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Heisenberg 1927

Essence of the quantum mechanical world view:

quantum uncertainty & Heisenberg effect J
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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

quantum uncertainty:
Preparation Uncertainty Relation: PUR

For any wave function :

(WIDTH OF @ DISTRIBUTION) - (WIDTH OF P DISTRIBUTION) ~ h

(Heisenberg just discusses a Gaussian wave packet.)

Later generalisation:

£ALB > Y(AB)),

(Heisenberg didn't state this...)
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Heisenberg 1927

Heisenberg effect:

@ any measurement disturbs the object: uncontrollable state change

@ measurements disturb each other: quantum incompatibility

Measurement Uncertainty Relation: MUR

(ERROR OF @ MEASUREMENT) - (ERROR OF P) ~ h

(ERROR OF @ MEASUREMENT) - (DISTURBANCE OF P) ~ h
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Reading Heisenberg's thoughts?

Heisenberg allegedly claimed (and proved):

e(A,p)e(B.p) = (A B]),| (777)
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Introduction: two varieties of quantum uncertainty

MUR made precise?

Heisenberg's thoughts — or Heisenberg's spirit?

(combined joint measurement errors for A, B) > (incompatibility of A, B)

True of false? Needed:

@ precise notions of approximate measurement
@ measure of approximation error
@ measure of disturbance

Paul Busch (York)
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Introducti two varieties of quantum uncertaint

Quantum uncertainty challenged

LETTERS

PUBLISHED ONLINE: 15 JANUARY 2012 | DOI:10.1038/NPHYS2194.

Experimental demonstration of a universally
valid error-disturbance uncertainty relation

in spin measurements

Jacqueline Erhart', Stephan Sponar’, Georg Sulyok’, Gerald Badurek', Masanao Ozawa®

and Yuji Hasegawa'*

The uncertainty principle generally prohibits simultaneous
measurements of certain pairs of observables and forms the
basis of indeterminacy in quantum mechanics'. Heisenberg's
original formulation, illustrated by the famous y-ray micro-
'scope, sets a lower bound for the product of the measurement
error and the disturbance’. Later, the uncertainty relation
was reformulated in terms of slandird d s, wh!r!

as o(A) = (W|A%|W) — (W|Al¥)’. Note that a positive definite
covariance term can be added to the right-hand side of equation (2),
if squared, as discussed by Schridinger’. For our experimental
setting, this term vanishes. Robertson’s relation (equation (2)) for
standard deviations has been confirmed by many different experi-
‘ments. In a single-slit diffraction experiment' the uncertainty rela-
tion, as expressed in equation (2), has been confirmed. A trade-off
relation appears in squeezing coherent states of radiation fields™,
d

tions, wherea:

been ignored®. A correct formulation of the errvr-dlshlrhince
uncertainty relation, taking recoil into account, is essential
for a deeper understanding of the uncertainty principle, as
Heisenberg's original relation is valid only under specific
. A new relation, derived
using the theory of general quantum measurements, has been
claimed to be universally valid"™*., Here, we report a neutron-
optical experiment that records the error of a spin-component
measurement as well as the disturbance caused on another
spin-component. The results confirm that both error and dis-
the new relati iolate the old one in a wide

range of an experimental parameter.
The uncertainty relation was first proposed by Heisenberg’ in
1927 as a limitation of simultaneous measurements of canonically

an
Robertson's elation {equation (2)) has a mathematical basis, but
has no immediate i for limitations on
This relation is naturally understood as limitations on state
preparation or limitations on prediction from the past. On the
other hand, the proof of the reciprocal relation for the error ¢(A)
of an A measurement and the disturbance n{B) on observable B
caused by the measurement, in a general form of Heisenberg’s
error-disturbance relation

(B I A B ®

is not straightforward, as Heisenberg's proof” used an unsupported
assumption on the state just after the measurement”, despite
successful jusiifications for the Heisenberg-type relation for

conjugate vartables owing to the back-action of the
the measurement of the position Q of the clectron with the error
(Q), ot ‘the mean error’, induces the disturbance n(P), or ‘the
discontinuous change’, of the momentum P so that they always
satisfy the relation

:(QM(P)"'? m

unbiased joint . Recently, rigorous and genersl
theoretical quant led the
failure of Heisenberg” uelalmn (equation (1)), and derived & new
universally valid relation’ ~* given by

€(A)n(B) +e(A)e (B)+o(A)n(B) = %\ (A Bllv) @
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Introductio

two varieties of quantum uncertainty

Quantum uncertainty challenged

PRL 109, 100404 (2012) PHYSICAL REVIEW LETTERS 7 SEPTEMBER 2012
Violation of Heisenberg’s M t-Disturbance Relationship by Weak Measurements

Lee A. Rozema, Ardavan Darabi, Dylan H. Mahler, Alex Hayat, Yasaman Soudagar, and Aephraim M. Steinberg
Centre for Quantum Information & Quantum Control and Institute for Optical Sciences, Department of Physics, 60 St. George Street,
University of Toronto, Toronto, Ontario, Canada M5S 1A7
(Received 4 July 2012; published 6 September 2012; publisher error corrected 23 October 2012)

While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system,

often referred to as “F ’s inty principle,” Hei originally formulated his ideas in
terms of a relationship between the precision of a measurement and the disturbance it must create.
Although this latter i ip is not rij proven, it is ly believed (and taught) as an
aspect of the broader Imcertamty prmclple Here, we experimentally observe a violation of Heisenberg’s

, using weak to characterize a quantum system
before and after it interacts with a measurement apparatus Our experiment implements a 2010 proposal of
Lund and Wiseman to confirm a revised lationship derived by Ozawa in 2003.
Its results have broad implications for the ions of quantum ics and for practical issues in

quantum measurement.
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged

SCIENTIFIC
REPLIRTS W, {9

Experimental violation and reformulation
. ’ .
s, OF the Heisenberg's error-disturbance
swmaonsyncertainty relation

QUANTUM METROLOGY

QUANTUM INFORMATION So-Young Baek'*, Fumihiro Kaneda', Masanao Ozawa? & Keiichi Edamatsu’
GUANTUM OPTICS

"Research Insfitute of Elecirical Communication, Tohoku Universily, Sendai 980-8577, Japan, *Graduate School of Information

Received Science, Nagoya University, Nagoya 464-8601, Japan.
7 August 2012
Accepted The inty principle by Hei in 1927 describes a trade-off between the error of a
2July 2013 measurement of one observable and the dnsturbanoecausudon another complementary observable such that

) their product should be no less than the limit set by Planck’s constant. However, Ozawa in 1988 showed a
Published  model of position measurement that breaks Helsenberg’s relation and in 2003 revealed an alternative
17July2013  relation for error and disturbance to be proven universally valid. Here, we report an experimental test of

Ozawa's relation for  single-photon polarization qubit, exploiting a more general class of quantum
measurements than the class of projective measurements. The test is carried out by linear optical devices and
realizes an indirect measurement model that breaks Heisenberg’s relation throughout the range of our

Ce = d
orresponcence o experimental parameter and yet validates Ozawa’s relation.

requests for materials
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Introductio

Recent media hype:

BEAE ¢ s News  Sport  Weater IPlayer

NEWS SCIENCE & ENVIRONMENT

Home World UK Engand N Wles st + bean

7 Septamber 2012 Last

Heisenberg uncertainty principle stressed
in new test
By Jason Paimer

Pionoering exporiments have cast doubt on a founding ideaof |

two varieties of quan

m uncertainty

the end of quantum uncertainty?

Quantenphysik

Der groBe Heisenberg irrte

i den Storungen wiedererkennen, die ein Messung verursacht. Diesen Schluss
haben kanadische Forseher widerlegt
Artikel  Bilder (3)  Lesermeinungen (3
e von Werner Heisenbers 1927
formulierte Unschirfebezichung
isttrota ihrer Tiefgriindigkeit und.
Abstraktheit das wohl bekannteste
Gesetz der Quantenphysik.Sie besagt
facht, e It gleichzeit

Physics

the branch of physics called quantum mechanics.

Paul Busch (York)

die Geschwindigkeit und den Ort etwa
eines Elektrons mit beliebiger
P best Fir die

Popularitit dises Gesetzes hat vor
i Synopsis: Rescuing Heisenberg
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(Approximate) Joint Measurements

Quantum Measurement Statistics — Observables as POVMs

o N:
w || o | —7 Pilw)=

preparation measurement registration  statistics

[r] ~p, [o] ~E={w;j— E}: pg (wi) = tr[pEi] = py (wi)
POVM: E={F,E, - ,E}, 0<O<E<I, Y E=I

state changes: instrument wj, p — Zi(p)
measurement processes: measurement scheme M = (H,, ¢, U, Z,)
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(Approximate) Joint Measurements

Signature of an observable: its statistics

ppczppA forallp <<= C=A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pg ~ p[’? for all p

Unbiased approximation — absence of systematic error:

CH =) gG=All]=) aA=A

. often taken as sole criterion for a good measurement
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(Approximate) Joint Measurements

Joint Measurability/ Compatibility

Definition: joint measurability (compatibility)

Observables C = {Cy,C_}, D ={D;,D_} are jointly measurable
if they are margins of an observable G = {G,,Gy_,G_, G__}:

Ck =Gy + Gr—y, Dp=Grp+ Gy

Theorem
If one of C,D is sharp (projection valued), then these observables are
jointly measurable iff they commute:

[Cka Df] =0
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(Approximate) Joint Measurements

Joint measurability in general

Pairs of unsharp observables may be jointly measurable
— even when they do not commute!
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(Approximate) Joint Measurements

Approximate joint measurement: concept

G joint observable

approximator observables
(compatible)

D~
@ «~—~~0O

target observable

Task: find suitable measures of approximation errors
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Quantifying measurement error and disturbance

Approximation error

(vc) value comparison
(e.g. rms) deviation of outcomes of a joint measurement:
accurate reference measurement together with measurement to be
calibrated, on same system

(dc) distribution comparison
(e.g. rms) deviation between distributions of separate measurements:
accurate reference measurement and measurement to be calibrated,
applied to separate but identical ensembles

alternative measures of deviation: error bar width; relative entropy; etc.

Crucial:
Value comparison is of limited applicability in quantum mechanics! J
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Quantifying measurement error and disturbance

Approximation error — Take 1: value comparison

Measurements/observables to be compared:

A={a,a,...,am}, C={a,c,...,cn}

where A is a sharp (target) observable

and C an (approximator) observable representing an approximate
measurement of A

Protocol: measure both A and C jointly on each system of an ensemble of
identically prepared systems

Proviso: This requires A and C to be compatible, hence commuting.

8ve(C A p)? = > (ai — ¢)? tr[pAi )]

i

(Ozawa 1991)
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Quantifying measurement error and disturbance

Issue: 6. is of limited use!
Attempted generalisation: measurement noise (Ozawa 2003)

5uc(C. A 2 = (C[2) — C), + ((C11] ~ A)?), = emn(C.A; p)?

where C[k] =3, cjij, A = A[1] are the k' moment operators...
...then give up assumption of commutativity of A, C

Critique (BLW 2013, 2014)
If A, C do not commute, then:
@ 0y.(C, A; p) loses its meaning as rms value deviation

@ and becomes unreliable as error indicator
- e.g., it is possible to have £,,,(C, A; p) = 0 where A, C may not
even have the same values.
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Quantifying measurement error and disturbance

Measurement noise as approximation error?
f(CAQP=(p0d|(Z - APpag) =4

In general, pointer Z. and target observable A may not commute.

Compare to measuring the energy

P2
H == %+V(Q)

You can’'t measure H by measuring kinetic and potential energy and
adding the outcomes.

Similarly: there’s no justification for the assumption that (Z, — A)? holds
information about the mean squared differences between values of A, Z..

Underlying quantum feature: Heisenberg effect.
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Quantifying measurement error and disturbance

Not Heisenberg's inequality: its true origin

Joint measurability and intrinsic noise/unsharpness
For compatible C, D:

((C[2), — (C[11%),) ((D[2]), — (D1I?),) > K[Cl], D[]}, |°

Interpretation: for C,D to be jointly measurable, their degrees of
unsharpness are bounded by their noncommutativity.

v

Let C, D be unbiased approximators (ua) of sharp observables A, B, that is:
C[1] = A, D[1] = B. Then:

£(C, A; p)? £(D, B; p)? >(ua) 3I([A B]),|°

Primarily a noise relation, not about error (and disturbance)
; : : : h :
In particular: €(Q; p)e(P; p) # 5 — unless (ua) applies.
Quantum Measurement Uncertainty 22 / 40



Quantifying measurement error and disturbance

Ozawa and Branciard inequalities

e(Ap)e(B,p) + e(Ap)DB , +B,A(B.p) = F[([ABI),,

e(A)*(8,B)? +&(B)*(8,A)?
+2\/(8,A)2(8,B)2 — L([A BY), P =(A)=(B) > L[{[A, B]), [

Comments:
e Does allow for £(A; p) (B; p) < 3[([A, B]),|.
@ Branciard's inequality is known to be tight for pure states.

e Not unequivocally error tradeoff relations! (BLW 2014)

Paul Busch (York) Quantum Measurement Uncertainty 23 / 40



Quantifying measurement error and disturbance

Approximation error — Take 2: distribution comparison

Protocol: compare distributions of A and C as they are obtained in
separate runs of measurements on two ensembles of systems in state p

5y (pg,pp)" = Lylai — )™y(if) (1< a <o)

where v is any joint distribution of the values of A and C with marginal
distributions ppA, pg

Cc A : Cc A
Balpy:pp) = infdy(pg,py)
Wasserstein-a distance — scales with distances between points.

AL(C,A) = sup Aa(pS, pD)

quantum rms error: o = 2
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Quantifying measurement error and disturbance

Disturbance

[\ |A(B,D)
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Quantifying measurement error and disturbance

Disturbance quantified as approximation error

1A(AC)

j’ \/\ A(BrD)
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Uncertainty Relations for Qubits
Qubits

o = (01,02,03) (Pauli matrices acting on C?)
o States: p=3(l+r-o), |r|<1
o Effects: A= %(agl+a-0)€[0,1], 0<i(ap+tlal)<1
e observables: (2 = {+1,—1})

c 1l Ar=1(Ita- o) |aj=1
c 2l By =3(/+b-o) |b|=1
Dl Ce=3(1x9)/tic-o |y +]c<1
: 21 Dy =3(1£6)/+3d-o |5 +]d| <1

O n ™ >

symmetric: v =0
sharp: v =0, |¢c| =1; — unsharpness: U(C)? =1 — |c|?
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Joint measurability of C,D

Symmetric case (sufficient for optimal compatible approximations):

Proposition
C={C.=3i(l£c-0)},D={Dy=1(I+£d- o)} are compatible if and
only if

lc+d|+|c—d| <2.

Interpretation: unsharpness U(C)? =1 — |c|?; |¢ x d| = 2||[C4, D4]]|

c+d+le—d <2 & (1-|cP)(-|d]) > |ex dP

C,D compatible < U(C)? x U(D)? >4H[C+,D+]H J
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Uncertainty Relations for Qubits

Approximation error

Recall: Observable C is a good approximation to A if pg ~ pﬁ‘

Take here: probabilistic distance

dp(C, A) = supsup|ir[pC(X)] — trlpA(X)]| = sup|[C(X) — A(X)]|

Qubit case: C, = %(col +c-0), Ay = %(3014— a- o)

dp(C,A) = ||Cs — AL]| = Lo — a0| + i[c —a|] = d, € [0,1].
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Uncertainty Relations for Qubits

Comparison 1: Wasserstein 2-distance (quantum rms error)

As (P§7Pp> '”fz (i, J)

where v runs through all joint distributions with margins pg, pﬁ‘.
2
Do(C, A2 =supds (pS.p))" = A2
P
Qubit case:

A2 = Ay(C,A)? = 2|y — ao| +2|c — a|
= 4d,(C,A) = 4d,.
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Uncertainty Relations for Qubits

Comparison 2: Measurement noise (Ozawa et al)

e(CA ) = (o ¢|(Z — Ao ® ¢)
= (C[2 - CP), +(CH AP, = 3
Qubit observables, symmetric case:
e2=1—|c|?+|a—c|?> = U(C)* + 4d?

£(A; p) double counts contribution from unsharpness.

Paul Busch (York) Quantum Measurement Uncertainty
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Uncertainty Relations for Qubits

Optimising approximate joint measurements

Ge
> >k
Ce D,
dp(C,A)é édp(D,B)
A B,

Goal

To make errors da = dp(C, A), dg = d,(D, B) simultaneously as small as
possible, subject to the constraint that C,D are compatible.
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Uncertainty Relations for Qubits

Admissible error region

i
i
H
H
|
0 2

sinf = |a x b|
(da,ds) = (dp(C,A),dn(D,B)) € [0,3] x[0,2] with C, D compatible

trivial approximations: C. = ~lI, Dy = 41,
then da = max(vy,1—7) > % dg = max(d,1—6) > %
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Qubit Measurement Uncertainty Relation: Take 1

sin = |a x b

.
L
0

2

PB, T Heinosaari (2008), arXiv:0706.1415

lc+d|+|c—d] < 2
U(C)? x U(D)* > 4|[Cs, Dy]|?
do(C,A) +dp(D,B) > 55 [la+bl+|a—b| 2]

|a+ b| +|a— b| = 2\/1+ |a x b| = 2¢/1+ 2||[A1, B,]]|
Quantum Measurement Uncertainty
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty: Take 2 — boundary region

Yu, Oh, arXiv:1402.3785
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty

PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a L b:

c=|cla, d=]|d|b,
2d,=]la—c|=1—|c|,
2dy=|b—d|=1-|d|,

Compatibility constraint:

lc?+|d> =1, ie, UC)*+ U(D)?=1
(1-2d.)2+ (1 —2dp)? = ||+ |d* =1

02F

2d,

a-b=0

(2d,- 1)% (2dy- 1)2 =1

2d,
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Uncertainty Relations for Qubits

Ozawa—Branciard (C Branciard 2013, M Ringbauer et a/ 2014)

jbaver.. Brancard et a, arXv:1308 5688

VR
|
'\"mml\)
~
N
+
/N
—
|
N‘c@w
~_—
N
[
—

Optimiser: ¢ = |c|la, d = |d|b,

Compatibility constraint: |c|? + |d|?> = 1, i.e., U(C)? + U(D)? = 1

4dl =2 = 1—|cP+]a—c®> = 2la—c| = 4d,, 4d,=¢2 = 4d,
(2d, —1)2 +(2dp —1)? = [c]?+|d|> = 1
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Uncertainty Relations for Qubits

A twist: Ozawa's error

Branciard's inequality has another optimiser:
M={M; M_}=C=D',Mt=1%(/l+m- o)

m “between” a, b

e(M,A) =¢(M,B) =¢(A,C) =¢(B,D)
but

2d,(C,A) = 2d,(D,B) = |a— €| < |a—m|=2d,(M,A) =2d,(M,B)

Paul Busch (York) Quantum Measurement Uncertainty
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Conclusion

Conclusion

(1) Heisenberg's spirit materialised

(joint measurement errors for A, B) > (incompatibility of A, B)
(unsharpness of compatible C, D) > (noncommutativity of C, D)

Shown here for qubit observables.
Also known: case of position and momentum (BLW 2013):

h
AQ(C7 Q) AQ(Da P) > 5
Generic results: finite dimensional Hilbert spaces, arbitrary discrete,

finite-outcome observables (Miyadera 2011)

(2) Importance of judicious choice of error measure

@ valid MURs obtained for Wasserstein-2 distance, error bar widths

@ measurement noise / value comparison — not suited for universal MURs

V.
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Conclusion
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