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basic model of measurement
system sources measuring apparatuses

states
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observables p' I:I
g oba lity |,

probability = F(state, observable)
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states observables
density operators positive opvalued measures
probabilities positive functionals

channels Drocess povms




process observables

quantum process = channel
-' - CP+TP linear map on L(H)
- qq input/output box

process observable
- channel — probability

- affine assignement
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process observable
MX outcome M _describes choice
. / of in-state W and out-POVM

F (resulting in effect F )

prob(x)=tr[CM_
C=(ldeQ)[D

M, = (R* ®Id)[F] where R old)®]=w
- are operators in L(H ®H )




process observables = process POVM
{ M ] = 1-testers

M:M=>20,Y M= 9®idd

density operator

prob(x)=tr[CM ]

Choi-Jamiolkowski C: dtr1[C] = Idd

channel representation



process observables = process POVM
{ M ] = 1-testers

never POVM

M:M=>20,y M= p/>®idd

density operator

prob(x)=tr[CM ]

Choi-Jamiolkowski dtr1[C] = Idd

always density operator



definition of compatibility
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A Q@ B|if A B are marginals of some G






compatibility of testers
A:A suchthaty A =p®id,
B: B suchthaty B =owid,

AQ@ B| iff p=0c and Pa@Q

P.Q are POVMs for cannonical realization
P = (p'2®id) A (p"2®id)
Q,= (0"?eid) B (0" °®id)
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normalization states.




commutativity does not imply compatibility

ACGB

iff p=0c and PaQ

There exist commuting Hand Vwith different
normalization states.
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quantification of incompatibility
A, B are A compatible if there exist N4, N®) -

(1-A) A+AN“ @D (1-A) B+AN®

robustness of incompatibility R,
- minimal A such that A, B are A compatible
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0<Rs1/2




robustness bounds
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robustness bounds

AQ@ B| iff p=c and P@Q

-robustness of Aand B... R

- robustnessof pand ... R
-robustnessof Pand Q... R_

O<R=sR-F: =1/2
\.
onlyifR =0




maximal incompatibility, i.e. R=1/2

- for POVMs achieved only for d=co
- for testers for arbitrary d




maximal incompatibility, i.e. R=1/2

- for POVMs achieved only for d=co
\8

- for testers for arbitrary d

- H,V example before :
\&"
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R (N, M)="% impliesR =" | (but R =0)




CHSH with testers

the setting same as usual

- Alice and Bob choosing testers A,A’,B,B’,
- each with outcomes labeled +1

- CHSH-Bell inequality (For mean values)

-2< AQ(B+B’')+A'®(B-B’) <2

- our task: maximize over testers and channels
- motication: maximal incompatibility



CHSH with testers

- Alice and Bob choosing testers being either Hor
Vie.-2< Vo(V+H)+HQ(V-H) <2

==

O\

- measurement of the channel output: vertical
polarization measurement
- test states: vertical or horizontal polarization




CHSH with testers

- Alice and Bob choosing measurements being
either Hor V, i.e. -2 V®(V+H)+H®(V-H) < 2
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- consider channel C[w]=(1-K)§_+Kg

K=trfwl &N ]
£c0r=(|_|h®I_Ih-l-|_|v®|_|v)/2
Eacor=(|_|v®I-Ih-l-|-|v®|_|h)/2
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- Popescu-Rohrlich box correlations

Vo (V+H)+H®(V-H) =4

- Nonlocal?
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- Popescu-Rohrlich box correlations

Vo (V+H)+H®(V-H) =4

- Nonlocal?

-yes in systems, but not spatially nonlocal

- distributing bipartite channel over space(-time)
is pure fantasy






- channel is measure-and-prepare (QC) channel
- measurement and initial states are diagonal

- conclusion: maximal violation observed also
For classical processes

Vo (V+H)+H®(V-H)=4

- question: is there purely quantum example?



Conclusion

GPT of processes accommodate both
qualitatively and quantitatively different
incompatibility.



Conclusion

GPT of processes accommodate both
qualitatively and quantitatively different
incompatibility.

Maximal incompatibility |R. (H,V) = 1/2

PR box VR (V+H)+H®(V-H) =4

- mathematical curiosity
- conceptual differences in incompatibility
between classical and quantum processes?
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