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Self-learning estimation of quantum states
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We report the experimental estimation of arbitrary qubit states using a succesdibmefsurements on
individual qubits, where the measurement basis is changed during the estimation procedure conditioned on the
outcome of previous measuremetdslf-learning estimation Two hyperfine states of a single trappEdyb™*
ion serve as a qubit. It is demonstrated that the difference in fidelity between this adaptive strategy and passive
strategies increases in the presence of decoherence.
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A question of fundamental and practical importance re-mental implementation of rather intricate nonfactorizable op-
garding the quantum-mechanical description of the microerators for a simultaneous measurement oNajlubits. First
scopic world is: How can we obtain maximal information in experimental steps towards entanglement-enhanced determi-
order to characterize the state of a quantum system? Quanation N=2) of a quantum state have been undertglédn
tum states of various physical systems such as light field&stimating a quantum state can also be viewed as the decod-
molecular wave packets, motional states of trapped ions anitig procedure at the receiver end of a quantum channel nec-
atomic beams have been determined experimentally witkssary to recover quantum informatiée.g., encoded as a
considerable precisiofil]. Acquiring complete knowledge unit vecto) [7,8].
about a quantum state would, of course, only be possible, if |t was recently shown that quantum state estimation with
infinitely many copies of a quantum state were available angjdelity close to the optimum is possible when a self-learning
could be measured. More to the point, the initial questiony|gorithm is used and measurements Mridentically pre-
may .be_ reformul_ated as the following task: Find a_propedur%ared qubits are performed successivé8l. Here, we
consisting of afinite number of measurements yielding a resent, to our knowledge, the first experimental realization
state_ vector that best represents ftassical knowledge of a self-learning measurement on an individual quantum
possibly gained fronany type of measurement of the quan- system in order to estimate its state. The base of the mea-

tum system . o ) i
y a§urement is varied in real time during a sequenchl ofiea-

Determining an arbitrary state of a quantum-mechanic surements conditioned on the results of previous measure-
two-state systenfqubit) is of particular importance in the . : . P
ments in this sequence. In addition, we compare the

context of quantum information processing. In Rg] two inabl ) | fideli £ thi ; f
identically prepared two-state quantum systems were considitéinable experimental fidelity of this adaptive strategy for

ered with no nonlocal correlations and an optimal measureduantum state estimation with a strategy where the measure-
ment strategy was searched to gain maximal informatiorment base is raqdomly chosen. If a self-learning algorithm is
(difference of Shannon entropgbout this quantum state. It €mployed to estimate a quantum state, then a suitable target
was strongly suggested that optimal information gain isfunction (here, the gain in the expected mean fidelity as de-
achieved when a suitable measurement on both particles tgcribed below is maximized when proceeding from mea-
gether is performed. Later it was proven that, indeed theuremenn—1 ton. Under realistic experimental conditions
optimal measurement for determining a quantum state neediecoherence has to be taken into account. The resulting im-
to be carried out on both particles together, i.e., the operatdgaurity of the states to be estimated influences different mea-
characterizing the measurement does not factorize into consurement strategies differently.

ponents that act in the Hilbert spaces of individual particles Here, the quantum-mechanical two-state system under in-
only [3]. Moreover, an optimal estimate of the spin direction vestigation is theS,,, ground-state hyperfine doublet with
(the qubit state of an ensemble oN identically prepared total angular momenturi=0,1 of a single'’*Yb* ion con-
particles requires the application of such a nonfactorizingined in a miniature Paul trafdiameter of 2 mm The |0)
measurement operator. As a special case of the optimal quas|F=0)«|F=1, mg=0)=|1) transition with Bohr fre-

tum state estimation of systems of arbitrary finite dimensionguency wg is driven by a quasiresonant microwagaw)

the upper boundN+1)/(N+2) for the mean fidelity of an field with angular frequency neas=27X12.6 GHz. The
estimate ofN qubits was rederived in Reff4]. In particular,  time evolution of the system is virtually free of decoherence,
it was shown thaffinite positive operator valued measure- i.e., transversal and longitudinal relaxation rates are negli-
ments(POVMs) are sufficient for optimal state estimation. gible [10,11]. However imperfect preparation and detection
This result implied that an experimental realization of suchlimits the purity of the states. Photon-counting resonance
measurements is feasible, at leasprinciple. Subsequently, fluorescence on thes;(F=1)«— P4y(F=0) transition
optimal POVMs were derived to determine the pure state oflriven by a frequency-doubled Ti:sapphire laser at 369 nm
a qubit with theminimal number of projectors when up to serves for state selective detection. Optical pumping into the
N=5 copies of the unknown state are availalg Still, the |F=1mg==*1) levels during a detection period is avoided
proposed optimal and minimal strategy requires the experiwhen theE vector of the linearly polarized light subtends
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45° \{vith the direction of thg applied dc magnetic_ field. The=maxF,_,(6,¢). In order to find the optimal measurement
light is detuned to the red side of the resonance line by somgirection for sequence, the expectedmean fidelity after
20 MHz in order to laser cool the ion. Optical pumping of measuremenn is maximized as a function of the measure-

the ion into the metastabléDy, level is prevented by illu-  ment direction. Suppose in tmth measurement the qubit is
mination with light at 935 nm of a diode laser that retrievesfound in direction @,,, ¢,,). Then

the ion to the ground state via thBg,, F=1)—|[3/2]1,)

excitation. Cooling is achieved by simultaneously irradiating Fn(0,0|0m, dm)

the ion for 100 ms with light from both laser sources and

with microwave radiation. This is done before each succes- _ fwde’sin o' fZWdQ')’W (0,80, br)
sion of measurements that consists of preparing and measur- 0 0 me merm

ing a qubit stateN times. L e

In the reference frame rotating with, after applying the x[(0.416",¢")|%, 2
rotating wave approximation, the time evolution operator de- o Lo )
termining the evolution of the qubit exposed to linearly po-Where the expected distribution,(6',’| 6, dm) is ob-
larized mw radiation reads (t) = exd —(i/2)t(6o,+ Qo)].  t@ined from Bayes ruleEq. (1)]. The optimal fidelity
The Rabi frequency is denoted Y and o, , represent the F2P(6m, #m) is obtained by maximizing this function with
usual Pauli matrices. Any pure state can be represented by'8SPect to ¢,¢). Measuremenh is performed along a spe-
unit vector in two-dimensional configuration spa@&och cific axis End the qubit might as well be found in the direc-
vectol, | 6, ¢)=cos@2)|0) +sin(@/2)e'?|1), and is prepared tion (6, ¢y). Therefore, the expected mean fidelity after
by driving the qubit with mw pulses with appropriately cho- the nth measurement is given by the optimized fidelities for
sen detuningd= wy— w, intensity, and duration,,,,= 6/,  each of the two possible outcomes, weighted with the esti-
and by allowing for free precession for a prescribed time mated probability for that outcome:
= ¢/ 5. Rabi frequency Q =3.47x27 kHz) and detuning

(6=107x27 Hz) of the mw radiation are determined by F(0m dm) = Pn( O dm) FP O, i)
recording Rabi oscillations over four to eight periods and by o o
performing a Ramsey-type experiment with mw pulses sepa- +Pn(Oms D) FP Oy ) - (©)]

rated in time. A measurement in a given direction is per-

formed in two steps: First, a suitable unitary transformationThe optimal measurement directiod°", »°") maximizes
of the qubit is performed effecting a rotation of the desiredthis function.

measurement axis onto tlzeaxis. Second, the qubit is irra- The direction of the firstif=1) measurement is of course
diated for 2 ms with laser light resonant with tiSg,(F arbitrary, since na priori information on the state is avail-
=1)« Py, transition and scattered photons are detected ible [w(6,¢)=1/47]. The expected mean fidelity in this

state[1) is occupied. . case isF,=2/3, independent of 4, ) 1. After the first

~ Aself-learning estimation of the prepared qubit state conmeasurement the symmetry of the probability distribution
sists ofN sequences, each comprisifig the preparation of (g 4) is reduced to rotational symmetry around the first
| Oprep: Pprep» (i) performing a projective measurement in the measurement axis.
basis (m, Pm)ns| Om=17— 0, dm= 7+ b)), and(iii) us- The expected mean fidelity now depends only on the rela-
ing the result of thisif— 1)th measurement to determine the tive anglea between the second and the first measurement

basis of the subsequenth measurement that maximizes the gjrection and we find=,= 1/2+ cos@/2— w/4)/\/18. Thus,

gggigﬂﬁ \?v);]paetitoellc(j)vrcsean fidelgg]. This third step willbe optimal second measurement with= /2 yields FS™

B , . =1/2+1/\/18. After the second measurememty (6, ) is
After n—1 sequences the density operator representlngti” symmetric with respect to a plane spanned by the first

the state fo be estimated s given bywn s two measurement directions. Again, the optimal measure
— H 21T . . , -
=Jd0sin0fg"dpun_1(0,4)0.8)(0,¢|. The normalized ment direction axis is orthogonal to both previous directions

robability density distributiorw,,_ (8, ®) is updated after e . -
gach megsuremeﬁt using Bayeg ,[102]3 iff;)., i inpsequence and we obtainF$"'=1/2+1/y/12. The optimal directions of

the system is measured in directiofi,{,¢,,), the distribu- SuPsequent measurements<(3) do depend on the outcome
tion is modified by the probablllty for this outcome of previous measurements. For an estimation procedure com-

prised of N sequences, we have calculated numerically 2
2 possible successions of directiof§6,,,dm)n} and pro-
Wy 1(6,0) (O, bl 6, 0)| . (1 grammed the computer interface tr?at controls}the experimen-
Pn(bm, dm) tal parameters to choose the optimum measurement direction
on-line during an estimation procedure. Figure 1 illustrates a
where the probabilityp,(6m,dm) ={Om,Pml €n— 1| Om» Pm) succession of measurements that yield an estimate of the
to find the system in directionék,, ¢y, in the nth measure- initial state |Oprep, Pprep =|7/4,7/4) employing the self-
ment ensures correct normalization. learning algorithm. The probability density,(6,¢) is
The best estimate of the pure qubit stegy, despn—1 1S shown on the surface of the Bloch sphere andritie and
obtained by maximizing the fidelity F,_1(6,¢) optimized[Eg. (3)] (n+1)th measurement directions are in-
=(0,¢len-1/0,0), e, Fro1(fesu besd =Fn;  dicated.
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FIG. 1. Probability distributionw,(6,¢) on the Bloch sphere An

updated by Bayes' rule, in a typical realization of 12 successive

measurements. Darker areas correspond to higher probabilities FLG' 2.t_M9ar(; ]:)dilr']ty attl?llned \_NltINI=12_tf]uccessn;e mtt_easurfet-h
(scaled individually for each Bloch sphegreontour lines forw, ments, optimized by the Seli-learning algorithm, as a function orthe

001 aregiven. Thenth and the optimizedr(+1)-th mea- efficiency differenceA» for different prepared stategcircles,

surement directions are indicated by the open and the solid arroW8™A4ml4); _diamonds, |3m/4,3w/4); stars, |m/4,3m/4); plus,
respectively. The white circle shows the prepared staté”m’”/“))' Each data point is averaged over 100—200 realizations.
| Oprep Porep = |mr/4,7wl4).
tum channel on the system'’s state followed by a perfect mea-

The discussion so far is based on the assumption th&urement:o—(27—1)¢+(1—7n)l+Ano,. The channel
measurements are performed with perfect efficiency. This icts as a depolarizing one characterized by the damping pa-
obviously not true in a real experiment. In this paragraph weameter 1 7. The error introduced hereby is independent of
will discuss the influence of experimental imperfections onthe choice of the measurement basis and hence statistical.
the quality of state estimation. Since the Rabi frequeficy Effectively the purity of the statéor equivalently the length
and detuning_ﬁ are determined precisely with an error below ¢ the Bloch vectorl(a)|) decreases. The term in the final
1%, the deviation of the prepared state and of the measurgransity matrix containing  systematically shifts the result-
ment axis from their anticipated directions is small and th(qng state along the measurement direction. If an algorithm
resulting systematic error in the fidelity is negligible com- ¢ state estimation is used that relies on measurements in
pared to the statistical error. , _ _fixed directions, for example, in the'y, andz direction, then

I_f there were no_background signals during a det_ectlor}he estimated state acquires a component parateanti-
period, the observation oh>0 scattered photons in a single pargjiel forA < 0) to the direction determined by the vector
measurement would reveal the ion to be in staie with  gym of the measurement directions. On the other hand, algo-
probability 1—p,(0) close to unity[The probabilityp;(m)  rithms using measurement directions distributed over the
to detectm photons follows a Poissonian distribution with \yhole Bloch sphere tend to cancel this error. This can be
mean valuem;~5.] However, due to scattering off the ion achieved with both the self-learning and the random algo-
trap electrodes and windows, some photons will be detectedthm. For experimental reasons, we implemented only mea-
even if the ion had been prepared in stfdg [also with a  surement directions on the upper hemisphéie., 6,
Poissonian distributiopg(m) with my~0.2]. In order to as- <w/2) and thus observe this systematic error for all algo-
sign a given number of photon counts in an individual measithms if A »# 0. Choosing the thresholg},,; such thatA »
surement to the corresponding state of the ion, the threshold O eliminates this systematic, basis dependent error. When-
s is introduced: The probabilityy,; to detectm=s photons ever an efficiency difference cannot be avoided, any algo-
when photons are scattered off the istate|1)) is given by  rithm can be made more robust against a systematic error in
71=2m-cP1(mM). Analogously, 770:2;*=10p0(m) for state the state es'Fimation by C_hoosing measurement directions
|0). The functional relationship between ands is deter- ~such that their vector sum is close to zero.
mined by the observed photon number distributipa@n). In theor.y, the proge_d_ure of state estimation is independent
Since the detection efficiencies< 1, both a statistical and a ©Of the choice of the initial state. In the experiment, however,

systematic error are introduced into the measurements, 48iS is only the case in the absence of any systematic shifts.
will be shown below. We have studied the influence of the bias direction on the
performance of different algorithms. To this eddy was
varied by changing the threshold between0 ands=11

o o o — for the estimation of four different prepared states. Each state
an “on” event (m=s) is given byP(""on”) =(27—1)P1 a5 estimated several 100 times after 12 consecutive mea-
+(1-7n)+An, and analogouslyP(**off’) =(27—1)Py  surements for a given value df7. Figure 2 shows that the
+(1—75)—An, where P;=|(i|¥)|? and |¥) is the ion's dependence of the fidelity alz strongly varies for different
state before irradiation with UV light. This effect of the mea- states to be estimated. The curves in Fig. 2 intersect where
surement can be thought of as the distorting action of a quarthe fidelity is independent of the prepared state. This inter-
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Using theaverageefficiency;E(770+ 71)/2 and the ef-
ficiency differenceA n=(7,— 79)/2, the probability to find
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90— ; ; ; randomly generated directions instead of tHé dptimized
directions as described above for the self-learning measure-
& ¢ ¢ ¢ ment. Figure 3 shows experimental fidelities for the self-
50 % ¢ 1 ¥ tr * learning and the random algorithm together with the respec-
3 ¢ ¥ ¥ tive values expected from theory. The attainable fidelity is
@ 25l ¢ ¥ ¥ limited by experimental imperfections, i.e., by the finite de-
$ % ¥ tection efficiencyn=97%, and most notably by the impure
or H 1 preparation of statf)) at the beginning of each sequence of
. measurementsf,.;= 89%). These imperfections reduce the

3 6 5 12 purity of the state, i.e., the length of the Bloch vedfar)|,

N which is accounted for in the theoretical values. The)|

FIG. 3. Experimentalfilled circles and theoretical mean fideli- values for these algorithms were equal within the given error
ties. The theoretical values for the self-learnidinpmond$ and the ~ bounds, whereas the observed fidelities differ from each
random(starg algorithm take into account the overall length of the other by more than five standard errors. A variation in the
Bloch vector|(c)| (being 0.7480.021 and 0.7340.021, respec- Bloch vector length of 1.4%the difference between the
tively). Specifically, for N=12 the experimental valueéF)e,, ~ Mean values corresponding to the self-learning and random
[(85.0+0.6)% for the self-learning and (81:®.6)% for the ran-  algorithm would lead to a variation in the achievable fidelity
dom algorithm} are well separated and agree with their respectiveof only 0.5%.
values expected from theorjbeing (85.4-0.7)% and (81.9 Note that all fidelities given are average values valid for
*0.7)%, respectively measurement sequences with=3, ...,12. If instead, the
information ofall sequencestypically N 100) is used for
state estimation, then the experimental fidelity is better than
99%.

The method and results presented are not restricted to a
?)articular realization of qubits. When estimating quantum
states affected by decoherence, the advantage of the self-
learning algorithm is even larger than for pure states.

section occurs at\ =0 as is expected, if the functional
dependence af % on sis correct(determined independently
using the experimental photon count distributiorihe the-
oretical fidelities to be compared to the experimental one
(see below are obtained from numerically simulating state
estimation for 10000 initial states randomly picked from a
uniform distribution.

In addition to the fidelity optimizing adaptive algorithm, a  This work was supported by the Deutsche Forschungsge-
“random” one has been implemented for comparison as irmeinschaft and the Bundesministeriunm Rildung und For-
Ref.[9]. The random algorithm is realized by employinj 2 schung.
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