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Two ways to explore the boundaries

— From outside (by adding something to QT)

e Nonlocality: local realism is incompatible with QT
e Contextuality: noncontextual HV is incompatible with QT
o Compatible:

No-signaling, Information Causality, Local orthogonality, ...

— From inside (assuming the structure of a Hilbert space)

e Gleason Theorem

e Uncertainty Relations

e Bounds on quantum error-correcting codes
e Universal Cloning Machines

e Quantum metrology
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P.O.S.E of Quantum Theory

Probability: Pa = Tr(E(p)Ma)
Observable: POVM {M; >0, > " M; =1}
State: density matrix p > 0

Evolution: completely positive map p — E(p)
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Two kinds of uncertainty relations

e Preparation Uncertainty Relations <— p > 0
e Measurement Uncertainty Relations < p>0& M; >0

e Heisenberg's microscope
e Joint measurement of two incompatible observables
e Duality inequality
[ ]
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Examples of Uncertainty Relations

Involving only partial information of the statistics such as

e Variance (6,A)* = (A?), — (A)3

e Quantum Fisher Information (the convex roof of variance)

Fia) = 3 28N e g in (s, A
r —~ At {pislbi)} ’

e Entropy H(P) = —>_ PiIn P; = —In My(P)

e Generalized Entropy

1/r
M,(P) = (Z P,.1+f> (-1<r< o)
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Kennard-Robertson-Schrodinger UR

e Kennard

OXSP >

N

e Schrodinger

(6A)%(6B)? > 1(<AB + BA)?2 + (AB — BA)?)

|

e Robertson |ox| > |idx| where

foxllis = 5 XX+ XX~ (X)), 151l = 5 (1K X5

Summary
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Maassen-Uffink UR

Ms(P)M,(Q) < ¢?
- M(P) = (P
e r>0,5s=—r/(2r+1), and c = max; |(pi|qj)|

— r=s5=0
H(P)+ H(Q) > —2Inc

— r=o00,s=-1/2

V Qmax < CZ\/Fn

Summary
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Larsen’s (exact) uncertainty relation

Consider two observables P and @ and take purities
1
_ Z 2 _ = Z 2 _ =
M]_(P)— . Pi—ﬂ'p—}‘g, Q 7T

as the figures of merit, then it holds

[JPA:Math.Gen 1990]
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Exact Uncertainty Relations

Formulate the problem

Given a set of observables {P, Q, R, ...} to determine the exact
range ((P)p, (Q)p, (R)p,...) over all possible state p.

e Exact UR: constraints on a set of probabilities under which
they can be obtained by measuring the given set of
observables in certain quantum state.

¢ Involves the complete statistics obtained by measuring a set of
observables;

e Delineates the exact boundary, i.e., whenever the URs are
satisfied there is a quantum state in which the measurements
of the given set of observables account for the given statistics.
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Gleason Theorem

In the case of d > 3 if all observables represented by complete
orthonormal bases {O} are involved then there is essentially no
constraints except the trivial one

> Pi(0)=1 (VO).



Exact Uncertainty Relations

Lenard’s exact numerical range

Consider two 2-outcome measurements {P,/ — P}, {Q.] — Q}
with P, Q being projections (without common eigenvector) then
y

(O,i) (1,1
(1,c0s%8,)
(1,c05%8,)
X

(0,0) (1,0

[J. Function Analysis 1972]
with x = (P),, y = (Q),, and cos® 1 » being the largest and
smallest eigenvalues of QPQ.



Exact range for two qubit observables
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The boundary

M1: The boundary is the convex hull of possible values attainable
by pure states.

M2: Consider the expectations of m observables {P, pe1- Let
n = (ny,m,...,n,) be an arbitrary unit vector and

A(n) = Largest eigenvalue of Z n.P,
o

then the boundary is the hypersurface determined by

X = (Pu) = 8{;\,(7:)
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Main Results: Two Unbiased observables

Consider a d-outcome measurement {|n)(n|}9—} and a 2-outcome
measurement {Py = [0) (0|, ] — Py} with

1 d—1
=—=)> |n)
Va &

For two probability distributions {P,} and {Q,1 — Q} there exists
a quantum state p such that

Pn = (nlpln), Q= (Py),

if and only if

d—1 d—1
max{0,2v/Prax — > _ V/Pn} S VdQ <> \/Pn.
n=1 n=0



Summary

Exact Uncertainty Relations

Two kinds of uncertainty relations

d=3

Two kinds of incompatibility
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Main Results: Three Unbiased observables

In a 3-level system, consider three 2-outcome measurements
{Po =10){0],/ = Po}, {Qo = [0)(0],] — Qo}, and
{Ro = [B)(Bl,] — Ro} with

1 i2m
8) = = (10} + 1) +12))
The values
L 3<P0>2p— Lo, 3<Q0>2p— Lo, 3<R0>2,, ~1

are possible if and only if (x,y, z) belongs to the convex hull of

1 1 1
(-5 =530 ECC+y +2 4y +xztyz=x+y+2).
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Exact Uncertainty Relations

Main Result: Angular momentum

Consider the measurements of three components {J, J,, J,} of
spin-1 system. The corresponding eigenstates are

Je {lxe) = 3 - 1) £ v20) + 1), |- = H(1 - 1) — 1)}
By flys) = 30 - 1 £ iv20) - [1), [+) = (- 1) +]1)
Je {l-1).10). 11)}

As a result, among three sets of probability distributions
{Pu, P_},{Py., P+},{P+1, Po} there are only 5 independent
parameters since Py + P, + P_ = 1 and we denote

() = (P, = P ), () = Py = Py), () = (Pr = Pa),

0x = (P_),0, = (Py),0, = (Po)
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Ox(Jx)? + 0,(J,)? + 0,(J,)?

< 80,0,0 + /(40,0 — (J)?)(40:0 — (,)2) (40,0, — (Jc)?)

()
2,/0,0,’
, -

2,/0,0,’
()
2,/0,0,

X =

00

10
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Exact Uncertainty Relations

Summary
Asymmetric Universal Cloning Machines
Fp

d?+d—1
d(d+1)

(1,1)

d+f

One to two asymmetric UCM.
F=dq@m

Exact ranges of

fi = d{®o; @ h)
) fo =d(®ox® h)
d
(2 7h) Gty Fa

over all states po12.

[Phok = 22, (Mo @ [n)«
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Asymmetric Universal Cloning Machines

e One to three.

_ _d+f
. * F=g@m
7 e Exact ranges of
z fi = d(?m ® h3),
P fr = d(Po2 ® h3),
S fy = d(®o3 @ ho),

over all states pp123.

[MJ&SY, JMP 2010]
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Uncertainty relation via parameter estimation

1 1
—+—=—>3
IA+IB_

e In order to estimate two parameters a = (A), and b = (B), in
a qubit state p, we let the qubit interact with a meter qubit

Ulk) o) = [k)|dx)-

e Two measurements A= 3-& and B = b - & are made on the
meter and system respectively. The precisions are quantified
by the Fisher information of corresponding statistics

-2
A2> L =Y Pk
nl — Pk

[LS etal SY,PRA 2017]
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Summary

e Two kinds of incompatibility lead to two ways of exploring the
quantum boundary.

e Two ways to determine the exact range of the statis-
tics, i.e., exact uncertainty relation, of a set of observables, e.g.,

e Two applications illustrated. Might help strengthen the usual
uncertainty relations; determine the best performance of some
informational operations; establish some measurement
uncertainty relations; detection of entanglement (to do).
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