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The Einstein—Podolsky—Rosen (EPR) experiment

Consider the Bell state
) = %<|z,+>|z, )z 4)) = %<|x,+>|x, )~z =, )

s if Alice measures 0., B is ‘collapsed’ to |z, +) or |z, —)
w= if Alice measures o,, B is ‘collapsed’ to |z,+) or |z, —)

Lo s
[Y-) = E(\n, ), =) =7, =), +))

s if Alice measures n, B is ‘collapsed’ to |1, +) or |n, —)

Alice can ‘steer’ Bob’s system into different ensembles from a distance! J
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Different notions of quantum nonlocality

iw  EPR, 1935: ‘spooky at a distance’!?
i Schrodinger, 1935: ‘entangled’ systems express ‘steering’!

(Bell nonlocal)

Bell local

unsteerable

 separable
\,,, >

i Bell nonlocality: certain quantum correlation is stronger than
any classical correlation (Bell, 1964)

i Nonseparability: certain quantum states cannot be prepared by
Local Operations and Classical Commaunication (Werner, 1989)

i Steerability: certain EPR experiments cannot be locally
simulated (Wiseman et al., 2007)
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The verification protocol for the EPR experiment
i Alice prepares multiple copies of a bipartite state over A;B;
o/ /

i Alice sends parts B; to Bob

o e e o o/ o o o N

iz Bob asks Alice to perform a specific measurement on all A;

ALl
1> Alice makes the measurement on A; and announces the results
4 4 4 4 4
wvwevew b A A 4 A 4

i Bob does tomography to verify the expected conditional states
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‘Noisy’” EPR steering

The Werner state

Wy =plyo) (0| +(1-p)y @ 5

[\

iz If Alice measures 1, B is ‘collapsed’ to

. . I ) . I
plit, +) (A, + + (1 = p)5 or pli, =) (A, =+ (1 = p)5
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Steering of Werner state: a cheating strategy

i Alice sends Bob random states B; on the Bloch sphere
iz Bob asks Alice to perform a specific measurement 7 on all A;

= Alice announces the outcomes |n, +) for B; by partitioning the
Bloch ‘sphere’
4

77”’?&—:77
| mm} S

i Bob classifies B; into different outcomes and do tomography to
verify that B; are in the expected states

We say W1 is unsteerable with projective measurements! J
2
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Unsteerable and steerable states

A state p is unsteerable from Alice’s side if:

s there exists an ensemble of Local Hidden States (LHS) u(P) on
the Bloch sphere

ww for any measurement £ = {FE;} | on A, there exist response
functions 0 < G;(P) <1, Y1 | Gi(P) = 1, such that

El = /dS(P)u(P)Gi(P)P
where E] = Tra[p(E; @ Ip)].

Wiseman et al. PRL 07
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The central question

Given a state p, is it steerable or unsteerable? J

...unsolved even for the simplest case of the two-qubit Werner state!

We do understand well:
i finite number of measurements

i projective measurements

See: Open quantum problem 39 (IQOQI Vienna)
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What is the difficulty?

For two-qubit Werner state Wi:
2

4

=2 o
Wi
e O
W[

I
Bell state
uncorrelated

Bell local (XYY 2 0.7012 Belllocal 04553 2?22 |o.7012

...with PVMs ...with POV Ms
Fact: For two-qubit states, considering 4-POVM is enough!

uncorrelated
Bell state

D’Ariano et al 2006; Barrett 2002, Werner 2014, Quintino et al. 2015
9/29



Outlines

1. Steerability as a nesting problem
2. The first nesting criterion: nesting by duality
e Evidence for unsteerability of W% with 4-POVMs

3. The second nesting criterion: nesting by topology

o Further evidence for unsteerability of W1 with 4-POVMs
e Proof of unsteerability of W1 with 3-POVMs
e Some remarks on the steerablhty of two-qubit states with 2-POVMs
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Steerability as a nesting problem

A state p is unsteerable from Alice’s side if:

w= there exists an ensemble of Local Hidden States (LHS) u(P) on
the Bloch sphere

v for any measurement E = {E;}? | on A, there exist response

functions 0 < G;(P) <1, > | G;(P) = 1, such that
E. = /dS(P)u(P)G,-(P)P
where E! = Tra[p(E; @ Ip)].
A state p is unsteerable with n-POVMs by LHS ensemble u iff

(M) € X" (u)

iz M"™: the set of POVMs of n outcomes

w= (M"™)": the n- steering assemblage (all ensembles Alice can steer)

w= K" (u): the n-capacity of u (all ensembles Alice can simulate)
CN, AM, TV & SJ, arXiv:1706.08166
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The set of POVMs M"

n-probability simplex S n-POVM ‘simplex’ M"
P1LOP2D - Dpy EitoE®---DE,
Siapi=1,0<p <1 S i Bi=L0<E <1

1
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For qubits: the double cone of 0 < X <1

For qubit: with {o;}?_, = {I,04,0y,0.}

13
X = 3 ;mai
Forward cone:
OSX:x%Sx%—I—:C%—i—mg,OSxO
Backward cone:
X<I:(2-20)? <a?+ad+a220<2
Bloch sphere:

X<T:ad=a}4a5+a3x0=1

Bloch sphere

1
< 0
(@]
b
0 1 2
10
X1 x0

CN & TV, PRA 2016
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The steering assemblage (M")" of the POVM ‘simplex’

Alice’s system —  Bob’s system
EFieoE®Es — Ei@Eé@Eé
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The capacity of a distribution K" (u)

The n-capacity X"(u) consists of K1 & Ko @ --- @ K, with
K, = /dS(P)u(P)Gi(P)P

for all possible choices of 0 < G;(P) < 1,% 1" | Gi(P) = 1.

CN, AM, TV & SJ, arXiv:1706.08166
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Steerability as a nesting problem

A state p is unsteerable with n-POVMs by LHS ensemble u iff %

o

(Mn)/ C xn(u) 0

i M™: the set of POVMs of n outcomes
s (M")": the n- steering assemblage (all ensembles Alice can steer)

w K" (u): the n-capacity of u (all ensembles Alice can simulate)
CN, AM, TV & SJ, arXiv:1706.08166
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The first criterion: nesting by duality

Let X and Y be two mon-empty compact convex
sets, then Y C X off

max (Z,X) > max (Z,Y)
XeX Yey

for all directions Z.

ww  For X = KX™(u) and Y = (M")’, define the gap function
A= min{ max (Z,K)— max <Z,E/>}
Z | Kexn(u) Eenr
Then (M™)" C K™(u) if and only if A > 0.
CN, AM, TV & SJ, arXiv:1706.08166
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Application: steerability of Werner state with 4-POVMs

1 4
A = min {4— /dS(P) max (Z;, P) — ZTI”[,O(Zi ®Ez)]}

Z,E v ;
=1

simulated annealing

0.00501 B with ePOVMSs
| ¥V with PVMs
1 —— with PVMs (analytic)
0.00251
: 1 0 p 1
| ! - 1
A 0.0000; S H B \g
i i [ unsteerable ]i_' @
. : =) 23 E
0025 =
—0.0050] ?

0.490 0495 0500 0505  0.510

limitation: only heuristic, the region % — 1073 < p cannot be resolved!
CN, AM, TV & SJ, aI'XiV:17()(5,(]6%(;(39



Details of the simulated annealing algorithm

the simulated annealing progress

1071
107
A10-7
107

10~

0.00501
0.00251
A 0.00004
—0.00251

—0.00501

CN

result of 512 replicas

—  with ePOVMs
- with PVMs
—— with PVMs (analytic)

0495 0500 0505 0510
p

, AM, TV & SJ, arXiv:1706.08166




The second criterion: nesting by topology

Let X and Y be two mon-empty compact convex
sets, if Y C aff X, int, YN X # @ and 9,X N
int,Y =0 then Y C X.

ww  For X = KX"(u) and Y = (M")’, then (M")" C X" (u) if and only if

0, K™(u) Nint,.(M™) = @

CN, AM, TV & SJ, in preparation
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Application: steerability of Werner state with 4-POVMs

The boundary of the capacity parametrised by Z = @?:121

Ri(2) = % /dS(P)@((Zi,P> — max (Z;, P))P

The relative interior of the steering assemblage

A composite operator X = @©?_, X; is outside the interior of the
steering assemblage of the Werner state if some X; is outside the
interior of the steering image of the positive cone, or

VTH(X?) - (X))
Tr(X:)

2P

for some 1.
CN, AM, TV & SJ, in preparation
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A geometric constant

wwFor 4 arbitrary operators Z;, one divides the
Bloch sphere into 4 parts 6;, each containing pro-
jections P such that (Z;, P) > (Z;, P) for j # i.

s Define a geometric constant by:

VTR(R2) - T(Ky)

TI‘(KZ')

Cco = mlIl max

where K; = f%ai dS(P)P

Then the Werner state W), is unsteerable if and only if p < ¢!

Conjecture: ¢y = 5

CN, AM, TV & SJ, in preparation
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Computation of the geometric constant

simulated annealing

0.00067

] |
0.00051

] .
0.0004] ) with e = 1~ cq
€ 0.00031 - and M: number of grid
0.0002_3 - ppints for spherical integra-

] " tion
0.0001 ',,P'
0,0000:----.----.--.......

0.0000  0.0005  0.0010  0.0015  0.0020
1/M

CN, AM, TV & SJ, in preparation
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The case of 3-POVMs

3-POVMs are planar!
For a POVM E = &3 | E;, and E; o (1'

>, then ni, ng, n3 are on the
(2

same plane, say Oxy.

Planar capacity X2(u)
Response functions G(n) are independent of altitude, thus

K = ;T/ds(a)gi(a) a

where @ is on the unit circle of Ozy.

Werner, JPA (2014); CN, AM, TV & SJ, in preparation
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The case of 3-POVMs

2
_ 1 o
The boundary of K3 (u) K; = o /ds(a)@(zé%—z”a) 5a
m 0
11(4-5) 1(2-3)
@ ®)
111(4-5) nes) - 11(4-5) 11(2-3)

© (d)
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The case of 2-POVMs

The set of 2-POVM reduces to
M={X|0< X <TI}

The steering assemblage reduces to
M = Tra[p(M @ I)]

The 2-capacity reduces to va

) = { [asepupiopfo< op) <1}

-1/4
1/4

For qubit and uniform distribution

14 o X

2 2 2 _ 2,2
OK(u) a1 + w3 + x5 = (1 — w0)"2p CN & TV, PRA 16
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The case of 2-POVMs

Simplified nesting criterion

principal cross-section

equator of the steering outcomes

principal cross-section

principal cross-section (transformed)

equator of steering outcomes (transformed)
equator of the steering outcomes

s Define r(u) to be the inscribed radius of the transformed principal
cross-section of K(u) then p is unsteerable iff 7(u) > 1.
See: Jevtic et al., JOSA B ’15; CN & TV, EPL 16 2729



Concluding remarks

Quantum steering is stated as a nesting problem of convex objects:
== T'wo testing criterions were stated

1w The steerability of the two-qubit Werner state is tested

Future projects:
i Steerability of other two-qubit states
ir Optimising the LHS ensemble
iz Higher dimensional systems: are PVMs and POVMs equivalent?
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