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Quantum Mechanics



States and Measurements



Born’s Rule

p(ab|xy) = tr(ρABAa|x ⊗ Bb|y)

Max Born



Measurement Incompatibility

∆x ∆p ≥ ~/2



Compatible Measurements

I Quantum observables:

E = E †, F = F †

I Compatibility is captured by commutation:

EF − FE = 0 ⇐⇒ Compatible

I Joint Measurability
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Joint Measurability

I {Ee} and {Ff } are JM if there exists a third measurement
{Gef }, such that

Ee =
∑

f
Gef , Ff =

∑
e

Gef

I By measuring {Gef } we get the output e and f
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Pauli Measurements

σZ : {|0〉〈0| , |1〉〈1|} σX : {|+〉〈+| , |−〉〈−|}



Noise Pauli Measurements

σZ ,η :
{
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P. Busch. Phys. Rev. D (1986)



Hollow Triangle
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Hollow Triangle Measurements

M1

M3 M2

T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)



General Measurement Compatibility
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First Question
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Non-genuine triplewise compatible measurements:

Aa|x = p12J12
a|x + p23J23

a|x + p13J13
a|x



Hollow Triangle

σZ ,η :
{
η |0〉〈0|+ (1− η) I2 ; η |1〉〈1|+ (1− η) I2

}
σX ,η :

{
η |+〉〈+|+ (1− η) I2 ; η |−〉〈−|+ (1− η) I2

}
σY ,η :

{
η |Y+〉〈Y+|+ (1− η) I2 ; η |Y−〉〈Y−|+ (1− η) I2

}

η ≤ 1√
2
≈ 0.707 ⇐⇒ Pairwise Measurability

η ≤ 1√
3
≈ 0.577 ⇐⇒ Triplewise Measurability

η >

√
2 + 1
3 ≈ 0.805 ⇐⇒ Genuine Triplewise incompatibility
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Aa|x = p12J12
a|x + p23J23

a|x + p13J13
a|x



Geometrical Interpretation

= + +

(All these sets admits an SDP characterisation)



Incompatibility Witness

Mi := M0|i −M1i

tr(σXM1 + σYM2 + σZM3)



Incompatibility Witness

Mi := M0|i −M1i

tr(σXM1 + σYM2 + σZM3)
G
≤ 6



Incompatibility Witness

Mi := M0|i −M1i

tr(σXM1 + σYM2 + σZM3)
G
≤ 6

tr(σXM1 + σYM2 + σZM3)
JM
≤ 6√

3
≈ 2.34



Incompatibility Witness

Mi := M0|i −M1i

tr(σXM1 + σYM2 + σZM3)
G
≤ 6

tr(σXM1 + σYM2 + σZM3)
JM
≤ 6√

3
≈ 2.34

tr(σXM1 + σYM2 + σZM3)
2JM
≤ 6√

2
≈ 4.24



Incompatibility Witness

Mi := M0|i −M1i

tr(σXM1 + σYM2 + σZM3)
G
≤ 6

tr(σXM1 + σYM2 + σZM3)
JM
≤ 6√

3
≈ 2.34

tr(σXM1 + σYM2 + σZM3)
2JM
≤ 6√

2
≈ 4.24

tr(σXM1 + σYM2 + σZM3)
3JM
≤ 2(

√
2 + 1) ≈ 4.82
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Genuine N-wise incompatibility

Genuine N-wise incompatibility . . .



Genuine N-wise incompatibility

Genuine N-wise incompatibility . . .
and more!
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General Definition

Definition
Given a set of compatibility C = {C1,C2, . . . ,CN}, a set
measurements {Aa|x} is genuine C-incompatible when it cannot be
written as convex combinations of measurements that respect the
compatibility C1, C2,. . . , and CN .



General Definition

Definition
Given a set of compatibility C = {C1,C2, . . . ,CN}, a set
measurements {Aa|x} is genuine C-incompatible when it cannot be
written as convex combinations of measurements that respect the
compatibility C1, C2,. . . , and CN .
More specifically, let

{
JCi

a|x

}
, be a set of of measurements

respecting the compatibility structure Ci . The set {Aa|x} is not
genuine C-incompatible if it can be written as

Aa|x =
∑

i
piJCi

a|x (1)

for some probabilities pi .
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Bell Nonlocality

p(ab|xy) = tr(ρABAa|x ⊗ Bb|y )

p(ab|xy) =
∑
λ π(λ)pA(a|x , λ)pB(b|y , λ)



Bell Nonlocality

Compatible measurements =⇒ Bell Locality



Bell Nonlocality

Measurement Compatibility =⇒ Bell Locality

Bell Nonlocality =⇒ Measurement Incompatibility



Bell Nonlocality

Measurement Compatibility =⇒ Bell Locality

Bell Nonlocality =⇒ Measurement Incompatibility

Device independent certification of Measurement Incompatibility!



CHSH

CHSH = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉
LHV
≤ 2



EPR Steering
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Device Independent Certification

Can the you “certificate” the incompatibility of all measurements?



Device Independent Certification

Can the you “certificate” the incompatibility of all measurements?

Which measurements are “useful” for Bell/EPR nonlocality?



Diagram of concepts



Bell Locality Requires Entanglement and Incompatible
Measurements



EPR-Steering Requires Entanglement and Incompatible
Measurements



Pure states: N. Gisin (1991)



Werner States (1989)



Barrett’s Model (2003)



Wiseman et al (2007)



Quintino et al (2015)



Quintino et al (2015)



Quintino et al (2015)+ Bowles, Quintino, et al 2014



Local Incompatible Measurements??



Quintino et al/ Uola et al (2014)



Projective Measurements
L.A. Khalfin, B.S. Tsirelson (1985)



Two dichotomic measurements
M. M. Wolf, D. Perez-Garcia, C. Fernandez (2009)



Our contribution



Our contribution



Incompatible measurements and Bell Nonlocality

Main Result
There exists a set of non Jointly Measurable measurements that
can never lead to Bell nonlocality when the other part is restricted
to dichotomic measurements.



Methods

I Consider the set of all η white noise protective measurements

I They are incompatible iff η > 1/2
I We find a local hidden variable model for all possible states
ηψθ + (1− η)ψA ⊗ I
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The general case

I We can drop the two-outcome assumption

I Similar idea, but now we use SDP techniques to construct
many POVM local models (Hirsch, Quintino, et al (2015))
and do convex combinations with many local models.
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Independent (but very related) work

A set of incompatible but Bell local measuremets was also
presented at:
Measurement incompatibility does not give rise to Bell violation in
general
Bene Erika, Tamás Vértesi
( arXiv:1705.10069)
(Similar proof techniques were used)
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Device Independent Certification

p(ab|xy)is Non-signalling when

∑
b

p(ab|xy) =
∑

b
p(ab|xy ′)∀a, x , y , y ′

∑
a

p(ab|xy) =
∑

b
ap(ab|x ′y)∀b, x , x ′, y ′



Device Independent Certification

p(ab|xy) ∈ LNS
12 is Non-signalling AND

p(ab|xy)is Bell-local when x = 1 and x = 2



Device Independent Certification

p(ab|xy) ∈ LNS
12 is Non-signalling AND

p(ab|xy)is Bell-local when x = 1 and x = 2

p(ab|xy) ∈ LQ
12is Quantum AND

p(ab|xy)is Bell-local when x = 1 and x = 2



Geometry

L23
NS

L13
NSL12

NS

L123L123

L12
Q

L23
Q

L13
Q



Geometry

L23
NS

L13
NSL12

NS

L123L123

L12
Q

L23
Q

L13
Q

NPA hierarchy (SDP) Linear Programming



Known Bell Inequalities

• L NS NPA2 QUBIT 2L 3L
I3322 0 1 0.251 0.25 0.5 0.75



Known Bell Inequalities

• L NS NPA2 QUBIT 2L 3L
I3322 0 1 0.251 0.25 0.5 0.75

With I3422(2) and I3522 we can certify pairwise incompatibility in all
pairs, but not genuine triplewise incompatibility.



Genuine 3-input NL

L23
NS

L13
NSL12

NS

L123L123

L12
Q

L23
Q

L13
Q

Full Facet Enumeration of 3L is possible!



Genuine 3-input NL on both sides

−p(10|00)− p(00|01)− p(00|10)− p(00|11)

−p(10|12)− p(01|20)− p(01|21) + p(00|22)
3L
≤ 0



Three Input Nonlocality

−p(10|00)− p(00|01)− p(00|10)− p(00|11)

−p(10|12)− p(01|20)− p(01|21) + p(00|22)
3L
≤ 0

With Qutrits, one can obtain 0.34 > 0



Semi-device independent certification

Semi-device independent?



Semi-device independent certification

Genuine 3-input steering!



Main Points

I Rich structure measurement Incompatibility with n > 2
measurements

I Device independent certifications
I Different notions of device independent certifications
I Can be tackled by known/simple mathematical tools
I Non-trivial Bell-nonlocality breaking channels!
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Future

I Information protocols exploiting genuine n-wise
incompatibility/nonlocality/etc

I Genuine triplewise incompatible but not genuine triplewise
Bell-Nonlocal

I In quantum mechanics, we have genuine n-wise incompatible
measurements ∀n ∈ N

I Obtain a “proper” computer assisted proof for local
incompatible measurements
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Thank you!

= + +


