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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

Essence of the quantum mechanical world view:

quantum uncertainty & Heisenberg effect
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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

quantum uncertainty:

Preparation Uncertainty Relation: PUR
For any wave function ψ:

(Width of Q distribution) · (Width of P distribution) ∼ ~

(Heisenberg just discusses a Gaussian wave packet.)

Later generalisation:

∆ρA ∆ρB ≥ 1
2
〈
[A,B]

〉
ρ

(Heisenberg didn’t state this...)
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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

Heisenberg effect:

any measurement disturbs the object: uncontrollable state change
measurements disturb each other: quantum incompatibility

Measurement Uncertainty Relation: MUR

(Error of Q measurement) · (Error of P) ∼ ~
(Error of Q measurement) · (Disturbance of P) ∼ ~
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Introduction: two varieties of quantum uncertainty

Reading Heisenberg’s thoughts?

Heisenberg allegedly claimed (and proved):

ε(A, ρ) ε(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣ (
???
)
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Introduction: two varieties of quantum uncertainty

MUR made precise?

Heisenberg’s thoughts – or Heisenberg’s spirit?

(
combined joint measurement errors for A,B

)
≥
(
incompatibility of A,B

)

True of false? Needed:
precise notions of approximate measurement
measure of approximation error
measure of disturbance
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged
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Introduction: two varieties of quantum uncertainty

Recent media hype: the end of quantum uncertainty?
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(Approximate) Joint Measurements

Quantum Measurement Statistics – Observables as POVMs

[π] ∼ ρ, [σ] ∼ E = {ωi 7→ Ei} : pσπ(ωi ) = tr[ρEi ] = pE
ρ (ωi )

POVM : E = {E1,E2, · · · ,En}, 0 ≤ O ≤ Ei ≤ I ,
∑

Ei = I

state changes: instrument ωi , ρ→ Ii (ρ)
measurement processes: measurement scheme M = 〈Ha, φ,U,Za〉
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(Approximate) Joint Measurements

Signature of an observable: its statistics

pC
ρ = pA

ρ for all ρ ⇐⇒ C = A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pC
ρ ' pA

ρ for all ρ

Unbiased approximation – absence of systematic error:

C[1] =
∑

j
cjCj = A[1] =

∑
i

ai Ai = A

... often taken as sole criterion for a good measurement
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(Approximate) Joint Measurements

Joint Measurability/Compatibility

Definition: joint measurability (compatibility)
Observables C = {C+,C−}, D = {D+,D−} are jointly measurable
if they are margins of an observable G = {G++,G+−,G−+,G−−}:

Ck = Gk+ + Gk−, D` = G+` + G−`

Theorem
If one of C,D is sharp (projection valued), then these observables are
jointly measurable iff they commute:

[Ck ,D`] = 0
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(Approximate) Joint Measurements

Joint measurability in general
Pairs of unsharp observables may be jointly measurable

– even when they do not commute!
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(Approximate) Joint Measurements

Approximate joint measurement: concept

G

�� ��

C

��

D

��

A B

joint observable

approximator observables
(compatible)

target observable

Task: find suitable measures of approximation errors
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Quantifying measurement error and disturbance

Approximation error

(vc) value comparison
(e.g. rms) deviation of outcomes of a joint measurement:
accurate reference measurement together with measurement to be
calibrated, on same system

(dc) distribution comparison
(e.g. rms) deviation between distributions of separate measurements:
accurate reference measurement and measurement to be calibrated,
applied to separate but identical ensembles

alternative measures of deviation: error bar width; relative entropy; etc. ...

Crucial:
Value comparison is of limited applicability in quantum mechanics!
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Quantifying measurement error and disturbance

Approximation error – Take 1: value comparison
Measurements/observables to be compared:

A = {a1, a2, . . . , am}, C = {c1, c2, . . . , cn}

where A is a sharp (target) observable
and C an (approximator) observable representing an approximate
measurement of A
Protocol: measure both A and C jointly on each system of an ensemble of
identically prepared systems
Proviso: This requires A and C to be compatible, hence commuting.

δvc(C,A; ρ)2 =
∑

i
(ai − cj)2 tr[ρAi Cj ]

(Ozawa 1991)

Paul Busch (York) Quantum Measurement Uncertainty 19 / 40



Quantifying measurement error and disturbance

Issue: δvc is of limited use!
Attempted generalisation: measurement noise (Ozawa 2003)

δvc(C,A; ρ)2 =
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ
= εmn(C,A; ρ)2

where C[k] =
∑

j ck
j Cj , A = A[1] are the kth moment operators...

...then give up assumption of commutativity of A, C

Critique (BLW 2013, 2014)
If A, C do not commute, then:

δvc(C,A; ρ) loses its meaning as rms value deviation
and becomes unreliable as error indicator
– e.g., it is possible to have εmn(C,A; ρ) = 0 where A, C may not
even have the same values.
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Quantifying measurement error and disturbance

Measurement noise as approximation error?

ε(C ,A;ϕ)2 =
〈
ϕ⊗ φ

∣∣ (Zτ − A)2ϕ⊗ φ
〉
≡ ε2

a

In general, pointer Zτ and target observable A may not commute.
Compare to measuring the energy

H = P2

2m + V (Q)

You can’t measure H by measuring kinetic and potential energy and
adding the outcomes.
Similarly: there’s no justification for the assumption that (Zτ − A)2 holds
information about the mean squared differences between values of A, Zτ .
Underlying quantum feature: Heisenberg effect.
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Quantifying measurement error and disturbance

Not Heisenberg’s inequality: its true origin

Joint measurability and intrinsic noise/unsharpness
For compatible C,D:(

〈C[2]〉ρ − 〈C[1]2〉ρ
) (
〈D[2]〉ρ − 〈D[1]2〉ρ

)
≥ 1

4
∣∣〈[C[1],D[1]

]〉
ρ

∣∣2
Interpretation: for C,D to be jointly measurable, their degrees of

unsharpness are bounded by their noncommutativity.

Let C,D be unbiased approximators (ua) of sharp observables A,B, that is:
C[1] = A, D[1] = B. Then:

ε(C,A; ρ)2 ε(D,B; ρ)2 ≥(ua)
1
2
∣∣〈[A,B]〉

ρ

∣∣2
Primarily a noise relation, not about error (and disturbance)

In particular: ε(Q; ρ) ε(P; ρ) 6≥ ~
2 – unless (ua) applies.
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Quantifying measurement error and disturbance

Ozawa and Branciard inequalities

ε(A, ρ) ε(B, ρ) + ε(A, ρ)∆ρB ,+ ∆ρAε(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ
,

ε(A)2(∆ρB)2 + ε(B)2(∆ρA)2

+ 2
√

(∆ρA)2(∆ρB)2 − 1
4 |〈[A,B]〉ρ|2 ε(A)ε(B) ≥ 1

4 |〈[A,B]〉ρ|2.

Comments:
Does allow for ε(A; ρ) ε(B; ρ) < 1

2 |〈[A,B]〉ρ|.
Branciard’s inequality is known to be tight for pure states.
Not unequivocally error tradeoff relations! (BLW 2014)
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Quantifying measurement error and disturbance

Approximation error – Take 2: distribution comparison
Protocol: compare distributions of A and C as they are obtained in
separate runs of measurements on two ensembles of systems in state ρ

δγ(pC
ρ , pA

ρ )α =
∑

ij(ai − cj)αγ(i , j) (1 ≤ α <∞)

where γ is any joint distribution of the values of A and C with marginal
distributions pA

ρ , pC
ρ

∆α(pC
ρ , pA

ρ ) = inf
γ
δγ(pC

ρ , pA
ρ )

Wasserstein-α distance – scales with distances between points.

∆α(C,A) = sup
ρ

∆α(pC
ρ , pA

ρ )

quantum rms error: α = 2
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Quantifying measurement error and disturbance

Disturbance
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Quantifying measurement error and disturbance

Disturbance quantified as approximation error
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Uncertainty Relations for Qubits

Qubits

σ = (σ1, σ2, σ3) (Pauli matrices acting on C2)
States: ρ = 1

2
(
I + r · σ

)
, |r | ≤ 1

Effects: A = 1
2(a0I + a · σ) ∈ [O, I], 0 ≤ 1

2
(
a0 ± |a|

)
≤ 1

observables: (Ω = {+1,−1})

A : ±1 7→ A± = 1
2(I ± a · σ) |a| = 1

B : ±1 7→ B± = 1
2(I ± b · σ) |b| = 1

C : ±1 7→ C± = 1
2(1± γ) I ± 1

2c · σ |γ|+ |c| ≤ 1
D : ±1 7→ D± = 1

2(1± δ) I ± 1
2d · σ |δ|+ |d | ≤ 1

symmetric: γ = 0
sharp: γ = 0, |c| = 1; → unsharpness: U(C)2 = 1− |c|2
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Uncertainty Relations for Qubits

Joint measurability of C, D

Symmetric case (sufficient for optimal compatible approximations):

Proposition
C = {C± = 1

2(I ± c · σ)}, D = {D± = 1
2(I ± d · σ)} are compatible if and

only if
|c + d |+ |c − d | ≤ 2.

Interpretation: unsharpness U(C)2 = 1− |c|2; |c × d | = 2
∥∥[C+,D+]

∥∥
|c + d |+ |c − d | ≤ 2 ⇔

(
1− |c|2

)(
1− |d |2

)
≥ |c × d |2

C,D compatible ⇔ U(C)2 × U(D)2 ≥ 4
∥∥[C+,D+]

∥∥2
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Uncertainty Relations for Qubits

Approximation error

Recall: Observable C is a good approximation to A if pC
ρ ' pA

ρ

Take here: probabilistic distance

dp(C,A) = sup
ρ

sup
X

∣∣tr[ρC(X )]− tr[ρA(X )]
∣∣ = sup

X

∥∥C(X )− A(X )
∥∥

Qubit case: C+ = 1
2
(
c0I + c · σ

)
, A+ = 1

2
(
a0I + a · σ

)
dp(C,A) =

∥∥C+ − A+
∥∥ = 1

2 |c0 − a0|+ 1
2 |c − a| ≡ da ∈ [0, 1].
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Uncertainty Relations for Qubits

Comparison 1: Wasserstein 2-distance (quantum rms error)

∆2
(

pC
ρ , pA

ρ

)2
= inf

γ

∑
ij

(ai − cj)2γ(i , j)

where γ runs through all joint distributions with margins pC
ρ , pA

ρ .

∆2(C,A)2 = sup
ρ

d2
(

pC
ρ , pA

ρ

)2
≡ ∆2

a

Qubit case:

∆2
a = ∆2(C,A)2 = 2|c0 − a0|+ 2|c − a|

= 4dp(C,A) = 4da.
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Uncertainty Relations for Qubits

Comparison 2: Measurement noise (Ozawa et al)

ε(C,A;ϕ)2 =
〈
ϕ⊗ φ

∣∣ (Zτ − A)2ϕ⊗ φ
〉

=
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ
≡ ε2

a

Qubit observables, symmetric case:

ε2
a = 1− |c|2 + |a − c|2 = U(C)2 + 4d2

a

ε(A; ρ) double counts contribution from unsharpness.
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Uncertainty Relations for Qubits

Optimising approximate joint measurements

Gk`

∑
`

��

∑
k

��

Ck

dp(C,A)
��

D`

dp(D,B)
��

Ak B`

Goal
To make errors dA = dp(C,A), dB = dp(D,B) simultaneously as small as
possible, subject to the constraint that C,D are compatible.
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Uncertainty Relations for Qubits

Admissible error region

sin θ = |a × b|
(dA, dB) =

(
dp(C,A), dp(D,B)

)
∈ [0, 1

2 ]× [0, 1
2 ] with C,D compatible

trivial approximations: C+ = γI, D+ = δI;
then dA = max(γ, 1− γ) ≥ 1

2 , dB = max(δ, 1− δ) ≥ 1
2
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty Relation: Take 1

sin θ = |a × b|

PB, T Heinosaari (2008), arXiv:0706.1415

|c + d |+ |c − d | ≤ 2
U(C)2 × U(D)2 ≥ 4‖[C+,D+]‖2

dp(C,A) + dp(D,B) ≥ 1
2
√

2 [ |a + b|+ |a − b| − 2 ]

|a + b|+ |a − b| = 2
√

1 + |a × b| = 2
√

1 + 2
∥∥[A+,B+]

∥∥
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty: Take 2 – boundary region

 c d 

∆ ∆
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty
PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a ⊥ b:

c = |c|a, d = |d |b,
2da = |a − c| = 1− |c|,
2db = |b − d | = 1− |d |,
Compatibility constraint:
|c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
(1− 2da)2 + (1− 2db)2 = |c|2 + |d |2 = 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a⋅b = 0

da

db

(d  - 1)   + (d  - 1)   = 1 2 2
a b

2

2

+ (2(2
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Uncertainty Relations for Qubits

Ozawa–Branciard (C Branciard 2013, M Ringbauer et al 2014)

ε2
a

(
1− ε2

a
4

)
+ ε2

b

(
1− ε2

b
4

)
≥ 1

(
1− ε2

a
2

)2

+
(

1− ε2
b

2

)2

≤ 1

ε2
a ≡ 4d ′a, ε2

b ≡ 4d ′b
(2d ′a − 1)2 + (2d ′b − 1)2 ≤ 1

Optimiser: c = |c|a, d = |d |b,
Compatibility constraint: |c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
4d ′a = ε2

a = 1− |c|2 + |a − c|2 = 2|a − c| = 4da, 4d ′b = ε2
b = 4db

(2da − 1)2 + (2db − 1)2 = |c|2 + |d |2 = 1
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Uncertainty Relations for Qubits

A twist: Ozawa’s error

Branciard’s inequality has another optimiser:
M = {M+,M−} = C′ = D′, M± = 1

2(I ±m · σ)

m “between” a,b

ε(M,A) = ε(M,B) = ε(A,C) = ε(B,D)

but

2dp(C,A) = 2dp(D,B) = |a − c| < |a −m| = 2dp(M,A) = 2dp(M,B)
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Conclusion

Conclusion

(1) Heisenberg’s spirit materialised(
joint measurement errors for A,B

)
≥
(
incompatibility of A,B

)
(
unsharpness of compatible C,D

)
≥
(
noncommutativity of C,D

)
Shown here for qubit observables.
Also known: case of position and momentum (BLW 2013):

∆2(C,Q) ∆2(D,P) ≥ ~
2

Generic results: finite dimensional Hilbert spaces, arbitrary discrete,
finite-outcome observables (Miyadera 2011)

(2) Importance of judicious choice of error measure

valid MURs obtained for Wasserstein-2 distance, error bar widths

measurement noise / value comparison – not suited for universal MURs
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Conclusion
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