̃(T ) is a weak closure point of {φ(A|E1|···|En)} = {φ(A)}. So we have φ(T ) = φ(A).
Further, if T ∈M ′, we have already argued that φ(T ) = T in the case of φ proper. Thuswe
have φ̃(A) = φ(A) and consequently φ̃ = φ. Since φ coincides with any proper diagonal
process φ̃ relative to M , it must be unique. Further, if T is a weak limit point of the
sequence (A|E1|···|En) we have T ∈ M ′ since it commutes with each Ek. In addition it is
a weak closure point of {A|E1|···|En}, so that T = φ(A). By Lemma 3.15, we know that
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{A|E1|···|En} is contained in the weakly compact ball of radius ||A|| around 0 ∈ B(H) and
hencewe can conclude that the sequence (A|E1|···|En) has a limit pointwhichmust be φ(A).
Therefore φ(A) is the weak limit of (A|E1|···|En)what completes the proof.

We have already seen that `∞(N) can be identified with the set of diagonal operators
acting on a Hilbert space H that admits a countable basis. Let {xk} be an orthonormal
basis for H. We define the diagonal process φ for a bounded operator A as the operator
whose matrix representation relative to the basis {xk} is the diagonal matrix with the
diagonal of the matrix representation for A relative to {xk}. Then φ is indeed a diagonal
process relative to `∞(N). If x =

∑
k αkxk and ||A|| ≤ 1we obtain

|〈φ(A)x, x〉| ≤
∑
k

|αk|2|〈D(A)xk, xk〉| =
∑
k

|αk|2|〈Axk, xk〉| (3.18)

Since we assumed the operator A to be bounded, we know that for ε > 0 there exists a
n0 ∈ N such that for all k ≥ n0 we have

∑
k |αk|2|〈Bxk, xk〉| < ε

2 ||x||. Together this yields

|〈φ(A)x, x〉| ≤
∑
k

|αk|2 |〈Axk, xk〉| < ε (3.19)

Consequently φ is a continuous map at 0 ∈ B(H) and by linearity it follows, that φ is
continuous on the unit ball ofB(H)with respect to theweak operator topology. Therefore,
we can conclude by Lemma 3.17, that φ is the unique proper diagonal process relative to
`∞(N). That it is not only the unique proper diagonal process relative to `∞(N) but also
the unique diagonal process relative to `∞(N) is the content of the following

Corollary 3.18 ([18]). The unique diagonal process relative to `∞(N) is φ.

Proof. Suppose that there are two distinct diagonal processes φ and φ̃. Then there must
existA ∈ B(H) such that φ(A) 6= φ̃(A). In particular, we have 〈φ̃(A)xk, xk〉 6= 〈φ(A)xk, xk〉
for some k ∈ N, what implies ωxk

◦ φ 6= ωxk
◦ φ̃. Note that both are valid state extensions

of ωxk
from `∞(N) to B(H). Since ωxk

is a vector pure state of `∞(N), it has a unique
extension to B(H). Therefore we must have ωxk

◦ φ = ωxk
◦ φ̃, what implies φ = φ̃.

Theorem3.19 ([18]). There ismore than one proper diagonal process relative toL∞(0, 1) ⊂
B(L2(0, 1)). In particular, pure state extension is not unique with respect to L∞(0, 1).

Proof. As we have already pointed out in Theorem 2.54, we can identify the continuous
maximal abelian subalgebra ofB(H)with the algebra ofmultiplication operatorsL∞(0, 1)
and therefore the set of projections {Pkm |m ∈ N, k = 1, ...,m} corresponding to multi-
plication with the characteristic function on the closed intervals [(k − 1)/m, k/m] gener-
ate the continuous maximal abelian subalgebra. Clearly, we have for any m ∈ N, that
1[0,1] =

∑m
k=1Ekm. Further, for fixed m the intervals are disjoint what implies that they

are pairwise orthogonal. In fact, we have

A|E1m|E2m|···|Emm =
∑
k=1

EkmAEkm (3.20)

as well as for n ∈ N arbitrary

A|E1m|···|Emm|E1(mn)|···|E(mn)(mn) =
mn∑
k=1

Ek(mn)AEk(mn) (3.21)
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If there exists a unique diagonal process φ of the form φp with p ∈ β(N)\N, by Lemma 3.15
we know that φ(A) is the weak limit with respect to j of

∑m
k=1EkmAEkm withm = 2j . If

this is not the case for a certain bounded operator A, then φp(A) 6= φp̃(A) for some points
p, p̃ ∈ β(N) \ N with p 6= p̃. The remaining proof consists of the construction of such an
operator A. First we introduce an orthonormal basis for the Hilbert space H. The set of
functions {fk}k∈Z with fk(x) := e2πikx turns out to be such a basis. The operatorA is taken
to be the projection Π onto the subspace∆ = span({fnj |j ∈ N})where the concrete form
of the elements fnj will become evident during the proof. Consider

〈EkmΠEkm(1), 1〉 =
∞∑
j=1

|〈fnj , Ekm(1)〉|2 =
∞∑
j=1

∣∣ ∫ k
m

k−1
m

e2πinjx dx
∣∣2

=

∞∑
j=1

| 1

2πinj

[
e2πinjk/m − e2πinj(k−1)/m

]
|2 =

∞∑
j=1

1

4π2n2j
|e2πinj/m − 1|2

(3.22)

Since the expression (3.22) is independent of the particular k ∈ {0, ....,m}we obtain

〈

(
m∑
k=1

EkmπEkm

)
(1), 1〉 = m

∑
j=1

m

4π2n2j
|e2πinj/m − 1|2 =

∞∑
j=1

m

π2n2j
sin
(πnj
m

)
(3.23)

where we have used |e2πix − 1|2 = 2 − e2πix − e−2πix = 4 sin(πx). We are now going to
show that for a suitable choice of (nj)j∈N the sequence

m

π2

∞∑
j=1

sin2(πnj

m )

n2j
=

1

π

∞∑
j=1

[πnj
m

]−2
sin2

(πnj
m

) π
m

=: am (3.24)

does not tend to a limit as 2r =: n→ ∞. The set {nj} is chosen2 as

{nj} =

∞⋃
k=1

[22
k−2, 22

k−1] ∩ N (3.25)

The benefit of introducing the special sequence of (am) in (3.24) is that it can be rewritten
as an integral over R+, where the integrand is given by a step function sm defined as

sm(x) :=

{
am if x ∈ [

π(nj−1)
m ,

πnj

m ]

0 else
(3.26)

for j ∈ N. Ism = 4η with η ∈ N, we obtain

1

π

∑
m
4
<nj≤m

2

(
m

πnj

)2 π

m
sin2(πnj

m
) =

∫ π
2

π
4

sm(x)dx =: bm (3.27)

If we now definemk := 22
k , then (smk

)k becomes a Riemann approximating step function
to f(x) := π−1x−2 sin2(x) on the interval [π4 ,

π
2 ].Therefore, if a2m tends to a limit asm→ ∞

so does the subsequence amk
for k → ∞ and thus

lim
m→∞

a2m = lim
k→∞

amk
≥ lim

k→∞
bmk

= π−1

∫ π
2

π
4

x−2 sin−2(x)dx > π−2 (3.28)

2As an illustrative example how the set looks like, we will calculate the first eight elements. For k = 1, 2, 3
we have [1, 2], [4, 8], [64, 128]. Consequently, the first elements of the sequence are n1 = 1, n2 = 2, n3 =
4, n4 = 5, n5 = 6, n6 = 7, n7 = 8, n8 = 64.
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The last inequality in (3.28) can be seen as follows. The derivative of 2x−2 sin(x) is given
by 2x−3 sin(x) [x cos(x)− sin(x)] which turns out to be negative on [π4 ,

π
2 ] (cf. Figure 3.1).

From 2x−2 sin(x)|x=(1/2)π = 4
π2 we can conclude that the values of the function are lower

bounded on [π4 ,
π
2 ] by

4
π2 , since the function is decreasing. All this together yields 4π−1(π2−

π
4 )π

−2 = π−2. On the other hand, there are no nk in (22
k−1, 22

k+1−2). Consequently, if we

Figure 3.1: The relation between the function f(x) = x−2 sin2(x) and its derivative. The
interval [π4 ,

π
2 ] is indicated by two black lines. The derivative is clearly negative.

set rk := 22
k+1−2, the step function srk is zero on the interval [π22k(22k+1−2)−1, πk(k +

1)−1]
k→∞−−−→ [0, π]. Hence, if we suppose that limm→∞ a2m exists, we obtain

π−2 < lim
k→∞

amk
= lim

k→∞
ark = lim

k→∞

∫ ∞

0
srk(x)dx ≤ 1

π
lim
k→∞

∫ ∞

π
x−2 dx = π−2 (3.29)

what yields a contradiction. Note that we have used, that sm(x) ≤ π−1x−2 on the interval
[0,∞). Therefore limk a2k do not exist, and Π does not have a unique diagonal part rela-
tive to L∞(0, 1), if the basis elements are chosen accordingly to the constructed set {nj}.
Accordingly to the discussion at the beginning of Section 3.1.2, there are pure states of
L∞(0, 1)which do not have a unique extension to all bounded operators.

As already discussed, non-uniqueness of diagonal processes implies non-uniqueness
of pure state extension. However, the uniqueness of the diagonal process does not lead to
the uniqueness of pure state extension, i.e., the extension of a statemust not be necessarily
the concatenation of the state with a diagonal process. More precise, the uniqueness of
the process is only necessary, but not sufficient. Consequently, the obtained results leave
the question of uniqueness of state extension open for `∞(N), or by using Lemma 3.12, the
uniqueness of state extension of the singular pure states of `∞(N). Kadison and Singer in-
clined to the view that also `∞(N) does not have the unique extension property. Although
not settling the problem completely, Reid [19] showed in a paper about representation of
theCalkin algebra (cf. the originally paper of Calkin [49]), that certain singular pure states,
i.e., states which correspond to points in β(N) \ N, have the unique extension property.
Theorem 3.20 ([19]). If the ultrafilter U is rare, then the corresponding pure state of `∞(N)
has a unique state extension to B(H).

A different andmore general approach was taken by Anderson [22], who gave a char-
acterization of those pure states on B ⊂ A, withA and B C∗-algebras, that admit a unique
extension to A in terms of so called compressions.
Definition 3.21. Let A be a C∗-algebra and B ⊂ A a C∗-subalgebra. If ω is a state on A
define the set

Gω := {A ∈ A | |ω(A)| = ||A|| = 1} (3.30)
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Is further ϕ a state on B, we say thatA is B-compressible modulo ϕ if for each A ∈ A and
each ε > 0 there exists a B ∈ Gϕ and Y ∈ B such that ||BAB − Y || < ε.

Theorem 3.22 ([22]). Let A be a C∗-algebra and B ⊂ A a C∗-subalgebra. If ω is a pure
state on B, then ω has a unique pure state extension toA if and only ifA is B-compressible
modulo ω. More precise, if ω̃ is the unique pure state extension of ω to A, then for each
ε > 0 there exists B ∈ Gω, such that ||B(X − ω̃(X)1)B|| < ε. If B is a von Neumann
algebra, the operator B can be taken to be a projection.

Theorem 3.23 ([22]). Let A be a C∗-algebra and B ⊂ A a maximal abelian C∗-subalgebra.
Then B has the extension property relative to A if and only if A is B-compressible.

3.2 The Metamorphosis

3.2.1 Anderson’s Infinite Paving Conjecture

Definition 3.24. Let T ∈ B(`2(I))with I atmost countable. We say that T has (r, ε)-paving
if there exists a partition {A1, ..., Ar} of I such that

||ΠAjT ΠAj || ≤ ε ||T || for j = 1, ..., r (3.31)

with ΠA the orthogonal projection of `2(I) onto the closure of span{ei|i ∈ A}, where
{ei}i∈I standard basis of `2(I),

Conjecture 3.25 (Paving). For ε > 0, there exists a natural number r such that for every
n ∈ N and any T ∈ B (`2(I)) whose matrix has zero diagonal, we can find a (r, ε)-paving
of T , i.e., we can find a partition {Ai}ri=1 of {1, ..., |I|}, such that

||ΠAjTΠAj || ≤ ε||T || (3.32)

Lemma 3.26. Let P ∈ `∞(I) be a diagonal projection and ρ ∈ S(`∞(I)) pure. Then we
have ρ (P ) = 0 or ρ (P ) = 1.

Proof. To procure a contradiction, suppose that ρ (P ) = λ ∈ (0, 1). Since ρ is a state, we
have ρ (1− P ) = ρ (1) − ρ (P ) = 1 − λ. Define the linear functionals ρ1, ρ2 : `∞(I) → C
by virtue of

A 7→ ρ1 (A) :=
1

λ
ρ (PA) , A 7→ ρ2 (A) :=

1

1− λ
ρ ((1− P )A) (3.33)

As one can easily check, ρ1 as well as ρ2 are states. Indeed

ρ (A) = ρ

((
1− λ

1− λ
(1− P ) +

λ

λ
P

)
A

)
= λρ1 + (1− λ) ρ2 (3.34)

Thus ρ cannot be a pure state. Contradiction.

Theorem 3.27. The Infinite Paving Conjecture implies a positive solution to the Kadison-
Singer Problem.
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Proof. We have to show that by assuming the correctness of the Infinite Paving conjecture
one can conclude that any pure state on `∞(I) has a unique extension toB(`2(I)). Clearly
the trivial option is ω̃(T ) := ω(diag(T )). In order to prove that this is the unique choice
any extension ω̃ must satisfy ω̃(T ) = ω(diag(T )) = ω̃(diag(T )) or equivalently ω̃(T −
diag(T )) = 0 for every T ∈ B(`2(I)). Suppose now that ω is a pure state on `∞(I) and
let ω̃ be an extension of it to B(`2(I)). For T ∈ B(`2(I)) and T̃ := T − diag(T ) and ε > 0
fixed let ΠA1, ...,ΠAk

be an ε-paving of T̃ . It follows that

ω̃(T̃ ) = ω̃(1T̃1) =
k∑
i,j

ω̃(ΠAiT̃ ΠAj) (3.35)

Since Ai ∩ Aj = ∅, it follows that ΠAi + ΠAj is also a diagonal projection and by the
linearity of ω̃ we have ω̃(ΠAi + ΠAj) = ω̃(ΠAi) + ω̃(ΠAj). By virtue of Lemma 3.26 we
know that exactly one of the projection, that we will then label ΠA1 satisfies ω̃(ΠA1) = 1
and ω̃(ΠAj) = 0 for all 2 ≤ j ≤ r. Using Cauchy-Schwarz inequality, i.e., |ω(g∗f)|2 ≤
ω(f∗f)ω(g∗g)we obtain that each term in the sum of (3.35) satisfies

|ω̃(ΠAiT̃ΠAj)| ≤ sup{ω̃(Π∗
Ai
ΠAi)ω̃(Π

∗
Aj
T̃ ∗T̃ΠAj), ω̃(Π

∗
Aj
T̃ ∗T̃ΠAj)ω̃(Π

∗
Aj
ΠAj)} (3.36)

Since all ΠAi are projectors we can conclude, that only the first term in (3.35) is nonzero
and thus we have ω̃(T̃ ) = ω̃(ΠA1T̃ ΠA1) ≤ ||ΠA1T̃ ΠA1|| ≤ ε ||T̃ || by assuming the paving
property. Since ε > 0was chosen arbitrary, we can conclude that ω̃(T̃ ) = 0.

3.2.2 Anderson’s Finite Paving Conjecture

Lemma 3.28. [50] Let r ∈ N be fixed and assume that for any n ∈ N there is a partition
{An

j }rj=1 of the set {1, ..., n}. Then there exist natural numbers {k1 < k2 < ...} such that if
m ∈ Akm

j for some 1 ≤ j ≤ r we havem ∈ Akl
j for all l ≥ m. Thus, if Aj = {m |m ∈ Akm

j }
then

(a) {Aj}nj=1 is a partition of N

(b) If Aj = {m1 < m2 < ...}, then for all l ∈ Nwe have {m1,m2, ...,ml} ⊂ A
kml
j

Proof. We will prove the claim by induction. For each n ∈ N, obviously 1 ∈ An
j for some

j = 1, ..., r. Therefore, for every n ∈ N we can define jn as the index such that 1 ∈ An
jn
.

Since this yields an infinite sequence (ji)i≥0 with 1 ≤ ji ≤ r for each i, there exists at least
one 1 ≤ j ≤ r that occurs infinitely often. Taking the smallest such index, we produce an
increasing sequence of natural numbers n11 < n12 < ... such that 1 ∈ A

n1
i

j . More precise, we
have generated a sequence of partitions ({Ani

j })i≥1 with ni ∈ N and ni < ni+1. Similar, for
every n1i , we have that 2 ∈ A

n1
i

j for some 1 ≤ j ≤ r. With the same argument as above we
obtain that there exists a subsequence (n2i )i≥1 of (n1i )i≥1 and a 1 ≤ j ≤ r such that 2 ∈ A

n2
i

j .
By induction, we obtain for all l ∈ N a subsequence (nl+1

i )i≥1 of the already constructed
sequence (nli)i≥1 and a 1 ≤ j ≤ n such that l+ 1 ∈ A

nl+1
i

j for all i ∈ N. Define now ki = nii
for all iwhat proves the claim.

Theorem 3.29. [50] The Infinite Pacing Conjecture is equivalent to the Finite Paving Con-
jecture.
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Proof. We first show that the finite version implies the infinite one. Let (aij)∞i,j=1 be a
bounded linear operator on `2(N) and fix ε > 0. By assumption we can find for any given
n ∈ N a partition {An

j }rj=1 of {1, ..., n} such that if we define Tn = (aij)
n
i,j=1 we have

||ΠAn
j
TnΠAn

j
|| ≤ ε

2
||Tn|| ≤

ε

2
||T || for all j = 1, ..., r (3.37)

Let now {Aj}rj=1 be the partition of N constructed in Lemma 3.28. For fixed 1 ≤ j ≤ 1 let
Aj = {m1 < m2 < ...} and for all l ∈ N letΠl = ΠIl where Il = {m1, ...,ml}. For f ∈ `2(N)
and l ∈ N sufficient large we have

||ΠAjTΠAj(f)|| ≤ 2||ΠlΠAjTΠAjΠl(f)|| = 2||ΠlΠ
kml
Aj

Tkml
Π

kml
Aj

Πl(f)|| (3.38)

≤ 2||Πkml
Aj

Tkml
Π

kml
Aj

|| ||Πl(f)|| ≤ 2
ε

2
||T || ||f || = ε||T || ||f || (3.39)

Since (3.38) holds for arbitrary f ∈ `2(N), we can conclude that ||ΠAl
TΠAl

|| ≤ ε||T ||.
Conversely assume that the infinite paving conjecture is true. Wewill prove the statement
by a contradiction. Assume that (3.32) fails. This implies the existence of ε > 0, a partition
{In}∞n=1 of N into finite subsets and a family of operators Tn : `2(In) → `2(In) such that
||Tn|| = 1 and for every partition {An

k}nk=1 of In there exists a k ∈ {1, ..., n} for which

||QAn
k
TnQAn

k
|| ≥ ε (3.40)

holds. Now define a new operator by

T :=

∞⊕
n=1

Tn :

∞⊕
n=1

`2(In) →
∞⊕
n=1

`2(In) (3.41)

By constructionwe have ||T || = supn ||Tn|| = 1. We can then find a partition {Ak}rk=1 ofN
such that for all k ∈ {1, ..., r} we have ||QAk

TQAk
|| ≤ ε. For n ∈ N and k = 1, ..., r define

An
k := Ak ∩ In. Since {Ak}rk=1 is a partition of N, we have that {An

k}rk=1 is a partition of In.
Thus we have

||QAn
k
TnQAn

k
|| = ||QAn

k
TQAn

k
|| ≤ ||QAk

TQAk
|| ≤ ε (3.42)

yielding a contradiction to the assumption (3.40) if n ≥ r.

Corollary 3.30. The Finite Paving Conjecture implies a positive solution to the Kadison-
Singer Problem.

3.2.3 Weaver’s conjecture

The Weaver conjecture is an equivalent formulation of the Kadison-Singer problem, but
settled in linear algebra. In particular, it is a reformulation in terms of a combinatorial
problem about balanced sets of vectors in Cd.

Definition 3.31. Let v1, ..., vn ∈ Cd for d ∈ N and u ∈ Cd a unit vector. The moment of the
collection of vectors v1, ..., vn in the direction of u is given by

M(u; v1, ..., vn) :=

n∑
k=1

|〈vk, u〉|2 (3.43)

A collection of vectors v1, ..., vn is called spherical, if the moment in (3.43) is independent
of the particular direction u ∈ Cd.
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Figure 3.2: Illustration of the moment of vectors and Weaver’s conjecture. The blue line
is image of the map S1 3 u 7→ M(u; v1, ..., v8). (a) Collection of 8 vectors in a plane,
where four among of them have an equal large norm, while the remaining have an equal
small norm. The whole collection of vectors is spherical. (b) Partition of the vectors into
two subsets (r = 2), whereat each of the sets contains two vectors with large norm and
two vectors with small norm. Clearly, the moment of the partitions is not spherical. (c)
Partition of the vectors into sets, where each set contains only those vectors that share the
same norm. The resulting collections of vectors have a spherical moment.

Conjecture 3.32 ([51] , KSr). There exist universal constantsN ≥ 2 and ε > 0 such that the
following holds. Let v1, ..., vn ∈ Ck satisfy ||v||2 ≤ 1 for all i and suppose∑

i

|〈u, vi〉|2 ≤ N (3.44)

for every unit vector u ∈ Ck. Then there exists a partitionX1, ..., Xr of {1, ..., n} such that∑
i∈Xj

|〈u, vi〉|2 ≤ N − ε (3.45)

for every unit vector u ∈ Ck and all j.

Theorem 3.33 ([51]). The Kadison-Singer problem has a positive solution if and only if
Conjecture KSr is true for some r ≥ 2.

Proof. We prove that KSr is equivalent to the paving conjecture. Assume that there exist
r,N and ε such that KSr holds. We have to show that this implies for every orthogonal
projectionQ ∈ Mn (C)with δ (Q) ≤ 1/N the existence of diagonal projectionsΠ1, ...,Πr ∈
Mn (C) which such up to the identity 1n and satisfy ||ΠjQΠj|| ≤ 1 − ε/N for all j. To
do so, let Q ∈ Mn (C) be an orthogonal projection with δ (Q) ≤ 1/N . If rk (Q) = k then
its range is a k-dimensional subspace V ⊂ Cn. Define vi =

√
NQei ∈ V for i = 1, ..., n.

Consequently one has for all i

||v||22 = N ||Pei||22 = N〈Pei, ei〉 = NPii ≤ Nδ (P ) ≤ 1 (3.46)

where we used that 〈Pei, P ei〉 = e∗iP
∗Pei = e∗iP

2ei = e∗iPei = 〈Pei, ei〉. Furthermore, if
u ∈ V is a unit vector we have that Pu = u and since P is self-adjoint we have∑

i

|〈u, vi〉|2 =
∑
i

|〈u,
√
NPei〉|2 = N

∑
i

|〈u, ei〉|2 = N (3.47)
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Hence we fulfill the requirements of conjecture KSr and KSr asserts the existence of a
partition X1, ..., Xn of {1, ..., n} such that∑

i∈Xj

|〈u, vi〉|2 ≤ N − ε (3.48)

for every unit vector u ∈ V and all j = 1, ..., r. We now have to construct r diagonal
projections Q1, ..., Qr which sum up to the identity and satisfy ||QjPQj|| ≤ 1 − ε/N for
all j. For this purpose let Qj ∈ Mn (C) be defined by

Qj : Mn (C) → Mn (C) Qjei =

{
ei if i ∈ Xj

0 if i /∈ Xj

(3.49)

Since {Xi}ri=1 is a partition of {1, ..., n}we have that Q1 + ...+Qr = 1n and for any unit
vector u ∈ V it follows

||QjPu||22 =
n∑

i=1

| (QjPu)i |
2 =

n∑
i=1

|〈QjPu, ei〉|2 =
n∑

i=1

|〈u, PQjei〉|2 (3.50)

where the third equality follows from P ∗ = P and Q∗
j = Qj . Further (3.46) and (3.49)

yield

n∑
i=1

|〈u, PQjei〉|2 =
∑
i∈Xj

|〈u, Pei〉|2 =
1

N

∑
i∈Xj

|〈u, vi〉|2 ≤ 1− ε/N (3.51)

Since u ∈ V was chosen arbitrarily, this shows that ||QjPQj|| = ||QjP (QjP )
∗ || =

||QjP ||2 ≤ 1− ε/N .
For the other implication we show the contraposition. For this, suppose that the conjec-
ture KSr fails for all r. Fix N = r ≥ 2 and let v1, ..., vn ∈ Ck be a counterexample with
ε = 1. For wi = vi/

√
N one has

||Awi|| = max
ξ∈C\{0}

||Awiξ||
||ξ||

= max
ξ∈C\{0}

|〈ξ, wi〉|
||wi||
||ξ||

= ||wi||22 =
1

N
||vi||22 ≤ 1/N (3.52)

Since
∑

iAwi ≤ 1k, we have that 1k−
∑n

i=1Awi ≥ 0with finite rank. In particular, we can
find further positive rank one operators Awi with i = n+ 1, ...,m such that ||Awi|| ≤ 1/N
and that {Awj}mj=1 is a partition of unity. Now define

Φ : Ck ↪→ Cm , u 7→ Φ(u) with (Φ (u))j = 〈u,wj〉 (3.53)

for j = 1, ...,m. For u ∈ Ck we have

||Φu||22 =
m∑
i=1

|〈Φu, ei〉|2 =
m∑
i=1

|〈u,wi〉|2 =
m∑
i=1

〈Awiu, u〉 = 〈
m∑
i=1

Awiu, u〉 = ||u||22 (3.54)

Since Φ is an isometry and im (Φ) ⊂ Cm is a linear subspace, we can construct a unique
orthogonal projection in Cn+m with range Φ

(
Ck
)
, i.e.,

〈Pei,Φwj〉 = 〈ei,Φwj〉 = 〈wi, wj〉 = Φwi (3.55)
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for all i and all j. Consequentlywe havePei = Φwi since {wi} spanCk. LetD := diag (P )
i.e., D is a diagonal matrix with dii = pii and thus ||D|| = maxi||wi||22 ≤ 1/N for all
i = 1, ...,m. LetQ1, ..., Qr ∈ Mn (C) be diagonal projections that form a partition of unity.
For X1, ..., Xr a partition of {1, ..., n} in such a way, that Xj consists of those elements
k ∈ {1, ..., n}, where (Qj)kk = 1. Due to the choice of the vectors v1, ..., vm we obtain that
there exists 1 ≤ j ≤ r and u ∈ Ck with ||u|| = 1 such that∑

i∈Xj∩{1,...,m}

|〈u, vi〉|2 > N − 1 ⇒
∑
i∈Xj

|〈u,wi〉|2 > 1− 1

N
(3.56)

So we end up with

||QjP (Φu) ||22 ≥
∑ m∑

k=1

|〈QjP (Φu), ek〉|2 =
∑
k∈Xj

|〈Φu, ek〉|2

=
∑
k∈Xj

|〈u,wk〉|2 > 1− 1

N

(3.57)

Consequently we have ||QjPQj|| = ||QjP ||2 > 1N−1. Consider the matrix A = P −D.
Then, A has zero diagonal and satisfies ||A|| ≤ 1 + N−1. By the previous discussion,
it further follows that for any collection of m × m diagonal projections Q1, ..., Qr with∑

kQk = 1we have

||QjAQj|| ≥ ||QjPQj|| − ||QjDQj|| ≥ 1− 2

N
(3.58)

Therefore we obtain for each N an example which falsify the Paving Conjecture 3.29.
Hence the Paving Conjecture implies the KSr conjecture.
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Chapter 4

The Resolution of the Problem

As we have seen in the last section, the original Kadison-Singer problem turned out to
be equivalent to the Anderson-Paving conjecture as well as toWeaver’s conjecture. How-
ever, the advantage of the formulation of Conjecture 3.32 is, that it reduces to finite dimen-
sional vector spaces and hence to a question of linear algebra. The aim of this section is the
presentation of the following probabilistic result due to Marcus, Spielman and Srivastava
[27].

Theorem 4.1 (MSS). Let ε > 0 and v1, ..., vm ⊂ Cd independent random vectors with finite
support such that

m∑
i=1

E [viv
∗
i ] = 1d and E[||vi||] ≤ ε ∀i (4.1)

Then

P

[∣∣∣∣ m∑
i=1

viv
∗
i

∣∣∣∣ ≤ (1 +
√
ε)2

]
> 0 (4.2)

Corollary 4.2. (MSS) implies Weaver’s conjecture (KSr)

Proof. Let (ui)mi=1 ⊂ Cd be a Parseval frame. We have to prove that Theorem 4.1 implies
for each r ∈ N the existence of a partition {I1, ..., Ir} of {1, ...,m} such that for each set of
vectors (ui)i∈Ik with k = 1, ..., r we have

∑
i∈Ik

|〈u, ui〉|2 ≤
(

1√
r
+
√
δ

)2

(4.3)

To do so, let r ∈ N and let v1, ..., vm be independent random vectors in (Cd)⊕r = Crd, such
that the vector vi takes r different values given by (

√
rui ⊗ ej)

r
j=1, uniformly distributed.

Then we have

m∑
i=1

E[viv∗i ] =
m∑
i=1

 m∑
j=1

√
r
2
uju

∗
j

⊗ eie
∗
i =


∑m

j=i uju
∗
j

. . . ∑m
j=i uju

∗
j

 = 1dr (4.4)
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by the Parseval frameproperty of theui. FurtherwehaveE[||vi||2] =
∑r

j=1 r
−1

√
r
2||ui||2 =

r||ui|| ≤ ε := rδ. Now we fulfill the requirements for ε = rδ of Theorem 4.1. An appli-
cation yields the existence of a realization such that the bound of (4.2) holds. For this
realization define the partition of {1, ...,m} as follows

Ik := {i ∈ {1, ...,m} | vi nonzero in kth component} (4.5)

for k = 1, ..., r. By construction, for this particular realization (vi)
m
i=1 we obtain the block

diagonal matrix

m∑
i=1

viv
∗
i =

 r
∑

j∈I1 uju
∗
j

. . .
r
∑

j∈Ir uju
∗
j

 (4.6)

and by assumption we have ||
∑m

i=1 viv
∗
i || ≤ (1 +

√
ε)2. With ε = rδ this implies that the

norm of each block is bounded by

∣∣∣∣∑
i∈Ik

uiu
∗
i

∣∣∣∣ ≤ 1

r
(1 +

√
δr)2 =

(
1√
r
+

√
δ

)2

(4.7)

what is exactly the bound from (4.3) and thus we obtain (KSr).

Before we are able to prove Theorem 4.1, we collect certain useful identities for matri-
ces.

Lemma 4.3. The set GL(n,C) is a dense subset of Mn(C), i.e., GL(n,C) = Mn(C).

Proof. Let A ∈ Mn(C) \ GL(n,C) arbitrary. We know that an element of Mn(C) is not
invertible if and only if it has an eigenvalue equal to zero. Let σ(A) denote the spectrum
of A and let λ1, ..., λr ∈ C be the nonzero eigenvalues. Further let λm := mini |λi|. If ε > 0
is given define δ := min{ ε

n ,
1
2nλm}. Then we have GL(n,C) 3 B := A + δ1 as well as

||A−B|| = ε
n ||1|| ≤ ε.

We will now state Jacobi’s formula, which expresses the derivative of the determinant
of a matrix A in terms of the adjugate adj(A) of A and the derivative of A [52].

Theorem 4.4. Let A : R → Md(C) be a differential map. Then

d
dt det(A(t)) = tr

[
adj(A(t))dA(t)dt

]
(4.8)

Proof. We will first show that the differential of the the map det : Mn(C) → C evaluated
at 1 coincides with the trace. For A ∈ Mn(C)we have

det′(1)[A] = ∇A det(1) = lim
ε→0

det(1+ εA)− det(1)
ε

(4.9)

But det(1+εA) is a polynomial in ε of degreen. In particular, it is related to the characteris-
tic polynomial ofA in the sense that the constant term is equal 1 and the linear term equal
to tr(A). In the limit ε→ 0, the only remaining term is tr(A). In the case thatA ∈ GL(n,C)
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we also have the identity det′(A)[B] = det(A)det(A−1B) for B ∈ Mn(C). To see this con-
sider the function in X given by det(X) = det(AA−1X) = det(A−1)det(AX). Then we
obtain

det′(A)[B] = det(A)det′(1)[A−1B] = det(A)det(A−1B) (4.10)

The claim now follows for the case B = ∂tA(t). This yields

d
dt detA = det(A) tr

[
A−1dA

dt

]
= tr

[
adj(A)dAdt

]
(4.11)

By Theorem 4.3, the invertible matrices are dense inMn(C) and hence the identity must
hold for all matrices.

The next theorem insures the invariance of the number of zeros of an analytic function
if it is subjected to small analytic deformations.

Theorem4.5. Let f, g be holomorphic analytic functions defined on an elementary domain
D and let γ be a closed curve inD which surrounds each point in its interior exactly ones.
Further assume that f and f+g only have finitelymany zeros inD and that |g(ξ)| < |f(ξ)|
for all ξ ∈ im(γ). Then the functions f and f + g have no zeros in the image of γ, and
the functions f and f + g have in the interior of γ the same number of zeros, counting
multiplicities.

Proof. The family of functions

ht(z) := f(z) + tg(z) , t ∈ [0, 1] (4.12)

connects f(z) = h0(z) with (f + g)(z) = h1(z). Clearly, these functions have no zeros on
the image of γ. The integral which counts the zeros in terms of the winding number

1

2πi

∫
γ

h′t(ξ)

ht(ξ)
dξ (4.13)

only yields natural numbers and is a continuous function in the parameter t ∈ [0, 1]. But
a continuous function with values in Nmust be constant.

4.1 The mixed characteristic polynomial

Definition 4.6. A complex random variable Z on the probability space (Ω,A, P ) is a func-
tion Z : Ω → C such that both its real part < (Z) and its imaginary part = (Z) are real
random variables on (Ω,A, P ). The expectation value of a complex random Z variable is
defined as

E [Z] = E [< (Z)] + iE [= (Z)] (4.14)

Definition 4.7. Let A1, ..., Am ∈ Mn (C). For z ∈ Cwe call

µ [A1, ..., Am] (x) =

(
m∏
i=1

(1− ∂zi)

)
det
(
x1+

m∑
i=1

ziAi

)∣∣
z1=...=zm=0

(4.15)

the mixed characteristic polynomial.

49



Lemma4.8. LetA1, ..., Am ∈ Md (C). Themixed characteristic polynomialµ [A1, ..., Am] (z)
is a polynomial in C [z, z1, ..., zm] of degree ≤ d. In particular, µ [A1, ..., Am] (z) is a poly-
nomial in C [z] of degree ≤ d.

Proof. Define B = z1 +
∑m

i=1 ziAi and apply Laplace expansion with respect to the jth
row to det(B). This yields

det(B) =
∑
i=1

(−1)i+jbijdet(Bij) (4.16)

where bij is the (i, j)th entry ofB andBij is the (d−1, d−1) submatrixwhich is obtained by
eliminating the ith column and jth row. From this we obtain by an iterative process that
det(B) is a polynomial in C[z, z1, ..., zm] of degree bounded by d. Hence µ[A1, ..., Am](z)
is a polynomial in C[z] of degree no more then d.

Mixed characteristic polynomials satisfy a number of interesting properties provided
that A1, ..., Am ≥ 0. In the following we will present certain properties that are necessary
in order to prove Theorem 4.1.

Lemma 4.9. Let z ∈ C be arbitrary but fixed. Then the mixed characteristic polynomial
mapping

µ : Md(C)× · · · ×Md(C) → C , (A1, ..., Am) 7→ µ[A1, ..., Am](x) (4.17)

is multi-affine and symmetric, i.e., µ is an affine map in each variable and its value is
invariant under the action of the symmetric group.

Proof. To prove the symmetry, let π ∈ Sm, where Sm denotes the symmetric group on
{1, ...,m}. We have

det
(∑

x1+

m∑
i=1

zπ(i)Aπ(i)

)∣∣
zπ(1)=...=zπ(m)=0

= det
(
x1+

m∑
i=1

ziAi

)
z1=...zm=0

(4.18)

By Lemma 4.8 we know that (4.18) is a polynomial and thus we can also conclude that we
can interchange the order of the derivatives. This leads toµ[Aπ(1), ..., Aπ(m)] = µ[A1, ....Am].
In order to show that µ is multi-affine it is sufficient to prove that for any B ∈ Md(C) the
function

f : Md(C) → C , A 7→ f(A) := (1− ∂z)det(B + zA)|z=0 (4.19)

is affine. If B ∈ GL(d,C), Jacobi’s formula (4.8) yields

f(A) = det(B)− det(B) ∂z det(1+ zB−1A)|z=0 = det(B)[1− tr(B−1A)] (4.20)

Since GL(d,C) is a dense open subset of Md(C), we obtain the general caseB ∈ Md(C) by
continuity. Hence, for any choice of A2, ..., Am ∈ Md(C) the map

(Md(C),Cm−1) 3 (A, z2, ..., zm) 7→ (1− ∂z)det
(
z1+ zA+

m∑
i=2

ziAi

)
|z=0 (4.21)

is an affine map in A and a polynomial of degree less then d in the variables z2, ..., zm.
If one now applies linear operators, e.g., partial differential operators (1 − ∂zi), they will
preserves this property. Thus the mapA 7→ µ[A,A2, ..., Am](z) is affine and by symmetry
it is multi-affine.
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Lemma 4.10. Let A1, ..., Am ∈ Md(C) such that rk(Ai) = 1 for all i = 1, ...,m. Then
the mixed characteristic polynomial of A1, ..., Am is the characteristic polynomial of A =
A1 + ...+Am. More precise, we have for z ∈ C

µ[A1, ..., Am](z) = det[z1−A] (4.22)

Proof. If A ∈ Md(C) is of rank one, there exists u, v ∈ Cd such that A = uv∗. Using the
Sylvester determinant identity we obtain det(1+tuv∗) = 1+tv∗u for any t ∈ C, what is an
affine map. For any A ∈ Md(C) consider the map C 3 t 7→ det(A+ tuv∗). If B ∈ GL(d,C)
we have

det[B + tuv∗] = det[B−1(1+ tB−1uv∗)] = det[B]−1det[1+ tũv∗] (4.23)

where we defineB−1u =: ũ. By the prior discussion, themap t 7→ det(B+tuv∗) = b0+b1t
with b0, b1 ∈ C is affinewheneverB is invertible. SinceGL(d,C) is a dense subset ofMd(C)
we deduce the general case by continuity. If z ∈ C fixed this implies that the polynomial

p(z1, ..., zm) := det
[
z1+

m∑
i=1

ziAi

]
= c+

∑
1≤i1<...<ij≤m

ai1 · ... · aijzi1 · ... · zij (4.24)

is affine multilinear in the complex variables z1, ..., zm. Evaluating p at the point t ∈ Cm

can be written by using partial differential operators via

p(t1, ..., tm) =

[
m∏
i=1

(1 + ti∂zi)

]
p(z1, ..., zm)

∣∣
z1=...=zm=0

(4.25)

Taking ti = −1 for all i = 1, ...,m yields

µ[A1, ..., Am](z) = p(−1, ...,−1) = det[z1−A] (4.26)

Lemma 4.11. Let X1, ..., Xm be d × d jointly independent random matrices, which only
take finitely many values. For z ∈ Cwe have

E[µ[X1, ..., Xm](z)] = µ[E[X1], ...,E[Xm]](z) (4.27)

Moreover, if rk(Xi) = 1 for all i = 1, ...,mwe have

E

[
det
(
z1−

m∑
i=1

Xi

)]
= µ[E[X1], ...,E[Xm]](z). (4.28)

Proof. LetB1, ..., Bn, A2, ..., Am ∈ Md(C) and let p1, ..., pn ∈ Rwith
∑n

i=1 pi = 1. By virtue
of Lemma 4.9 we have for z ∈ C

µ

[
n∑

i=1

piBi, A2, ..., Am

]
(z) =

n∑
i=1

piµ[Bi, A2, ..., Am] (4.29)

Since we assume X1, ..., Xm to be jointly independent, (4.27) follows. For the case that
rk(Xi) = 1 for all i = 1, ...,m, we can combine Lemma 4.10 together with (4.27) and
obtain

µ[E[X1], ...,E[Xm]](z) = E[µ[X1, ..., Xm](z)] = E

[
det
(
z1−

m∑
i=1

Xi

)]
(4.30)

what yields (4.28).
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4.2 Real stable polynomials

Real stable polynomials can be seen as a generalization of real-rooted polynomials. In the
univariate case it is well known that complex roots of p ∈ R[z] come in conjugate pairs.
Thus p is real rooted if and only if there are no roots with positive complex part.

Definition 4.12. A polynomial f ∈ C [z1, ..., zn] is called stable if f (z1, ..., zn) 6= 0 for all
n-tuples (z1, ..., zn) ∈ Cn with = (zj) > 0 for all j = 1, ..., n. If in addition f has real
coefficients, it will be termed real stable. We will denote the set of stable and real stable
polynomials byHn (C) andHn (R) respectively.

In the following we will frequently use the fact that the limit of real-rooted polynomi-
als is again real-rooted. This can be seen as a consequence of the more general fact that
the roots of a polynomial are continuous functions in its coefficients. When formalizing
this statement, one also has to take the situation into account, where the sequence of poly-
nomials may converge to a polynomial of lower degree, hence has strictly fewer roots. As
an example consider the sequence

fk(x) :=
1

k
x2 + x+ 1 (4.31)

where the roots of each fk are given by k
2 (−1±

√
1− 4n−1).

Theorem 4.13 ([53]). Let D ⊂ Cn be a domain and suppose that (fk)∞k=1 is a sequence of
nonvanishing analytic functions on D that converge to f uniformly on compact subsets
of D. Then f is either nonvanishing on D or else identically zero.

Proof. We first prove the case n = 1 what can be seen as a consequence of the residue
theorem. Assume the contrary, i.e., that f 6≡ 0 but there exists a point ζ ∈ D ⊂ C with
f (ζ) = 0. Then we can choose ε > 0 in such a way, that the disk centered at ζ with radius
2ε is contained in the domain D and that there are no zeros of f in this disk except ζ.
Consider the new sequence gn = f ′n/fn which converges locally uniform in U2ε (ζ) \ {ζ}
to g = f ′/f . Hence

0 =
1

2πi

∮
∂Uε(ζ)

f ′n
fn

→ 1

2πi

∮
∂Uε(ζ)

f ′

f
(4.32)

what is a contradiction to the assumption f (ζ) = 0. The case for multivariate functions
can be obtained inductively from the univariate case. For this suppose that f (ζ) = 0
for some ζ = (ζ1, ..., ζn) ∈ D. Further let D′ ⊂ D be a small polydisc centered at ζ. By
the previously, we can apply Theorem 4.13 and can conclude that f (z1, ζ2, ..., ζn) = 0
for all z1 such that (z1, ζ1, ..., ζn) ∈ D′. Applying the same argument repeatedly in the
variables z2, ..., zn we can conclude that f is identically zero on D′ and thus, by analytic
continuation, also on D.

It is important to note that a real stable polynomial has real coefficients but may be
evaluated on complex inputs. For the case n = 1, a real stable polynomial is a polyno-
mial with real coefficients and real zeros. The question how rich the class of real stable
polynomials is, is answered by the following

Lemma 4.14. Let A1, ..., An be positive semidefinite matrices. Then the polynomial

q (z1, ..., zn) = det (z1A1 + · · ·+ znAn) (4.33)

is real stable.
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Proof. By using Theorem 4.13, it is sufficient to prove the statement only forAj > 0where
j = 1, ..., n. Define the function

z : C → Cn t 7→ z(t) = λt+ α with α ∈ Rn , λ ∈ R+ (4.34)

Further define the matrices P :=
∑n

i=1 λiAi, H = B +
∑n

i=1 αiAi and note that P is a
positive definite matrix, hence there exist P−1 as well as

√
P . Then

f(z(t)) = det
[
B +

n∑
i=1

(αi + λit)Ai

]
= det [tP +H] (4.35)

= det
[√

P (t1+
√
P

−1
H
√
P

−1
)
√
P
]
= det [P ]det

[
t1+

√
P

−1
H
√
P

−1
]

(4.36)

Since the square root as well as the inverse of a positive definite matrix is still hermitian,
(4.36) is just the product of some factor with the characteristic polynomial of a hermitian
matrix and thus has only real eigenvalues.

The statement of Lemma 4.14 is, that determinantal polynomials are real stable. How-
ever, for the bivariate case, by a theorem of Lewis-Parillo-Ramana [54], we also obtain
that these are the only examples. That is, if p(x, y) is real stable of degree d, then there
exist real symmetric d × d positive semidefinite matrices A,B and C such that p(x, y) =
±det [xA+ yB + C]. After introducing a new class of objects via imposing certain prop-
erties, it is a typical procedure in mathematics to investigate under which operations they
are preserved. In our case, we are looking for operations which preserve real stability.
Obviously, if p ∈ R[z1, ..., zn] is real stable, then p(x, x, ..., x) is real-rooted.

Lemma 4.15. Let p ∈ R[z1, ..., zn] be real stable. The following operations preserve real
stability

(1) restriction, i.e., for t ∈ R fixed, the polynomial p(z1, z2, ..., zn)|zi=t in (n−1) variables
is stable unless it is identically zero

(2) differentiation, i.e., if t ∈ R, the polynomial (1 + t∂zi)p is real stable for i ∈ {1, ..., n}

Proof. By virtue of Theorem 4.13 we know that if a sequence of non-vanishing holomor-
phic functions (fn)n≥1 on an open connected domain Ω ⊂ Cm converges uniformly on
compact sets, then its limit f is either non-vanishing or f = 0. If we set Ω := Cn−1

+ ,
where Cn

+ := {z ∈ Cn | =(zi) > 0 ∀i}. For p ∈ R[z1, ..., zn] real stable, define the family of
functions

fk(z1, ..., zn−1) := p(t+
i

k
, z1, ..., zn−1) for (z1, ..., zn−1) ∈ Ω (4.37)

We prove the differentiation property without loss of generality only for the variable z1.
Now limk→∞fk(z1, ..., zn−1) = p(t, z1, ..., zn−1) and by Theorem 4.13 this is a stable poly-
nomial, thus yielding the restriction property. The differentiation property is clear for
t = 0. Therefore assume t 6= 0 and fix (z2, ..., zn) ∈ Ω. By definition, the polynomial
q(z) = p(z, z2, ..., zn) ∈ C[z] is stable. Hence we can write q(z) = c

∏d
i=1(z − wi) for some

roots w1, ..., wd ∈ C \ C1
+. Then we have

q(z) + tq′(z) = c
d∏

i=1

(z − wi)

(
1 +

d∑
i=1

t

z − wi

)
(4.38)
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Fix z ∈ C1
+. Since =(wi) ≤ 0, we have z − wi ∈ C1

+ and consequently =((z − wi)
−1) < 0

for all i = 1, ..., d. Hence,
∑d

i=1 t(z −wi)
−1 has non-zero imaginary part. In particular we

have q(z) + tq′(z) 6= 0 for any z ∈ C1
+. Since we assumed (z2, ..., zn) ∈ Ω to be arbitrary,

we conclude that (1 + t∂z1)p is real stable.

Corollary 4.16. If A1, ..., An ∈ Md(C) are positive semidefinite and hermitian, then the
mixed characteristic polynomial µ[A1, ..., An] is real, stable and of degree d.

Proof. By definition of the mixed characteristic polynomial, we have

µ[A1, ..., An](z) =

[
n∏

i=1

(1− ∂zi)

]
det
(
z1+

n∑
i=1

ziAi

)∣∣
z1=...=zn=0

(4.39)

Discarding the product of partial derivatives, Lemma 4.14 yields that this part is a real
stable polynomial in z ∈ C. The rest of the definition consists of taking partial derivatives
and evaluating at certain points. Hence Lemma 4.15 yields that µ[A1, ...., Az](z) is real
stable.

Definition 4.17. Let p ∈ R[z] be real stable. We write maxroot(p) for the largest root of p.

Lemma4.18. Let p, q ∈ R[z] be stable polynomialswith deg(p) = deg(q) andmaxroot(p) ≤
maxroot(q). Suppose that every convex combination (1−t)p+tq for t ∈ [0, 1] is also stable.
Then for any t0 ∈ [0, 1]we have

maxroot(p) ≤ maxroot((1− t0)p+ t0q) ≤ maxroot(q) (4.40)

Proof. First define mq := maxroot(q) and mp := maxroot(p). Is x > mq, both p(x) and
q(x) are positive and hence (1 − t0)p(x) + t0q(x) > 0. Consequently, the polynomial
(1 − t0)p + t0q can not have any root larger than mq what proves the second inequality
of (4.40). We are now going to prove the first inequality by a contradiction. Suppose that
(1− t0)p+ t0q has no roots in [mp,mq]. This implies (1− t0)p+ t0q > 0 for all x ≥ mp. In
particular, we have q(mp) > 0. Thus, counting with multiplicity, qmust have at least two
roots to the right of mp. Let D be an open disk in C centered at 1

2(mp +mq) with radius
1
2(mq −mp). We now show that

((1− t)p+ tq)(z) 6= 0 ∀z ∈ ∂D t0 ≤ t ≤ 1 (4.41)

Since the polynomial (1 − t)p + tq is stable by assumption, the claim directly follows for
z = mp and z = mq. The set ∂D × [0, 1] is compact and hence

inf
(z,t)∈∂D×[t0,1]

|((1− t)p+ tq)(z)| > 0 (4.42)

By Theorem 4.5 the polynomials (1− t)p+ tq have the same numbers of zeros inD for all
t ∈ [t0, 1]. This yields a contradiction to the hypothesis that (1− t0)p+ t0q has no roots in
D, but q has at least two roots in D.

4.3 Interlacing polynomials

One important ingredient in order to solve the Kadison-Singer Conjecture is the concept
of interlacing for polynomials. As we will see, thus concept provides a way of reasoning
about orderings of the roots of real-rooted polynomials. In particular, it allows us to infer
information from the roots of the average polynomial about the roots of the individual
polynomials.
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Definition 4.19. Consider the polynomials

g (x) =

n−1∏
i=1

(x− αi) and f (x) =

n∏
i=1

(x− βi) (4.43)

We say that g interlaces f if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn (4.44)

We say that polynomials f1, ..., fk have a common interlacing if there is a single polyno-
mial g that interlaces each of the fi.

This definition can also be stated in an alternative way. Denote by βij the jth smallest
root of the polynomial fi. Then the polynomials f1, ..., fk have a common interlacing if
there exists an increasing sequence α0 ≤ α1 ≤ · · · ≤ αn such that βij ∈ [αj−1, αj] for all
i and j. If the roots of the polynomial g are known, one can simply choose α1, ..., αn−1

to be the roots of g and α0 respectively αn can be chosen in such a way that it is smaller
respectively larger than all of the roots of all the fi.

Lemma 4.20. Let f1, ..., fk be real rooted polynomials of degree n with positive leading
coefficients and set

f∅ =

k∑
i=1

fi (4.45)

If f1, ..., fk have a common interlacing, then there exists an i for which the largest root of
fi is at most the largest root of f∅.

Proof. Let g be a polynomial that interlaces each of the fi and suppose that αn−1 is its
largest root. By assumption, each fi has a positive leading coefficient and thus is positive
for x sufficient large. As each fi has exactly one root which is at least αn−1, each fi is
nonpositive atαn−1. Therefore the polynomial f∅ is as the sumof nonpositive polynomials
nonpositive and eventually becomes positive. Hence f∅ has a root that is at least αn−1 and
consequently its largest root is bounded frombelowbyαn−1. Let βn be this root. It follows
that there must be i ∈ {1, ..., n} for which fi(βn) ≥ 0. But fi has at most one root that is at
least αn−1 and fi(αn−1) ≤ 0. Thus the largest root of fi is at least αn−1 and at most βn.

Definition 4.21. Let I1, ..., Im finite index sets and for every assignment i1, ..., im ∈ I1 ×
· · · × Im, let fi1,...,im (x) be a real rooted polynomial of degree n with positive leading
coefficient. For k < mwe define the partial assignment i1, ..., ik ∈ I1 × · · · × Ik via

fi1,...,ik (x) =
∑

ik+1,...,im

fi1,...,ik,ik+1,...,im (4.46)

where ik+1, ..., im ∈ Ik+1 × · · · × Im. Further, in analogy to Lemma 4.20 we define

f∅ =
∑

i1,...,im

fi1,...,im (4.47)

for i1, ..., im ∈ I1 × · · · × Im. We say that the polynomials {fi1,...,im}i1,...,im form an in-
terlacing family if for all k = 0, ...m − 1 and all i1, ..., ik ∈ I1 × · · · × Ik, the polynomials
{fi1,...,ik,j}j∈Ik+1

have a common interlacing.
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Theorem 4.22. Let I1, ..., Im be finite index sets and let {fi1,...,im} be an interlacing family
of polynomials. Then there exists i1, ..., im ∈ I1 × · · · × Im such that the largest root of
fi1,...,im is at most the largest root of f∅.

Proof. By definition of an interlacing family we know that the polynomials {ft}t∈S1 have
a common interlacing and that their sum is given by f∅. By virtue of Lemma 4.20 we
can bound the largest root of one of the fi by the largest root of f∅. The proof can now be
completed via induction. For any s1, ..., sk we know that the polynomials {fs1,...,sk,t}t∈Sk+1

have a common interlacing such that
∑

t∈Sk+1
fs1,...,sk,t = fs1,...,sk . Therefore if we choose

t = sk+1, the largest root of the polynomial fs1,...,sk+1
is at most the largest root of fs1,...,sk .

Lemma 4.23 ([55]). Let f1, ..., fk be polynomials of the same degree with positive lead-
ing coefficients. Then f1, ..., fk have a common interlacing if and only if

∑k
i=1 λifi is real

rooted for all λ1, ..., λk ≥ 0 such that
∑k

i=1 λi = 1.

4.4 Multivariate barrier argument

Definition 4.24. Let p ∈ R[z1, ..., zm]. We say that x ∈ Rm is above the roots of the poly-
nomial p if

p(x+ t) > 0 ∀ t ∈ [0,∞)m (4.48)

A barrier function of p in direction of the coordinate zi, i = 1, ...,m is defined for such x
via

Φi
p(x) = ∂zi log[p(x)] =

∂zip(x)

p(x)
(4.49)

In order to derive properties of the barrier function, we need an analog of the implicit
function theorem for holomorphic functions.

Theorem 4.25 ([56]). Let B ⊂ Cn × Cm be an open set and f = (f1, ..., fm) : B → Cm a
holomorphic mapping. Further let (z0, w0) ∈ B a point with f(z0, w0) = 0 and

det
[(

∂fi
∂zj

(z0, w0)

)]
6= 0 (4.50)

Then there exists an open neighbourhood U := U1 × U2 ⊂ B and a holomorphic map
g : U1 → U2 such that

{(z, w) ∈ U1 × U2 | f(z, w) = 0〉 = {(z, g(z)) | z ∈ U1} (4.51)

Lemma 4.26. Let p ∈ R[z1, z2] be a stable polynomial. Then there exists a set A ⊂ R with
|A| < ∞ such that for all x ∈ R \ A the polynomial p(x, z2) ∈ R[z2] has real roots and
constant degree d ∈ N. If y1(x) ≤ · · · ≤ yd(x) denote its roots counting multiplicity, then
the map x 7→ yi(x) is non-increasing for each i ∈ {1, ..., d}.

Proof. We can regard an element ofR[z1, z2] as an element ofR[z1][z2]. More precisely this
means that we can write p(z1, z2) =

∑d
i=0 z

i
2qi(z1), where qi ∈ R[z1]. Since p is real stable,

Lemma 4.15 guarantees that for fixed x ∈ R the polynomial p(x, z2) ∈ R[z2] has only real
roots. Clearly, deg(p(x, z2)) = d if and only if qd(x) 6= 0. In this case, the fundamental
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theorem of algebra implies the existence of roots y1(x) ≤ · · · ≤ yd(x). We now show that
the map x 7→ yi(x) is non-increasing for i ∈ {1, ..., d}. First we will verify that for every
real root i.e, (x, y) ∈ R2 with p(x, y) = 0we have ∂z1p|(x,y) ≤ 0 and ∂z2p|(x,y) ≤ 0. In order
to generate a contradiction, suppose that α := ∂z2p(x, y) > 0. Using Theorem 4.25, there
exists open neighbourhoods U1, U2 ⊂ C of x, y respectively and a holomorphic function
g : U1 → U2 such that

{(z1, z2) ∈ U1 × U2 | p(z1, z2) = 0} = {(z, g(z)) | z ∈ U1} (4.52)

If we now define z1 = x+ εi and using that g is a holomorphic function, we have g(z1) ≈
y + g′(x)εi = y + αεi for small ε > 0. But this produces a root of p whose imaginary
part is non vanishing, which contradicts the stability of p. In the same manner we can
treat p as a function in R[z2][z1] and thus we have ∂z1p |(x,y) ≤ 0 and ∂z2p |(x,y) ≤ 0. To
finish the proof we will use the theory of algebraic curves, i.e., we will consider the set
{(x, y) ∈ R |p(x, y) = 0}. Every such algebraic curve decomposed as a finite union of
smooth monotone arcs, which can be connected by some points, and a finite number of
isolated points, called acnodes. In particular, a smoothmonotone arc is the graph of some
yi(x) restricted to some open interval. Differentiating p(x, yi(x)) = 0 with respect to x
yields

∂z1 p(z1, z2)
∣∣
(x,yi(x))

+ ∂z2 p(z1, z2)
∣∣
(x,yi(x))

· y′i(x) = 0 (4.53)

But ∂z1p |(x,y) ≤ 0 and ∂z2p |(x,y) ≤ 0 and thus y′i(x) ≤ 0.

Lemma 4.27. Let p ∈ R[z1, ..., zn] be stable and let 1 ≤ i, j ≤ n. For any k ∈ N0 the partial
derivatives of the barrier function of p satisfy

(−1)k
∂k

∂zkj
Φi
p(x) ≥ 0 (4.54)

whenever x ∈ Rn is above the roots of p. More precise, the map t 7→ Φi
p(x + tej) is a

non-negative, non-increasing and convex function of t ≥ 0.

Proof. Let p ∈ R[z1, ..., zn] be real stable. We first consider the case i = j, i.e., we show
that (−1)k∂kziΦ

i
p(x) ≥ 0 if x ∈ Rn is above the roots of p. If we fix all variables except zi,

then by Lemma 4.15 also this polynomial is real stable. Hencewe can assumewithout loss
of generality p ∈ R[z] real stable. Suppose that x ∈ R is above the roots of p. Recall that for
a univariate polynomial stability is equivalent to the fact that p has only real roots. By the
fundamental theorem of algebra there exist y1, ..., yd, c ∈ R such that p(z) = c

∏d
i=1(z−yj).

The barrier function of p is then given by

Φp(x) =
∂zp

p
(x) =

d∑
i=1

1

x− yi
⇒ (−1)k(∂kzΦp)(x) = k!

d∑
i=1

1

(x− yi)k+1
(4.55)

By assumption x is above the roots of p and therefore x > maxi(yi), hence all of the terms
in (4.55) are positive. This proves the claim for the univariate case. The case i 6= j and
k ≥ 1 remains. If i 6= j, we can fix all other variables zk with k ∈ {1, ..., n} \ {i, j} and
by virtue of Lemma 4.15 obtaining still a real stable polynomial. By a relabeling of the
variables, we can further assume i = 1, j = 2. Assume that R2 3 x = (x1, x2) is above the
roots of p ∈ R[z1, z2] stable. By the Schwartz-theorem we obtain

(−1)k∂kz2Φ
1
p(x) = ((−1)k∂kz2∂z1 log[p])(x) = ∂z1((−1)k∂kz2 log(p))(x) (4.56)
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it is sufficient to show that the map x1 7→ ((−1)k∂kz2 log[p])(x1, x2) is non-decreasing for
x2 ∈ R fixed. As we have seen in the proof of Lemma 4.26, we can write p(x1, x2) =

c(x1)
∏d

i=1(x2 − yi(x1)). This implies

((−1)k∂kz2 log[p])(x1, x2) = −(k − 1)!

d∑
i=1

1

(x2 − yi(x1))k
(4.57)

Since x is by assumption above the roots of p, we have x2 > maxi(yi(x)) and it follows
from Lemma 4.26 that the above function is non-decreasing.

Lemma 4.28. Let p ∈ R[z1, ..., zn] be stable. Suppose that x ∈ R lies above the roots of p
and that for some j ∈ {1, ..., n} and δ > 0we have

Φj
p(x) ≤ 1− 1

δ
(4.58)

Then x+ δej lies above the roots of (1− ∂zj)p and for all i = 1, ..., nwe have

Φi
(1−∂zj)p

(x+ δej) ≤ Φi
p(x) (4.59)

Proof. Let y ∈ Rn such that y lies above x, that is, yi ≥ xi for every i = 1, ..., n. Using the
monotonicity statement from Lemma 4.27 we have Φi

p(y) ≤ Φi
p(x) < 1 for all i = 1, ..., n,

where the second bound is a consequence from the assumption. Therefore 1−Φi
p(y) > 0

and thus

((1− ∂zi)p(z1, ..., zm))|y = p(y)(1− Φi
p(y)) > 0 (4.60)

In particular, Rn 3 x + δei is above the roots of (1 − ∂zi)p. Since (4.60) guarantees that
(1− ∂zi)p(y) > 0, we can apply log and obtain

log[(1− ∂zi)q](y) = log[p(y)(1− Φi
p(y))] = log[p(y)] + log[(1− Φi

p)(y)] (4.61)

Further, an application of ∂zk for k = 1, ..., n to (4.61) yields

Φk
(1−∂zi)p

(y) = Φk
p(y)−

∂zkΦ
i
p(y)

1− Φi
p(y)

(4.62)

Since ∂zkΦi
p(y) = ∂zk∂zi log[p(y)] = ∂zi∂zk log[p(y)] = ∂ziΦ

k
p(y) the required bound is

equivalent to

∂zjΦ
k
p(x+ δei)

1− Φi
p(x+ δei)

= Φk
p(x+ δei)− Φi

(1−∂zi)p
(x+ δei) ≥ Φk

p(x+ δei)− Φk
p(x) (4.63)

Further, using Lemma 4.27 we have Φk
p(x + δei) − Φk

p(x) ≤ δ ∂ziΦ
j
p(xδei) ≤ 0. Conse-

quently, (4.63) is implied by multiplying the inequality

1

1− Φi
p(x+ δei)

≤ δ (4.64)

with ∂ziΦk
p(x+δei). In addition, (4.64) is a consequence of Lemma 4.27 and the assumption

(4.58), since

Φi
p(x+ δei) ≤ Φi

p(x) ≤ 1− 1

δ
(4.65)
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Corollary 4.29. Let p ∈ R[z1, ..., zm] be stable and suppose that x ∈ Rm lies above the roots
of p and that there exists δ > 0 such that for j = 1, ...,m

Φj
p(x) ≤ 1− 1

δ
(4.66)

holds. Then (x+ (δ, ..., δ)) ∈ Rm lies above the roots of Πm
i=1(1− ∂zi)p.

Proof. Define n+ 1 new vectors and polynomials for i ∈ {0, ..., n} via

yi := x+ δ
n∑

j=1

ej and pi :=
i∏

k=1

(1− ∂zk)p (4.67)

If we now apply Lemma 4.28 iterative, we obtain that yi lies above of pi for all i ∈ {1, ..., n}.

4.5 Synthese

Theorem 4.30 (MCP). Let ε > 0 arbitrary and suppose that A1, ..., An ∈ Md(C) positive
semidefinite such that

n∑
i=1

Ai = 1 and tr[Ai] ≤ ε ∀i (4.68)

Then all roots of the mixed characteristic polynomial µ[A1, ..., An] are real and the largest
root is bounded by (1 +

√
ε)2.

Proof. Given A1, ..., An ∈ Md(C) define the polynomial p ∈ R[z1, ..., zn] via

p(z1, ..., zn) = det
[

n∑
i=1

ziAi

]
(4.69)

From Lemma 4.14 and Lemma 4.15 we know that p is a real stable polynomial. As in the
proof of Lemma 4.14 an application of Jacobi’s formula (4.8) yields for any i ∈ {1, ..., n}
and x ∈ Rn

∂zip = ∂t det
(

n∑
k=1

xkAk + tAi

)∣∣
t=0

= det
(

n∑
k=1

xkAk

)
tr

( n∑
k=1

xkAk

)−1

Ai

 (4.70)

Using the assumptions given in (4.68) we obtain for t > 0

Φi
p(t, ..., t) =

∂zip

p
((t, ..., t)) =

det [
∑n

k=1 tAk] tr
[
(
∑n

k=1 tAk)
−1Ai

]
det [

∑n
k=1 tAk]

= tr

( n∑
k=1

tAk

)−1

Ai

 = tr[t−11−1Ai] = t−1tr[Ai] ≤ t−1ε (4.71)

Further x = (t, ..., t) lies above the roots of p for any t > 0. In order to make use of
Corollary 4.29 we need

ε

t
≤ 1− 1

δ
⇔ ε

t
+

1

δ
≤ 1 (4.72)
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Choose t, δ > 0 accordingly. Then by Corollary 4.29 (t+ δ, ..., t+ δ) lies above the roots of
Πn

i=1(1− ∂zi)p. Since

n∏
i=1

(1− ∂zi)p(z1, ..., zn)
∣∣
z1=...=zn=z

= µ[A1, ..., An](z) (4.73)

for any z ∈ C we can conclude that maxroot[µ[A1, ..., An]] ≤ t + δ. If we now minimize
t + δ under the constraint given in (4.72) one obtains tmin =

√
ε + ε and δmin = 1 +

√
ε.

Hence the best bound for the largest root is tmin + δmin = 1 + 2
√
ε+ ε = (1 +

√
ε)2.

Finally we are able to prove Theorem 4.1 which will also make the importance of The-
orem 4.30 evident.

Theorem 4.31. Theorem 4.30 implies Theorem 4.1.

Proof. Let v1, ..., vn ⊂ Cd be random vectors as in (MSS) and consider the rank one posi-
tive semidefinite random matrices Xi := viv

∗
i for i = 1, ..., n. Since the Xi are assumed to

be hermitian, an application of Lemma 4.10 yields

∣∣∣∣ n∑
i=1

viv
∗
i

∣∣∣∣ = ∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ = maxroot
[
det
(
z1−

n∑
i=1

Xi

)]
= maxroot[µ[X1, ..., Xn]]

(4.74)

By Lemma 4.20 the bound on maxroot[µ[A1, ..., An]]with Ai := E[Xi] in the conclusion of
Theorem 4.30 yields the same bound on ||

∑n
i=1 viv

∗
i ||with positive probability.
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Chapter 5

The Relatives of the Problem

In this section we will explore two more problems that are closely related to the Kadison-
Singer problem and its proof. In particular, the existence of an infinite sequence of Ra-
manujan graphs of degree d was proven by Marcus, Spielman and Srivastava using the
machinery of interlacing polynomials before they applied it toWeaver’s conjecture. Since
here the argumentation does not involve the multivariate barrier argument, and solely
relies on real stability and the interlacing properties, the logic of the argument appears
much clearer. Finally, we return to equivalent formulations of the Kadison-Singer prob-
lem in the field of linear algebra. Here we show its equivalence to the Bourgain-Tzafriri
conjecture, which is closely related to the restricted invertibility theorem.

5.1 Ramanujan graphs

The structure of this section is as follows. Wewill first revisit important concepts of graph
theory with a focus on the adjacency matrix of a graph and properties of its eigenvalues.
Most important, the Alon-Boppana Theorem 5.6 points out the optimality of Ramanujan
graphs. We are then going to describe amethod that allows for the construction of a graph
from a given graph with twice the vertices. This construction is not unique and some
additional data is needed, namely the so called signing. One of the key observations is,
that the family of all those graphs form an interlacing family, which expectation value
equals the so called matching polynomial. However, for this polynomial certain bounds
on its largest root are known. In fact, the roots of this polynomial can be bounded by
2
√
d− 1, as desired. Using the properties of interlacing families derived in Section 4, we

can infer that there must exist a graph signing, whose roots are all bounded by 2
√
d− 1.

This provides a method for the construction of infinite families of Ramanujan graphs of
any degree d.

Definition 5.1. A graph G is a pair G = (V,E) consisting of a vertex set V = V (G) and a
edge set E = E (G) which is a set of two-sets of vertices. The vertices u and v of an edge
e = {u, v} are called the endpoints of an edge. A loop is an edge whose endpoints are
equal. When two vertices u and v are endpoints of an edge, we say that they are adjacent
and write u ∼ v to indicate this. A stable set is a set of vertices in a graph, no two of which
are adjacent. A graph G is called bipartite, if its vertices can be divided into two disjoint
and stable sets J ,K such that every edge connects a vertex in J to one inK. In this case,
the vertex sets J ,K are called the parts of the graph.
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Figure 5.1: Examples of graphs. The first graph is the complete graphK3 ( a graph where
for each pair of vertices there exists an edge connecting them) on three vertices and has 3
edges. The second is the complete graph on six verticesK6 and has 15 edges. In general,
a complete graph on n vertices Kn has 1

2n(n − 1) edges. The third graph is a 3-regular
graph with 6 vertices, i.e., each vertex has the same number of neighbours. The fourth
graph is a bipartite graph with 7 vertices, where the first stable set contains 4 vertices and
the second 3 vertices.

To any graph G one can associate the adjacency matrix A ∈ Mn (R) where n = |V |.
The rows and columns are indexed by the elements of the vertex set and the (u, v)-th
entry is the number of edges connecting u and v. Since our definition of a graph does not
comprise any information about the direction of the edges, the matrixA is symmetric, i.e.,
A> = A and consequently σ (A) ⊂ R. The degree deg (v) of a vertex v is the number of
edges incident with v, where a loop is counted with multiplicity 2. With this convention
it is easy to see that ∑

v∈V
deg (v) = 2|E (G) | (5.1)

A graph is said to be connected if for any u, v ∈ V there is a path from u to v. A graph is
said to be k-regular if every vertex has degree k.

Theorem 5.2. Let G be a graph and A its adjacency matrix. Further denote by ∆(G) the
maximal degree of any vertex v ∈ V . If λ is an eigenvalue of A then |λ| ≤ ∆(G).

Proof. If x = (x1, ..., xn)
> ∈ Rn is an eigenvector ofAwith eigenvalue λ, by definition we

have λx = Ax . Without loss of generality we can assume that |x1| = max1≤i≤n|xi|. Then

|λ| |x1| = |
n∑

j=1

a1jxj| ≤ |x1|
n∑

j=1

a1j = |x1|deg (v1) ≤ |x1|∆(G) (5.2)

Since x 6= 0we have x1 > 0 and therefore we obtain |λ| ≤ ∆(G)

Corollary 5.3. If G is a k-regular graph, then all the eigenvalues λ of its adjacency matrix
satisfy |λ| ≤ k.

Obviously a k-regular graph is one whose adjacency matrix has every row sum and
hence every column sum equal to k. Thus λ = k is an eigenvalue ofAwith corresponding
eigenvector u = (1, ..., 1)>.

Theorem 5.4. IfG is a k-regular graph, then λ = k is an eigenvaluewithmultiplicity equal
to the number of connected components of G.
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Proof. We have already argued that λ = k is an eigenvalue of a k-regular graph. Suppose
that v = (v1, ..., vn) is an eigenvector of the adjacency matrix A of G with eigenvalue k.
Further we can assume without loss of generality that |v1| = maxi |vi| as well as x1 > 0. It
follows that

kv1 =

n∑
j=1

a1jvj ≤
n∑

j=1

a1jv1 = kv1 (5.3)

This means, that we have vj = v1 for every j for which a1j 6= 0. More precise, this
holds for all those j, for which uj is adjacent with u1. Iterating the argument with each
of the vertices in the neighbourhood of u1, we obtain that vj = v1 if uj is connected to v1.
Applying this argument to each component of the graph, the claim follows.

By virtue of Theorem 5.4 we can order the eigenvalues of a connected k-regular graph
G in the following chain

k = λ0 (G) > λ1 (G) ≥ · · · ≥ λn−1 (G) ≥ −k (5.4)

If the graph G is bipartite and k-regular, one can divide the vertex set in two disjoint
and stable sets J and K. Label the elements of J by numbers 1, ..., |J | and the elements
of K with |J | + 1, ..., |G|. Since the graph is regular, each element of G has degree k.
In particular, every element of J ,K has degree k and since G is also bipartite, we have
|J | = |K|. Therefore the adjacency matrix is of the form

A =

(
0 B
B 0

)
where

|J |∑
j=1

Bij =

|K|∑
i=1

Bij = k (5.5)

It can be easily seen that the vector x = (1, ..., 1,−1, ...,−1) is an eigenvector of A to the
eigenvalue−k. To sum up, the adjacency matrixA of a k-regular graph has eigenvalues k
and −k if and only if G is bipartite. The eigenvalues k, and −k if G is bipartite, are called
the trivial eigenvalues of A.

Definition 5.5. Let G = (V,E) with |V | = n be a k-regular graph and denote by λmax (G)
the absolute value of the largest nontrivial eigenvalue of its adjacency matrix. We call G
a Ramanujan graph if

λmax (G) ≤ 2
√
k − 1 (5.6)

If the number of vertices is small, it is easy to construct Ramanujan graphs e.g., k-
regular complete graphs and complete bipartite graphs are Ramanujan graphs. The con-
struction of such graphs becomes more involved if one wants to obtain an infinite family
of k-regular graphs that are all Ramanujan. The importance of the number 2

√
k − 1 in

Definition 5.5 is due to the following

Theorem 5.6 (Alon-Boppana, [30]). Let G = (V,E) be a d-regular graph and∆ its diame-
ter. Then we have

λ2 ≥ 2
√
d− 1−O

(√
d− 1

∆− 1

)
(5.7)
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Proof. The idea of the proof is to explicitly construct an eigenvector of the adjacency ma-
trix A of G, whose eigenvalue has the desired property. Let a, b ∈ V such that d(a, b) =
∆(G) and define κ := b∆(G)−4

2 c. Further let ã be a neighbour of a. For v ∈ V we call

d(v, {a, ã}) := min {d(v, a), d(v, ã)} (5.8)

Consider a vector x ∈ R|V | given by{
xv = 1√

d−1
α if d(v, {a, ã}) =: α ≤ κ

xv = 0 if d(v, {a, ã}) > κ
(5.9)

We are going to show that

x>Ax ≥ 2
√
d− 1||x||2

[
1− 1

κ− 1

]
(5.10)

In order to achieve this, let us formulate the statement by using the Laplacian matrix of
G, i.e., L = d1−A. For the quadratic form of L, we have the following expression

x>Lx = dx>x− x>Ax =
∑

(u,v)∈E

(xu − xv)
2 (5.11)

For a given vertex v ∈ V denote by Sv the set of neighbours u ∈ V of v such that xu < xv.
By the d-regularity of the graph we clearly have |Sv| ≤ d− 1. Further define Lα as the set
of those vertices at distance exactly α to the set {a, ã}. We then have∑

(u,v)∈E

(xu − xv)
2 =

∑
α≤κ

∑
u∈Lα

∑
v∈Su

(xu − xv)
2

=
∑

α≤κ−1

∑
u∈Lα

∑
v∈Su

(xu − xv)
2 +

∑
u∈Lκ

∑
v∈Su

x2u

=
∑

α≤κ−1

∑
u∈Lα

|Su|
[
xu −

xu√
d− 1

]2
+
∑
u∈Lκ

|Su|x2u

≤
∑

α≤κ−1

∑
u∈Lα

(d− 1)

[
xu −

xu√
d− 1

]2
+
∑
u∈Lκ

(d− 1)x2u

=
∑

α≤κ−1

∑
u∈Lα

x2u(
√
d− 1− 1)2 +

∑
u∈Lκ

(d− 1)x2u

=
∑
u∈Lκ

(d− 1)x2u +
∑

α≤κ−1

∑
u∈Lα

x2u(d− 2
√
d− 1)

=
∑
u∈V

dx2u −
∑
u∈V

2
√
d− 1x2u +

∑
u∈Lκ

(2
√
d− 1− 1)x2u

(5.12)

In total, we arrive at∑
u∈Lκ

x2u = |Lκ|
1

(d− 1)κ
≤ 1

κ+ 1

κ∑
α=0

|Lα|
1

(d− 1)α
=

1

κ+ 1

∑
u∈V

x2u (5.13)

since the function α 7→ |Lα| (d − 1)−α is decreasing for increasing α. For the quadratic
form induced by the Laplacian this implies

x>Lx ≤ d ||x||2 − 2
√
d− 1 ||x||2 + 2

√
d− 1− 1

κ+ 1
||x||2 (5.14)
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and for the quadratic form of the adjacency matrix

x>Ax ≥
[
2
√
d− 1− 2

√
d− 1− 1

κ+ 1

]
||x||2 (5.15)

Let y ∈ R|V | be a vector constructed according (5.9) but now for some vertex b ∈ V and
b̃ ∈ V a neighbour of b. Clearly, it is not possible for a vertex at distance ≤ κ to {a, ã} to
also be at distance ≤ κ to {b, b̃}, since otherwise we would have a path of length ≤ 2κ+2
from a to b. Hence, the vectors x and y are non-zero on disjoint subsets of coordinate, and
hence are orthogonal. In particular, if we consider any linear combination ξ = β1x+ β2y
we obtain

ξ>Aξ = β21x
>Ax+ β22y

>Ay ≥
[
2
√
d− 1− 2

√
d− 1− 1

κ+ 1

]
(β21 ||x||2 + β22 ||y||2) (5.16)

Further we have by the orthogonality of x, y, that β21 ||x||2+β22 ||y||2 = ||ξ||2. Therefore we
have constructed a two-dimensional set of vectors whose quotient is at most the above
expression, and thus

λ2 ≥ 2
√
d− 1− 2

√
d− 1− 1

κ+ 1
(5.17)

With other words, Theorem 5.6 tells us, that for any ε > 0 there exists an n ∈ N, such
that any d-regular graphwith n vertices has a nontrivial eigenvalue, which absolute value
is at least 2

√
d− 1 − ε. Therefore, if one wants to construct graphs where the nontrivial

eigenvalues are as small as possible, 2
√
k − 1 serves as the lower limit of what can be

done. With respect to this property, Ramanujan graphs are optimal. Note, that one can
sharpen the bound on λ2 given in (5.7). More precise, Fiedman [31] showed that for any
d-regular graph Gwith |V (G)| = n, one has λ2 ≥ 2

√
d− 1(1−O(log(n)−2)).

Further important ingredients include so called coveringmaps, lifts, the universal cov-
ering tree as well as the path tree. The idea behind all four concepts is to view the graph
from a topological perspective, that is, as a one-dimensional simplicial complex. For a
complete review see [57, 58]. In particular, lifts will turn out to be a useful tool in order to
produce new larger graphs from a given one and the universal covering tree will bound
the largest eigenvalue of the matching polynomial.

Definition 5.7. Let G and H be two graphs. We say that a function f : V (H) → V (G)
is a covering map if for every v ∈ V (H), f maps the neighbourhood set NH(v) ⊂ V (H)
of a vertex v bijective onto NG(f(v)). If there exists a covering function from H to G, we
say that H is a lift of G or that G is a quotient of H . If f is a covering map onto G and
v ∈ V (G), we call the set f−1(v) the fibre of v. Similarly, if e ∈ E(G), we say that f−1(e)
is the fibre of e. If |f−1(v)| = |f−1(e)| = n for all v ∈ V (G) and all e ∈ E(G), we call n the
covering number.

Example 5.8. While Definition 5.7 treats lifts in a very general way, we are in the following
mainly interested in 2-lifts, which have a very pleasing description. LetG be a graph and
denote by A the adjacency matrix of G. A signing Ã of A is a symmetric matrix that
is obtained by replacing some of the 1-entries in A by −1. In fact, there exists a bijective
correspondence between 2-lifts ofG and signings ofA. One assigns to each edge e ∈ E(G)
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a value from {±1}, what yields a sequence s ∈ {±1}|E(G)|. Then, one constructs a graph
G̃ where for each vertex v ∈ V (G) there are two vertices {v0, v1} ⊂ V (G̃) in G̃ and for
each edge (u, v) ∈ E there are two edges in E(G̃), given by one of the following options
(1) {(u0, v0), (u1, v1)} if the signing was +1

(2) {(u0, v1), (u1, v0)} if the signing was −1

Figure 5.2: A 2-lift of the 2-regular graph on three vertices. First, we assign to each edge
a number {±1}. Then we double the number of vertices, where {u0, u1} is the fibre of the
original vertex u. Accordingly to the assignment, we have s(u, v) = 1, hence the edges in
the 2lift are of form (1) and we have to connect (u0, v0) and (u1, v1).

We have already seen in Figure 5.1 certain graphs with a small number of vertices that
turn out to be all Ramanujan. This emphasizes the fact, that if the number of vertices is
small, the fraction of those graphs which are Ramanujan is high. In particular, Theorem
5.6 implies that the problem becomes hard for large graphs. A partial result regarding
the existence of Ramanujan graphs for a large number of vertices was proven in 1988 by
Lubotzky, Phillips and Sarnak [29], Margulis [59] and 1994 by Morgenstern [60].
Theorem 5.9 ([57]). For every prime p and every positive integer k, there exist infinitely
many d-regular Ramanujan graphs with d = pk + 1.

Using the machinery developed in Section 4, we are able to prove the following re-
sult, which generalizes Theorem 5.9 and gives an affirmative answer to the question of
existence of large k-regular Ramanujan graphs for arbitrary k.
Theorem 5.10 ([28]). For every d ≥ 3 there exists an infinite sequence of d-regular bipartite
Ramanujan graphs.

In order to prove Theorem 5.10, we will not investigate the eigenvalues of the adja-
cency matrix directly, but introduce an auxiliary quantity, namely the so called matching
polynomial µG. In fact it turns out (cf. Theorem 5.18), that the matching polynomial
does not contain the whole information about the eigenvalues of one particular graph,
but about the average over all signings of that graphs.
Definition 5.11. A setM of independent edges in a graphG = (V,E) is called a matching.
M is amatching ofU ⊂ V if every vertex inU is incidentwith an edge inM . The vertices in
U are then calledmatched byM . Vertices not incidentwith any edge ofM are unmatched.
For a graph G let mi denote the number of matchings in G consisting of i edges, with
m0 ≡ 1. Define the matching polynomial of G by

µG (x) =
∑
i≥0

xn−2i (−1)imi (5.18)

where n is the number of vertices of the graph.
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The matching polynomial has an important application in statistical mechanics [61].
More precise, it was used in order to investigate phase transitions in a so calledmonomer-
dimer configuration. This configuration consists of a number of nonoverlapping dimers,
that is a matching, and monomers, that are unmatched vertices, in a graph. The main
theorem of [61] is the following.

Theorem 5.12 ([61]). For any graph G, µG (x) has only real roots.

Proof. The idea is to establish first a recurrence relation satisfied by µG. For any v ∈ V
we have

µG(x) = xµG\{v}(x)−
∑

(u,v)∈E

µG\{u,v}(x) (5.19)

whereG\{v} denotes the vertex-deleted subgraph ofG. First assume thatG is a complete
graph onn vertices. By the induction hypothesis, every graphH with atmostn−1 vertices
fulfills

(1) µH(x) is real-rooted with all roots distinct

(2) For every v ∈ H , µH\{v}(x) interlaces µH(x)

We will show in the following that the properties (1) and (2)must also be satisfied by G.
Fix a vertex v ∈ G and denote by λn−1 < ... < λ1 the roots of µG\{v}. By the induction hy-
pothesis, we know that µG\{u,v} strictly interlaces µG\{v}. Since each of these polynomials
is monic, this implies that µG\{u,v}(λ1) > 0. Further, as each interval (λi, λi+1) contains
exactly one root of each µG\{u,v}, it follows

sign[µG\{u,v}(λi)] = (−1)i+1 (5.20)

for i = 1, ..., n− 1 and all (u, v) ∈ E. This implies that the polynomial

r(x) =
∑

(u,v)∈E

µG\{u,v}(x) (5.21)

must also alternate sign at λi. Using the recurrence relation (5.19), we have

µG(λi) = λiµG\{v}(λi)− r(λi) = −r(λi) (5.22)

and thus we obtain sign[µG(λi)] = (−1)i. The intermediate value theorem implies that µG
has at least one root in each interval (λi, λi+1), what yields that µG has at least n−2 distinct
roots. Since µG(x) < 0 and µG(x) → ∞ for x → ∞, we must also have µG)(λ0) = 0 for
some λ0 > λ1. The same argument provides the existence of another root λn < λn−1,
hence in total there are n distinct real roots, which are strictly interlaced by the roots of
µG\{v}.

The proof of the following theorem is in many parts equal to the proof of Theorem
5.12, that is, relies heavily on the recurrence relation (5.19). Therefore we will not present
it explicitly here.

Theorem 5.13 ([61]). Let G be a graph with maximal degree d. Then all (real) roots of the
matching polynomial µG (x) have absolute value at most 2

√
d− 1.
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Definition 5.14. LetG = (V,E) be a graph. Awalk inG is a sequence of vertices (v1, ..., vn)
such that each consecutive pair (vi−1, vi+1) is an edge in G. A walk is called simple, if all
vertices are distinct and non-backtracking if vi−1 6= vi+1 for all i. Further we say that a
walk ω̃ is a continuation of another walk ω, if it is obtained by adding a single vertex to
ω, i.e., ω = (v1, ..., vn) and ω̃ = (v1, ..., vn, vn+1) for some vn+1 ∈ V (G). The universal
covering graph T of G is a graph constructed as follows. First, choose an arbitrary vertex
v ∈ V (G) as a starting point. Each vertex of T is a non-backtracking walk that begins
from v. Two vertices are adjacent, if one of the corresponding walks is a continuation of
the other.

Figure 5.3: A graph and its universal covering graph. As starting point the blue vertex
was chosen. For each walk in the graph at the left hand side which ends at a vertex of
color c, we add a vertex at the universal covering graph in the appropriate color. Clearly,
the walk (b, r, y) is a continuation of the walk (b, r), hence the corresponding vertices in
the universal covering graph are connected by an edge.

A similar concept to the universal covering graph is that of the so called path tree, first
introduced in [62].

Definition 5.15. Given a graphG and a vertex v ∈ V (G), the path treeP (G, v) contains one
vertex for every simple walk in G beginning at u. Two vertices in P (G, v) are adjacent, ig
the simple walk corresponding to one is a continuation of the simple walk corresponding
to the other.

From the definition it is clear that the path tree aswell as the universal cover are graphs
with an infinite number of vertices. Hence, the corresponding adjacency matrix is infinite
dimensional symmetric matrix. The spectral radius of a matrix of this type can be defined
as

ρ(T ) := sup
||x||2=1

||AT x||2 (5.23)

where || · ||2 denotes, in the case of existence, the 2-norm and AT the adjacency matrix of
T . The following theorem relates the roots of the matching polynomial of a graph with
the spectral radius of its path tree.

Theorem 5.16 ([63]). Let G = (V,E) be a graph and denote by P (G, u) a path tree of G
for u ∈ V . Then the matching polynomial of G divides the characteristic polynomial of
the adjacency matrix of P (G, u). In particular, all of the roots of µG(x) are real and have
absolute value at most ρ(P (G, u)).

Theorem 5.17. Let G = (V,E) be a graph and T its universal cover. Then the roots of
µG(x) are bounded in absolute value by ρ(T ).
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Proof. Let v ∈ V and let P be the path tree rooted at the vertex v. Since the simple walks
that correspond to the vertices of the path three P are nonbacktracking walks, we have
that P is a finite induced subgraph of the universal cover T . Hence AP , the adjacency
matrix of P , is a finite submatrix of AT . By virtue of Theorem 5.16, the roots of µG are
bounded by

||AP ||2 = sup
||x||2=1

||AP x|| ≤ sup
||y||2=1

supp(y)⊂P

||AT y||2 = sup
||y||2=1

||AT y||2 = ρ(T ) (5.24)

Thus we have that the roots of µG are bounded by ρ(T ).

The following theorem is due to Godsil and Gutman and relates the expected charac-
teristic polynomial over uniformly random signings of the adjacency matrix of a graph to
its matching polynomial.

Theorem 5.18 ([62, 28]). Let G = (V,E) be a graph, m = |E|, s ∈ {±1}m a signing of G
and fs(x) := det[x1−As]. Then

Es∈{±1}m [fs(x)] = µG(x) (5.25)

Proof. If S ⊂ {1, ..., n}we writeS(S) for the group of permutations on the set S. Further
we write |π| for the number of inversions of π ∈ S(S), i.e., the number of pairs (i, j)with
i < j, such that π(i) < π(j). In particular, (−1)|π| is the signature of the permutation
π. If n = |V |, we have As ∈ Mn(R) and an expansion of the determinant as a sum over
permutations σ ∈ Sn yields

Es[det(x1−As)] = Es

[ ∑
σ∈Sn

(−1)|σ|
n∏

i=1

(x1−As)i,σ(i)

]

=

n∑
k=0

xn−k(−1)k
∑
S⊂[n]
|S|=k

∑
π∈S(S)

Es

[
(−1)|π|

∏
i∈S

(As)i,π(i)

]

=

n∑
k=0

xn−k(−1)k
∑
S⊂[n]
|S|=k

∑
π∈S(S)

Es

[
(−1)|π|

∏
i∈S

si,π(i)

] (5.26)

Since the sij are chosen independently, i.e., P(sij = 1) = P(sij = −1), we have E(sij) = 0.
Hence, it is sufficient to only consider products that contain even powers of sij . On the
level of permutations this means, that we can restrict to those π, whose orbit is of size two.
But there are exactly the perfect matchings on S. Since there are no perfect matchings if
|S| is odd, we only consider the case where |S| even. Here, eachmatching consists of |S|/2
disjoint transpositions. Since Es(s

2
ij) = 1, this yields

Es[det(x1−As)] =
∑
k=0
k even

xn−k
∑
|S|=k

∑
matchings
π onS

(−1)|S|/2 = µG(x) (5.27)

As we will see, one important step towards a proof of Theorem 5.10 is Theorem 5.22,
which heavily relies on the concepts of interlacing families as well as real stability. Con-
sequently, we will benefit in the following from the observations already made in Section
4. In particular, we directly obtain from Lemma 4.15 the following
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Corollary 5.19. For all a, b ≥ 0 and variables x, y, the operator T := 1+a∂x+b∂y preserves
real stability.

Similar to the proof of Theorem 4.30, we can use the operators introduced in Corol-
lary in order to generate real stable polynomials, given a real stable polynomial. In fact,
we will see, that we can generate the expected characteristic polynomial by operations
of this kind. Further we have seen in Lemma 4.15, that also the operation of restriction
preserves real stability. More formal this means, that the operator Zzk : R[z1, ..., zn] →
R[z1, ..., zk−1, zk+1, ..., zn]with p 7→ p|zk=0 preserves real stability.

Lemma 5.20. Let A ∈ GL(n,C), p ∈ [0, 1] and u, v ∈ Cn. Then, the following identity
holds

ZxZy(1 + p∂x + (1− p)∂y)det(A+ xuu> + yvv>)

= pdet(A+ uu>) + (1− p)det(A+ vv>)
(5.28)

Proof. If we apply Theorem 4.4 to the function det(A+ tuu>), we obtain

d
dtdet(A+ tuu>) = det(A) (u>A−1u) (5.29)

First, consider the left-hand side of (5.28) without ZxZy. Using that 1 = p + (1 − p) we
obtain

(1 + p∂x + (1− p)∂y)det(A+ xuu> + yvv>) = det(A+ xuu> + yvv>)

+pdet(A+ yvv>)(u>A−1u) + (1− p)det(A+ xuu>)(v>A−1v)
(5.30)

An application of the operator ZxZy on (5.30) yields

ZxZy(1 + p∂x + (1− p)∂y)det(A+ xuu> + yvv>)

= det(A) [1 + pu>A−1u+ (1− p)v>A−1v]

= pdet (A)(1 + u>A−1u) + (1− p)det (A)(1 + v>A−1v)

= pdet(A+ uu>) + (1− p)det(A+ vv>)

(5.31)

where we have used thematrix determinant lemma in the last step. This proves the claim.

Lemma 5.21. Let u1, , ..., um, v1, ..., vm ∈ Rn and p1, ..., pm ∈ [0, 1]. Further let A ∈ Mn(C)
be a positive semidefinite hermitian matrix. Then the univariate polynomial

P (x) :=
∑

S⊂[m]

∏
i∈S

pi
∏
i/∈S

(1− pi)det
[
x1+A+

∑
i∈S

uiu
>
i +

∑
i/∈S

viv
>
i

]
(5.32)

is real rooted.

Proof. In order to prove that the univariate polynomial P (x) is real rooted, we consider
the multivariate polynomial

Q(x, y1, ..., ym, z1, ..., zm) := det
[
x1+A+

∑
i∈S

yiuiu
>
i

∑
i/∈S

ziviv
>
i

]
(5.33)
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Since operators of the form vv> for v ∈ Cn are positive semidefinite, we can conclude
from Lemma 4.14 and the fact, that specifying variables to real numbers preserves real
stability (cf. Lemma 4.15) that Q is real stable. The idea is now the following. If we can
show that P admits a representation as

P (x) =

[
m∏
i=1

Zyi Zzi Ti

]
Q(x, y1, ..., ym, z1, ..., zm) (5.34)

where Ti = 1 + pi∂yi + (1 − pi)∂zi, by virtue of Lemma 4.15 and Corollary 5.19 we have
that Q is real stable. We will prove (5.34) by induction. In particular, we show that for
any k ∈ Nwe have [

k∏
i=1

Zyi Zzi Ti

]
Q(x, y1, ..., ym, z1, ..., zm) =

∑
S⊂[k]

∏
i∈S

pi
∏
i/∈S

(1− pi)det
[
x1+A+

∑
i∈S

uiu
>
i +

∑
i/∈S

viv
>
i +

∑
i>k

(yiuiu
>
i + ziviv

>
i )

] (5.35)

The case k = 0 is trivial, since the right hand side of (5.35) coincides with the definition of
Q. For the induction step suppose that (5.35) holds for k ∈ N. SinceQ is a polynomial, it is
aC∞-function and by the theoremof Schwarz, the partial derivatives commute. Therefore
we have[

k+1∏
i=1

ZyiZziTi

]
Q(x, y1, ..., ym, z1, ..., zm) = Zyk+1

Zzk+1
Tk+1

[
k∏

i=1

ZyiZziTi

]
Q =

Zyk+1
Zzk+1

Tk+1(
∑
S⊂[k]

∏
i∈S

pi
∏
i/∈S

(1− pi)det
[
B + yk+1uk+1u

>
k+1 + zk+1vk+1v

>
k+1

]
)

(5.36)

where we have definedB := x1+A+
∑

i∈S uiu
>
i +

∑
i/∈S viv

>
i +

∑
i>k+1(yiuiu

>
i +ziviv

>
i ).

Now, we apply Lemma 5.20 to each term that appears in the sum over the subsets S ⊂ [k]
what yields in the case of k = m exactly the claimed identity. This provides that P (x) is
real stable and since it is univariate, it is real-rooted.

Theorem 5.22 ([28]). Let G = (V,E) be a graph, As its signed adjacency matrix and
fs(x) := det[1x−As] its characteristic polynomial. Then

P (x) =
∑

s∈{±1}m

[ ∏
i:si=1

pi

][ ∏
i:si=−1

(1− pi)

]
fs(x) (5.37)

is a real-rooted polynomial for all values of p1, ..., pm ∈ [0, 1].

Proof. Let v ∈ V be a vertex and denote by dv its degree. Further define d := maxv∈V dv.
First observe that the claim that (5.37) is real-rooted is equivalent to the claim that the
polynomial ∑

s∈{±1}m

∏
i:si=1

∏
i:si=−1

det(x1+ d1−As) (5.38)

is real-rooted, as their roots only differ by d. The matrix d1 − As can be seen as the
Laplacian of the graph G plus a non-negative diagonal matrix, i.e., the matrix δ = (d −
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dv)eve
>
v . For each edge (u, v) ∈ E, define the rank one matrices, which are labeled by the

edge (u, v) as well as its signing

L1
u,v = (eu − ev)(eu − ev)

> , L−1
u,v = (eu + ev)(eu + ev)

> (5.39)

Consider now a signing s ∈ {±1}|V | of the graph G, and let s(u, v) denote the sign which
it asserts to the edge (u, v). By the definition of d and δ we obtain

d1−As =
∑

(u,v)∈E

Ls(u,v)
u,v + δ (5.40)

Since δ is a positive semidefinite matrix, we can conclude that also d1 − As is positive
semidefinite. Define au,v := (eu − ev) and bu,v = eu + ev and rewrite (5.40) in terms of
those

∑
s∈{±1}m

∏
i:si=1

∏
i:si=−1

det

x1+A+
∑

s(u,v)=1

au,va
>
u,v +

∑
s(u,v)=−1

bu,vb
>
u,v

 (5.41)

That the polynomial (5.41) is real-rooted follows from Lemma 5.21, what implies the real-
rootedness of (5.37). Hence the claim follows.

Theorem 5.23 ([28]). Let G = (V,E) be a graph, As its signed adjacency matrix for some
signing s ∈ {±1}|V | and fs(x) := det[1x−As] its characteristic polynomial. The polyno-
mials {fs}s∈{±1}m form an interlacing family.

Proof. First observe, that for every 0 ≤ k ≤ m − 1, every assignment si ∈ {±1} with
1 ≤ i ≤ k and every λ ∈ [0, 1] the polynomial

λfs1,...,sk,1(x) + (1− λ)fs1,...,sk,−1(x) (5.42)

is real rooted. This follows fromTheorem 5.22, if we set in (5.37) pk+1 = λ, pk+1, ..., pm = 1
2

and pi = 1+si
2 for 1 ≤ i ≤ k. Since this holds for every value of λ ∈ [0, 1] and every 0 ≤

k ≤ m − 1, we can conclude that also
∑

s∈{±1}m λsfs is real-rooted, where λs ∈ [0, 1]. By
virtue of Lemma 4.23 we can conclude that the polynomials {fs}s∈{±1}m have a common
interlacing.

Theorem 5.24 ([28]). Let G = (V,E) be a graph with adjacency matrix A and universal
cover T . Then there exists a signing s of A such that all eigenvalues of As are bounded by
ρ(T ). If G is d-regular, there exists a signing s such that all eigenvalues of As are at most
2
√
d− 1.

Proof. Denote bym = |E|. The eigenvalues ofAs are given by the roots of the polynomial
fs(x) = det(x1−As). By Theorem 5.23 we know that the polynomials {fs}s∈{±1}m form
an interlacing family. Further we have Es∈{±1}m (fs(x)) = µG(x) by Theorem 5.18 and
we can bound the largest root of µG(x) by maxroot(µG) ≤ ρ(T ). Then, Theorem 4.22
guarantees the existence of a signing s ∈ {±1}m such that maxroot[fs(x)] ≤ ρ(T ). For the
second claim observe that a d-regular graph is of maximal degree d. Hence we can apply
Theorem 5.13 which yields that maxroot(µG) ≤ 2

√
d− 1. Using Theorem 4.22 and the

same argumentation as above, we obtain the existence of a signing s ∈ {±1}m such that
the eigenvalues of As are at most 2

√
d− 1.
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Before we are able to prove the main theorems, observe that if G is a complete d-
regular graph, all its nontrivial eigenvalues are zero. This can be easily seen from the fact,
that the corresponding adjacency matrix is of rank two and hence, there can be only two
nonvanishing eigenvalues. But these both eigenvalues have to be ±d, thus trivial.

Proof of Theorem 5.10. By the previous discussion, we know that the complete bipartite
graph of degree d is Ramanujan. Further, the 2-lift of a bipartite graph is again bipartite,
hence its eigenvalues are symmetric about 0. In particular, the 2-lift of a d-regular bipartite
graph is a d-regular bipartite graph. It remains to show that there is a 2-lift ofG, in which
every nontrivial eigenvalue is at most 2

√
d− 1. But this is exactly the content of Theorem

5.24.

5.2 Bourgain-Tzafriri conjecture

In this section we are going to show that the Kadison-Singer problem is equivalent to the
Bourgain-Tzafriri conjecture, that is a strong form of the restricted invertibility problem,
posed in [64]. There, Bourgain and Tzafriri proved the following result known as the
restricted invertibility theorem

Theorem 5.25 ([64]). Let T : `n2 → `n2 be a linear operator with ||Tei|| = 1 for 1 ≤ i ≤
n. Then there exist universal constants A, c > 0 and a subset σ ⊂ {1, ..., n} with |σ| ≥
cn/||T ||2 such that for all j = 1, ..., n and all choices of {aj}j∈σ ⊂ Rwe have

||
∑
j∈σ

ajTej||2 ≥ A
∑
j∈σ

|aj|2 (5.43)

Theorem 5.25 gave rise to the following conjecture.

Conjecture 5.26 (BT). There is a universal constantA > 0 so that there exists for anyB > 1
a natural number r = r (B) such that the following holds. For any n ∈ N and T : `n2 → `n2
linear with ||T || ≤ B and ||Tei|| = 1 there exists a partition {Aj}rj=1 of {1, ..., n} such that
for all j = 1, ..., r and all choices of {aj}i∈Aj we have

||
∑
i∈Aj

aiTei||2 ≥ A
∑
i∈Aj

|ai|2 (5.44)

Frequently Conjecture 5.26 is also called strong Bourgain-Tzafriri conjecture, since
there exists also a weakening of it. In the weak Bourgain-Tzafriri conjecture one also
allows A to depend upon the norm of the operator T . In order to show that the strong
Bourgain-Tzafriri conjecture as well as the weak Bourgain-Tzafriri conjecture are equiv-
alent to the Kadison-Singer conjecture we first need a further conjecture, the so called
Casazza-Tremain conjecture, equivalent to both above.

Conjecture 5.27 (CT). For n ∈ N let T : `n2 → `n2 be linear with ||Tei|| = 1 for all i = 1, ..., n
and ||T || ≤ 2. Then there exists a universal constant A and r ∈ N such that there is a
partition {Aj}rj=1 of {1, ..., n} so that for all j = 1, ..., r and all {ai}i∈Aj ⊂ Rwe have

||
∑
i∈Aj

aiTei||2 ≥ A
∑
i∈Aj

|ai|2 (5.45)

Theorem 5.28. The following are equivalent:

73



(a) The Kadison-Singer Problem

(b) The strong Bourgain-Tzafriri Conjecture

(c) The weak Bourgain-Tzafriri Conjecture

(d) The Casazza-Tremain Conjecture

Proof. We will prove the following chain of implications (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a). We
first show (d)⇒ (a). By Theorem 3.33 it is sufficient to show, that the Casazza-Tremain
Conjecture implies the Weaver Conjecture. For this purpose, let r,A satisfy (CT ). Fix
0 < δ ≤ 3/4 and let P be an orthogonal projection on `n2 such that δ (P ) ≤ δ. Clearly one
has

||Pei||2 = 〈Pei, ei〉 = Pii ≤ max
i,j

Pij = δ (5.46)

This implies || (1− P ) ei||2 ≥ 1 − δ ≥ 1/4. Define the operator T : `n2 → `n2 by its
action on the standard basis ei and then extend by linearity to the whole space i.e., Tei =
(1− P ) ei/|| (1− P ) ei||. For any {ai}ni=1 we have

||
n∑

i=1

aiTei||2 = ||
n∑

i=1

ai
|| (1− P ) ei||

(1− P ) ei||2 (5.47)

≤
n∑

i=1

| ai
|| (1− P ) ei||

|2 ≤
n∑

i=1

| ai
1− δ

|2 ≤ 4

n∑
i=1

|ai|2 (5.48)

Hence ||Tei|| = 1 and ||T || ≤ 2. By the CT conjecture, there exists a partition {Aj}rj=1 of
{1, ..., n} such that for j = 1, ..., r and {ai}ni=1 we have

||
∑
i∈Aj

aiTei||2 ≥ A
∑
i∈Aj

|ai|2 (5.49)

Thus we have

||
∑
i∈Aj

ai (1− P ) ei||2 =
∑
i∈Aj

ai · || (1− P ) ei|| · (Tei) ||2 (5.50)

≥ A
∑
i∈Aj

|ai|2 · || (1− P ) ei||2 ≥ A
∑
i∈Aj

|ai|2δ ≥
A

4

∑
i∈Aj

|ai|2 (5.51)

Clearly we have P (1− P ) = 0, and consequently ||Pei + (1− P ) ei||2 = ||Pei||2 +
|| (1− P ) ei||2. It follows that for all {ai}i∈Aj we have∑

i∈Aj

|ai|2 =
∑
i∈Aj

||aiei||2 =
∑
i∈Aj

||aiPei + ai (1− p) ei|| (5.52)

||
∑
i∈Aj

aiPei||2 + ||
∑
i∈Aj

ai (1− P ) ei||2 ≥ ||
∑
i∈Aj

aiPei||2 +
A

4

∑
i∈Aj

|ai|2 (5.53)
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where the inequality follows by (5.51). For Rn 3 f =
∑n

i=1 aiei and by virtue of the
estimation (5.53) we obtain

||PQAjf ||2 = ||
∑
i∈Aj

aiPei||2 ≤
(
1− A

4

)∑
i∈Aj

|ai|2 (5.54)

Since P is an orthogonal projection and the C∗-property of the norm, we end up with

||QAjPQAj || = ||
(
PQAj

)∗
PQAj || = ||PQAj ||2 ≤ 1− A

4
(5.55)

Hence Weaver’s conjecture 3.32 holds and by virtue of Theorem 3.33 we can conclude
that (d) ⇒ (a). The implications (b) ⇒ (c) ⇒ (d) are clear, since we also allow that the
constant A depends on the norm of the operator T .

One can also formulate the Paving Conjectures in terms of Toeplitz operators and by
this means connect it to a fundamental problem in Harmonic analysis.

Definition 5.29. Let φ ∈ L∞ ([0, 1]). The Toeplitz operator corresponding to φ is defined
as

Tφ : L2 ([0, 1]) → L2 ([0, 1]) , f 7→ f · φ (5.56)

Further, if I ⊂ Z, we denote by S (I) the L2 ([0, 1])-closure of the span exponential func-
tions with frequencies taken from I , i.e.,

S (I) = span{e2πint}n∈I (5.57)

Lemma 5.30. Let E ⊂ [0, 1] be a measurable subset and A ⊂ Z. For every f ∈ L2 ([0, 1])
we have

||PEQAf ||2 = µ (E) ||QAf ||2 + 〈QA (PE −D (PE))QAf, f〉 (5.58)

where QA denotes the orthogonal projection of L2 ([0, 1]) onto S (A)

Proof. For L2 ([0, 1]) 3 f =
∑

n∈Z ane
2πint it follows that

||PEQAf ||2 = 〈PEQAf, PEQAf〉 = 〈
∑
n∈A

anPE

(
e2πint

)
,
∑
m∈A

PE

(
e2πint

)
〉 (5.59)

Ordering the terms with respect to their indices and inserting PE (f) = χE · f and using
P 2
E = PE yields

||PEQAf ||2 =
∑
n∈A

|an|2 · ||χE · e2πint||2 +
∑
n6=m

anam〈PEe
2πint, e2πint〉 (5.60)

= µ (E)
∑
n∈A

|an|2 + 〈(PE −D (PE))
∑
n∈A

ane
2πint,

∑
n∈A

ane
2πint〉 (5.61)

= µ (E) ||QAf ||2 + 〈QA (PE −D (PE))QAf, f〉 (5.62)
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Conjecture 5.31 (Toep). Let E ⊂ [0, 1] be a measurable set and ε > 0 given. Then there
exists a partition {Aj}rj=1 of Z such that one has for f ∈ S (Aj) and all j = 1, ..., r

(1− ε)µ (E) ||f ||2 ≤ ||PE (f) ||2 ≤ (1 + ε)µ (E) ||f ||2 (5.63)

Theorem 5.32. The following are equivalent:

(a) The Toeplitz Conjecture

(b) All Toeplitz operators satisfy the Paving Conjecture

(c) For every measurable set E ⊂ [0, 1], the Toeplitz operator PE satisfies the Paving
Conjecture

Proof. We will prove the following equivalences (a) ⇔ (b) ⇔ (c). We start with (a) ⇔
(c). From Lemma 5.30 we can conclude that the Toeplitz conjecture hold if and only if for
ε > 0 arbitrary, we can find a partition {Aj}rj=1 such that

(1− ε)µ (E) ||QAjf ||2 ≤ µ (E) ||QAjf ||2 + 〈QAj (PE −D (PE))QAjf, f〉 (5.64)

≤ (1 + ε)µ (E) ||QAjf ||2 (5.65)

for all j ∈ {1, ..., r} and all f ∈ L2(0, 1). Further, by adding±µ (E) ||QAjf ||2 to both sides
of (5.64) , one finds that equation (5.64) is equivalent to

|〈QAj (PE −D (PE))QAjf, f〉| ≤ εµ (E) ||QAjf ||2 (5.66)

By the self-adjointness of the operatorQAj (PE −D (PE))QAj , we can rewrite (5.66) equiv-
alently as ||QAj (PE −D (PE))QAj || ≤ εµ (E). But this means that the operator PE is
pavable. It remains to prove (b) ⇔ (c). First notice [65], that the class of pavable oper-
ators, i.e., the class of operators satisfying the paving conjecture, is a closed subspace of
B(`2(N)). Further, the class of Toeplitz operators is contained in the closure of the lin-
ear span of the Toeplitz operators that are of the form PE . This means, that we can uni-
formly approximate an arbitrary bounded measurable function on [0, 1] by simple func-
tions. Hence we have (b)⇔ (c).
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Chapter 6

Conclusion

In this thesis we gave an introduction into the mathematical framework necessary to for-
mulate the Kadison-Singer problem, its equivalent formulations and its solution. In par-
ticular, we summarized the main ingredients from the fields of topology, operator alge-
bras as well as frame theory. Afterwards we used the introduced concepts to formulate
the original form of the Kadison-Singer problem and discussed how the question evolves
in dependence of new insights. In particular, we formulated the finite dimensional case
in a way appropriate for a C∗-algebraic treatise and showed the uniqueness of extensions
in this case. In addition, we also presented the approach of Kadison and Singer in order
to construct a counterexample for the case of the continuous maximal abelian subalge-
bra, identified with L∞(0, 1). This includes a detailed analysis of von Neumann’s diago-
nal processes. We then proceeded by introducing the paving conjecture in its infinite as
well as in its finite formulation and proving the equivalence of both to the Kadison-Singer
problem. We finished this chapter with a presentation ofWeaver’s conjecture. In Chapter
4 we presented the proof of Weaver’s conjecture due to the probabilistic result of Marcus,
Spielman and Srivastava. This comprises the concepts of interlacing families, the mixed
characteristic polynomial, real stable polynomials as well as the multivariate barrier ar-
gument. We concluded with Chapter 5 by presenting two problems closely related to the
solution of the Kadison-Singer problem. In particular, we discussed how the introduced
concepts can be utilized to solve a question about the existence of Ramanujan graphs.

As a question for further research, it turns out that the problem of Ramanujan graphs,
i.e., the question of existence, is similar to an open problem in quantum information sci-
ence, namely to the existence of symmetric, informationally complete, positive operator-
valued measures, or in short form SIC-POVM. Here a SIC-POVM is a collection of self-
adjoint rank-1 projectors (Ek)

d2

k=1 ⊂ Md(C) with span{(Ek)} = Md(C) and tr[EiEj] =
(d+1)−1(dδij +1). For small dimensions, it is easy to construct SIC-POVMs. For instance
for the case d = 2we can take the vectors

|0〉 , 1√
3
|0〉+

√
2

3
|1〉 , 1√

3
|0〉+

√
2

3
e

2πi
3 |1〉 , 1√

3
|0〉+

√
2

3
e

4πi
3 |1〉 (6.1)

However, there is no construction procedure known manufacturing SIC-POVMs for any
d ∈ N, i.e., yielding an infinite family of SIC-POVMs. Exact expressions for SIC sets have
been found for Hilbert spaces of all dimensions from d = 2, ..., 53 and in some higher
dimensions as large as d = 5799. Therefore, it would be interesting whether it is possible
to construct a SIC-POVM from a given Ramanujan graph, which would then provide a
positive answer.
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