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Background & (my) motivation

while building quantum error correcting codes:
generalized to min/max; used in QKD:

Hmin(XA B)p + Hmax(ZA’C)p Z 1
a kind of preparation uncertainty relation Tomamichel, Renner PRL 106, 110506 (2011)

Berta,Christand|,Colbeck,JMR,Renner NatPhys 6, 659 (2010)

H(X4|B), + H(ZA|C), = log ¢

only works on average; want a channel statement like:

Classical leakage resilience from fault-tolerant quantum
computation

if BOb COUld determine X input perfectly, Felipe G. Lacerda*l"Q,lJoseph M. Renes!, and Renato Rennert!
then Eve gets same output for every Z input arxiv 1404.7516
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Difficulties

glad to be left behind in Copenhagen, where | could think about these
hopelessly complicated problems undisturbed. | now concentrated all
my efforts on the mathematical representation of the electron path in the
cloud chamber, and when | realized fairly soon that the obstacles before
me were quite insurmountable, | began to wonder whether we might not
have been asking the wrong sort of question all along. But where had we
gone wrong? The path of the electron through the cloud chamber
obviously existed; one could easily observe it. The mathematical
framework of quantum mechanics existed as well, and was much too
convincing to allow for any changes. Hence it ought to be possible to
establish a connection between the two, hard though it appeared to be.

- Heisenberg, “Physics and Beyond”



Mathematical

need machinery to describe
general measurements

Most uncertainty relations
are model-dependent

Now we have POVMs, quantum instruments,
completely-positive maps, etc...



Conceptual

Uncertainty principle makes it hard to formulate
meaningful uncertainty relations

Error Disturbance
Usual recipe: Compare true value with Usual recipe: Compare true value with
measured result. new value.
* Only eigenstates have a “true value”  No “true value”
« Compare distributions instead?  What, precisely, is disturbed?

No simultaneous measurement!

The theory is intruding on the definition of error & disturbance...



Operational notions of error
and disturbance

“Isn't that precisely what you have done with relativity”?” | asked in some
surprise. “After all, you did stress the fact that it is impermissible to
speak of absolute time, simply because absolute time cannot be
observed; that only clock readings, be it in the moving reference system
or the system at rest, are relevant to the determination of time.”

“Possibly | did use this kind of reasoning,” Einstein admitted, “but it is
nonsense all the same. Perhaps | could put it more diplomatically by
saying that it may be heuristically useful to keep in mind what one has
actually observed. But on principle, it is quite wrong to try founding a
theory on observable magnitudes alone. In reality the very opposite
happens. It is the theory which decides what we can observe.”

- Heisenberg, “Physics and Beyond”



Distinguishability

iIdeal measurement
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How well can the real apparatus be distinguished from the
ideal apparatus, in any experiment whatsoever?

5(greala gideal)

Pguess (greala gideal)

5(81‘6&17 gideal) — 2Pguess (greala gideal) —1

[[Eveal — Eideal llo

need entangled inputs...



Measurement error

iIdeal measurement real device
AN Oy F--» X AN> £ N\ > B
Y
Y
Pguess(QXag) =1
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the entire optimization is a semidefinite program



Disturbance

Two answers: past preparation or future measurement
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What, exactly, is disturbed by measurement?

Disturbance to future measurement of Z

ANS>

Qz

'Vz(g) = 1%f5(Qz,gR7’YQ2) .

related to joint measureability

any joint measurement can be decomposed into a sequential measurement



Preparation disturbance

“merit”
L--->P, N\ > & N>R NS>A ~n, L--->P,N\/>A
Y nz(€) = i%f5(77277725737-y)
“demerit”
Z---P; N\ £ N\>B Nalg, Z---» C N\/>B
\ \
Y Y

Nz(€) = d%‘ll — inf 9(PzE&,C)

C:const.



Position & momentum

Ideal preparation and measurement have finite precision: 0Q,0p

we assume Gaussian noise in the quantum instrument

but we still use idealized distinguishability in error and disturbance

ex(€) := i%f 6(Qx,ERTE).

this setup Is inconsistent; precision-limited distinguishability should be smaller.
but the proof goes through easily



New uncertainty relations

We had always said so glibly that the path of the electron in the cloud
chamber could be observed. But perhaps what we really observed was
something much less. Perhaps we merely saw a series of discrete and
ill-defined spots through which the electron had passed. In fact, all we
do see in the cloud chamber are individual water droplets which must
certainly be much larger than the electron. The right question should
therefore be: Can quantum mechanics represent the fact that an electron
finds itself approximately in a given place and that it moves approximately
with a given velocity, and can we make these approximations so close
that they do not cause experimental difficulties?

- Heisenberg, “Physics and Beyond”



Measures of complementarity

apply error and disturbance measures

cv(X,Z) =vz(9Qx) cp(X,Z) =nz(Qx)
=e7(Qx) cp(X,Z) =nz(Qx)

same for conjugate observables potentially large gap otherwise



Relations for finite dimensions

1/5 |
\/M+ v,(£)>cy(X,Z) and
8X(g)+\/2°’z(5)ZCM(Z,X), 1

Disturbance

vV 2ex(E)+nz(E)=cp(X,Z) and
V2ex(E)+1,(E)=cp(X,Z).

(ex, vz)

.......... (8X’T)Z) & (8X) ,?)\Z)
--- &wz




Connection to wave-particle duality

Mach-Zehnder interferometer

. . g %g ¢ Q \ .

Particle-like property: S Dhase shifter Wave-like property:
Path distinguishability A Interference fringe
from WW detector visibility at output

\ &% Qs 7 Y P
AM 7 which-way detector 4-7¢’
Quantitative complementarity inequality V24D <1

BG Englert, PRL 77, 2154 (1996)

ex(Amz) = 3(1 - D) nz(Amz) > 5(1-V)

(1 —2ex(Amz))” + (1 — 2nz(Amz))* < 1



Applications: crypto

channel to Eve

we would like Z inputs to be inaccessible

dilate and measure

If this is close to an ideal X measurement,
then we have security

5(P2N,C) S \/28){




Position momentum

measurement

- - - preparation

V260(E) + vp(E) } g
£o(E)++/2v,(8) |
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Consider approximate position measurement of an approximate momentum state,
followed by approximate momentum measurement

out

ol — 09 — 0P
by uncertainty principle, expect change in momentum ~ 1 / 0Q

to detect change in momentum, need o2 < 0B + 1/0¢

for measurement disturbance for preparation disturbance

opt =2/0g x ol =2/0g \/



Proof technique

the product of mass and velocity) cannot be smaller than Planck's
constant. This formulation, | felt, established the much-needed bridge
between the cloud chamber observations and the mathematics of
guantum mechanics. True, it had still to be proved that any experiment
whatsoever was bound to set up situations satisfying the uncertainty
principle, but this struck me as plausible a priori, since the processes
involved in the experiment or the observation had necessarily to satisfy
the laws of quantum mechanics. On this presupposition, experiments are
unlikely to produce situations that do not accord with quantum
mechanics. “lt is the theory which decides what we can observe.” |
resolved to prove this by calculations based on simple experiments
during the next few days.

- Heisenberg, “Physics and Beyond”



Stinespring dilation and its continuity

dilate any channel to an isometry ExF & UWegexWsr

iIsometries close if channels indistinguishable diamond norm infinity norm

using this we can infer behavior of quantum output from behavior of classical output

then

Lemma 2. For any apparatus £, ,yp there exists a channel Fy_,yp such that 6(&, Q% F) < +/2ex(E),
where Q} is a quantum instrument associated with the measurement Qx. Furthermore, if Qy is a projective

measurement, then there exists a state preparation Px_,yg such that 6(&, OxP) < v/ 2ex(E).



Now use triangle inequality

6(Qz,9xPRQ;) < 6(Qz,ERQ;)+0(ERQ,, QxPRO,)
S 5(QZ) gRQZ) + 5(83 QXP)

=06(Qz,ERQz) + v/ 2ex(E).

take infimum over R to get the first inequality

want to show
vV 2ex(E)+ v, (E)=cy(X,Z) and
ex(E)+ 4/ 2v,(8) = cy(Z,X).

make a joint measurement out of optimal R’s in error and disturbance

AN E NS RN QO b-->7 decompose into Z measurement first
A : to get the other inequality
Y
Y
position/momentum same, use representation of covariant measurements

but harder to evaluate bound and Kennard uncertainty relation



Summary and open questions

e New error-disturbance tradeoff
e formulated using easy-to-interpret quantities;
e gpplicable to information processing

e tightness in general?
e POVMs?
e precision in P and Q distinguishability



