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Self-learning estimation of quantum states
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We report the experimental estimation of arbitrary qubit states using a succession ofN measurements on
individual qubits, where the measurement basis is changed during the estimation procedure conditioned on the
outcome of previous measurements~self-learning estimation!. Two hyperfine states of a single trapped171Yb1

ion serve as a qubit. It is demonstrated that the difference in fidelity between this adaptive strategy and passive
strategies increases in the presence of decoherence.
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A question of fundamental and practical importance
garding the quantum-mechanical description of the mic
scopic world is: How can we obtain maximal information
order to characterize the state of a quantum system? Q
tum states of various physical systems such as light fie
molecular wave packets, motional states of trapped ions
atomic beams have been determined experimentally w
considerable precision@1#. Acquiring complete knowledge
about a quantum state would, of course, only be possibl
infinitely many copies of a quantum state were available
could be measured. More to the point, the initial quest
may be reformulated as the following task: Find a proced
consisting of afinite number of measurements yielding
state vector that best represents the~classical! knowledge
possibly gained fromany type of measurement of the qua
tum system

Determining an arbitrary state of a quantum-mechan
two-state system~qubit! is of particular importance in the
context of quantum information processing. In Ref.@2# two
identically prepared two-state quantum systems were con
ered with no nonlocal correlations and an optimal measu
ment strategy was searched to gain maximal informa
~difference of Shannon entropy! about this quantum state.
was strongly suggested that optimal information gain
achieved when a suitable measurement on both particle
gether is performed. Later it was proven that, indeed
optimal measurement for determining a quantum state ne
to be carried out on both particles together, i.e., the oper
characterizing the measurement does not factorize into c
ponents that act in the Hilbert spaces of individual partic
only @3#. Moreover, an optimal estimate of the spin directi
~the qubit state! of an ensemble ofN identically prepared
particles requires the application of such a nonfactoriz
measurement operator. As a special case of the optimal q
tum state estimation of systems of arbitrary finite dimensi
the upper bound (N11)/(N12) for the mean fidelity of an
estimate ofN qubits was rederived in Ref.@4#. In particular,
it was shown thatfinite positive operator valued measur
ments~POVMs! are sufficient for optimal state estimatio
This result implied that an experimental realization of su
measurements is feasible, at leastin principle. Subsequently,
optimal POVMs were derived to determine the pure state
a qubit with theminimal number of projectors when up t
N55 copies of the unknown state are available@5#. Still, the
proposed optimal and minimal strategy requires the exp
1050-2947/2002/65~5!/050303~4!/$20.00 65 0503
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mental implementation of rather intricate nonfactorizable o
erators for a simultaneous measurement on allN qubits. First
experimental steps towards entanglement-enhanced dete
nation (N52) of a quantum state have been undertaken@6#.
Estimating a quantum state can also be viewed as the de
ing procedure at the receiver end of a quantum channel
essary to recover quantum information~e.g., encoded as a
unit vector! @7,8#.

It was recently shown that quantum state estimation w
fidelity close to the optimum is possible when a self-learn
algorithm is used and measurements onN identically pre-
pared qubits are performed successively@9#. Here, we
present, to our knowledge, the first experimental realizat
of a self-learning measurement on an individual quant
system in order to estimate its state. The base of the m
surement is varied in real time during a sequence ofN mea-
surements conditioned on the results of previous meas
ments in this sequence. In addition, we compare
attainable experimental fidelity of this adaptive strategy
quantum state estimation with a strategy where the meas
ment base is randomly chosen. If a self-learning algorithm
employed to estimate a quantum state, then a suitable ta
function ~here, the gain in the expected mean fidelity as
scribed below! is maximized when proceeding from me
surementn21 to n. Under realistic experimental condition
decoherence has to be taken into account. The resulting
purity of the states to be estimated influences different m
surement strategies differently.

Here, the quantum-mechanical two-state system unde
vestigation is theS1/2 ground-state hyperfine doublet wit
total angular momentumF50,1 of a single171Yb1 ion con-
fined in a miniature Paul trap~diameter of 2 mm!. The u0&
[uF50&↔uF51, mF50&[u1& transition with Bohr fre-
quencyv0 is driven by a quasiresonant microwave~mw!
field with angular frequency nearv52p312.6 GHz. The
time evolution of the system is virtually free of decoheren
i.e., transversal and longitudinal relaxation rates are ne
gible @10,11#. However imperfect preparation and detecti
limits the purity of the states. Photon-counting resonan
fluorescence on theS1/2(F51)↔ P1/2(F50) transition
driven by a frequency-doubled Ti:sapphire laser at 369
serves for state selective detection. Optical pumping into
uF51,mF561& levels during a detection period is avoide
when theE vector of the linearly polarized light subtend
©2002 The American Physical Society03-1
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45° with the direction of the applied dc magnetic field. T
light is detuned to the red side of the resonance line by so
20 MHz in order to laser cool the ion. Optical pumping
the ion into the metastable2D3/2 level is prevented by illu-
mination with light at 935 nm of a diode laser that retriev
the ion to the ground state via theuD3/2, F51&→u@3/2#1/2&
excitation. Cooling is achieved by simultaneously irradiati
the ion for 100 ms with light from both laser sources a
with microwave radiation. This is done before each succ
sion of measurements that consists of preparing and mea
ing a qubit stateN times.

In the reference frame rotating withv, after applying the
rotating wave approximation, the time evolution operator
termining the evolution of the qubit exposed to linearly p
larized mw radiation readsU(t)5exp@2(i/2)t(dsz1Vsx)#.
The Rabi frequency is denoted byV andsz,x represent the
usual Pauli matrices. Any pure state can be represented
unit vector in two-dimensional configuration space~Bloch
vector!, uu,f&5cos(u/2)u0&1sin(u/2)eifu1&, and is prepared
by driving the qubit with mw pulses with appropriately ch
sen detuningd[v02v, intensity, and durationtmw5u/V,
and by allowing for free precession for a prescribed timetp
5f/d. Rabi frequency (V53.4732p kHz) and detuning
(d510732p Hz) of the mw radiation are determined b
recording Rabi oscillations over four to eight periods and
performing a Ramsey-type experiment with mw pulses se
rated in time. A measurement in a given direction is p
formed in two steps: First, a suitable unitary transformat
of the qubit is performed effecting a rotation of the desir
measurement axis onto thez axis. Second, the qubit is irra
diated for 2 ms with laser light resonant with theS1/2(F
51)↔P1/2 transition and scattered photons are detecte
stateu1& is occupied.

A self-learning estimation of the prepared qubit state c
sists ofN sequences, each comprising~i! the preparation of
uuprep,fprep&, ~ii ! performing a projective measurement in t
basis (uum,fm&n ,uūm[p2um,f̄m[p1fm&n), and~iii ! us-
ing the result of this (n21)th measurement to determine th
basis of the subsequentnth measurement that maximizes th
gain of the expected mean fidelity@9#. This third step will be
detailed in what follows.

After n21 sequences the density operator represen
the state to be estimated is given by%n21

5*0
pdu sinu*0

2pdfwn21(u,f)uu,f&^u,fu. The normalized
probability density distributionwn21(u,f) is updated after
each measurement using Bayes rule@7#, i.e., if in sequencen
the system is measured in direction (um,fm), the distribu-
tion is modified by the probability for this outcome

wn~u,fuum,fm!5
wn21~u,f!u^um,fmuu,f&u2

pn~um,fm!
, ~1!

where the probabilitypn(um,fm)5^um,fmu%n21uum,fm&
to find the system in direction (um,fm) in the nth measure-
ment ensures correct normalization.

The best estimate of the pure qubit stateuuest,fest&n21 is
obtained by maximizing the fidelity Fn21(u,f)
5^u,fu%n21uu,f&, i.e., Fn21(uest,fest)5Fn21
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[maxFn21(u,f). In order to find the optimal measureme
direction for sequencen, the expectedmean fidelity after
measurementn is maximized as a function of the measur
ment direction. Suppose in thenth measurement the qubit i
found in direction (um,fm). Then

Fn~u,fuum,fm!

5E
0

p

du8sinu8E
0

2p

df8wn~u8,f8uum,fm!

3u^u,fuu8,f8&u2, ~2!

where the expected distributionwn(u8,f8uum,fm) is ob-
tained from Bayes rule@Eq. ~1!#. The optimal fidelity
Fn

opt(um,fm) is obtained by maximizing this function with
respect to (u,f). Measurementn is performed along a spe
cific axis and the qubit might as well be found in the dire
tion (ūm,f̄m). Therefore, the expected mean fidelity aft
the nth measurement is given by the optimized fidelities
each of the two possible outcomes, weighted with the e
mated probability for that outcome:

F̄n~um,fm!5pn~um,fm!Fn
opt~um,fm!

1pn~ ūm,f̄m!Fn
opt~ ūm,f̄m!. ~3!

The optimal measurement direction (um
opt,fm

opt) maximizes
this function.

The direction of the first (n51) measurement is of cours
arbitrary, since noa priori information on the state is avail
able @w0(u,f)51/4p#. The expected mean fidelity in thi
case isF̄152/3, independent of (um,fm)1. After the first
measurement the symmetry of the probability distributi
w1(u,f) is reduced to rotational symmetry around the fi
measurement axis.

The expected mean fidelity now depends only on the re
tive anglea between the second and the first measurem
direction and we findF̄251/21cos(a/22p/4)/A18. Thus,
the optimal second measurement witha5p/2 yields F̄2

opt

51/211/A18. After the second measurement,w2(u,f) is
still symmetric with respect to a plane spanned by the fi
two measurement directions. Again, the optimal measu
ment direction axis is orthogonal to both previous directio
and we obtainF̄3

opt51/211/A12. The optimal directions of
subsequent measurements (n.3) do depend on the outcom
of previous measurements. For an estimation procedure c
prised of N sequences, we have calculated numericallyN

possible successions of directions$(um,fm)n% and pro-
grammed the computer interface that controls the experim
tal parameters to choose the optimum measurement direc
on-line during an estimation procedure. Figure 1 illustrate
succession of measurements that yield an estimate of
initial state uuprep,fprep&5up/4,p/4& employing the self-
learning algorithm. The probability densitywn(u,f) is
shown on the surface of the Bloch sphere and thenth and
optimized@Eq. ~3!# (n11)th measurement directions are i
dicated.
3-2
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The discussion so far is based on the assumption
measurements are performed with perfect efficiency. Thi
obviously not true in a real experiment. In this paragraph
will discuss the influence of experimental imperfections
the quality of state estimation. Since the Rabi frequencyV
and detuningd are determined precisely with an error belo
1%, the deviation of the prepared state and of the meas
ment axis from their anticipated directions is small and
resulting systematic error in the fidelity is negligible com
pared to the statistical error.

If there were no background signals during a detect
period, the observation ofm.0 scattered photons in a sing
measurement would reveal the ion to be in stateu1& with
probability 12p1(0) close to unity.@The probabilityp1(m)
to detectm photons follows a Poissonian distribution wi
mean valuem̄1'5.# However, due to scattering off the io
trap electrodes and windows, some photons will be dete
even if the ion had been prepared in stateu0& @also with a
Poissonian distributionp0(m) with m̄0'0.2#. In order to as-
sign a given number of photon counts in an individual m
surement to the corresponding state of the ion, the thres
s is introduced: The probabilityh1 to detectm>s photons
when photons are scattered off the ion~stateu1&) is given by
h15(m5s

` p1(m). Analogously, h05(m50
s21 p0(m) for state

u0&. The functional relationship betweenh i and s is deter-
mined by the observed photon number distributionspi(m).
Since the detection efficienciesh i,1, both a statistical and a
systematic error are introduced into the measurements
will be shown below.

Using theaverageefficiency h̄[(h01h1)/2 and the ef-
ficiency differenceDh[(h12h0)/2, the probability to find
an ‘‘on’’ event (m>s) is given byP(‘ ‘on’’) 5(2h̄21)P1

1(12h̄)1Dh, and analogouslyP(‘ ‘off’ ’) 5(2h̄21)P0

1(12h̄)2Dh, where Pi5u^ i uC&u2 and uC& is the ion’s
state before irradiation with UV light. This effect of the me
surement can be thought of as the distorting action of a qu

FIG. 1. Probability distributionwn(u,f) on the Bloch sphere
updated by Bayes’ rule, in a typical realization of 12 success
measurements. Darker areas correspond to higher probabi
~scaled individually for each Bloch sphere!; contour lines forwn

50,0.1, . . . aregiven. Thenth and the optimized (n11)-th mea-
surement directions are indicated by the open and the solid ar
respectively. The white circle shows the prepared st
uuprep,fprep&5up/4,p/4&.
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tum channel on the system’s state followed by a perfect m

surement:%→(2h̄21)%1(12h̄)I 1Dhsz . The channel
acts as a depolarizing one characterized by the damping
rameter 12h̄. The error introduced hereby is independent
the choice of the measurement basis and hence statis
Effectively the purity of the state~or equivalently the length
of the Bloch vectoru^sW &u) decreases. The term in the fin
density matrix containingDh systematically shifts the result
ing state along the measurement direction. If an algorit
for state estimation is used that relies on measurement
fixed directions, for example, in thex, y, andz direction, then
the estimated state acquires a component parallel~or anti-
parallel forDh,0) to the direction determined by the vect
sum of the measurement directions. On the other hand, a
rithms using measurement directions distributed over
whole Bloch sphere tend to cancel this error. This can
achieved with both the self-learning and the random al
rithm. For experimental reasons, we implemented only m
surement directions on the upper hemisphere~i.e., um
<p/2) and thus observe this systematic error for all alg
rithms if DhÞ0. Choosing the thresholdsopt such thatDh
50 eliminates this systematic, basis dependent error. Wh
ever an efficiency difference cannot be avoided, any al
rithm can be made more robust against a systematic erro
the state estimation by choosing measurement direct
such that their vector sum is close to zero.

In theory, the procedure of state estimation is independ
of the choice of the initial state. In the experiment, howev
this is only the case in the absence of any systematic sh
We have studied the influence of the bias direction on
performance of different algorithms. To this endDh was
varied by changing the threshold betweens50 and s511
for the estimation of four different prepared states. Each s
was estimated several 100 times after 12 consecutive m
surements for a given value ofDh. Figure 2 shows that the
dependence of the fidelity onDh strongly varies for different
states to be estimated. The curves in Fig. 2 intersect wh
the fidelity is independent of the prepared state. This in

e
ies

ws
e

FIG. 2. Mean fidelity attained withN512 successive measure
ments, optimized by the self-learning algorithm, as a function of
efficiency differenceDh for different prepared states~circles,
u3p/4,p/4&; diamonds, u3p/4,3p/4&; stars, up/4,3p/4&; plus,
up/4,p/4&). Each data point is averaged over 100–200 realizatio
3-3
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section occurs atDh50 as is expected, if the functiona
dependence ofDh on s is correct~determined independentl
using the experimental photon count distributions.! The the-
oretical fidelities to be compared to the experimental o
~see below! are obtained from numerically simulating sta
estimation for 10 000 initial states randomly picked from
uniform distribution.

In addition to the fidelity optimizing adaptive algorithm,
‘‘random’’ one has been implemented for comparison as
Ref. @9#. The random algorithm is realized by employing 2N

FIG. 3. Experimental~filled circles! and theoretical mean fideli
ties. The theoretical values for the self-learning~diamonds! and the
random~stars! algorithm take into account the overall length of th

Bloch vectoru^sW &u ~being 0.74860.021 and 0.73460.021, respec-
tively!. Specifically, for N512 the experimental valueŝF&expt

@(85.060.6)% for the self-learning and (81.960.6)% for the ran-
dom algorithm# are well separated and agree with their respec
values expected from theory@being (85.460.7)% and (81.9
60.7)%, respectively#.
e
ey

G
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randomly generated directions instead of the 2N optimized
directions as described above for the self-learning meas
ment. Figure 3 shows experimental fidelities for the se
learning and the random algorithm together with the resp
tive values expected from theory. The attainable fidelity
limited by experimental imperfections, i.e., by the finite d

tection efficiencyh̄597%, and most notably by the impur
preparation of stateu0& at the beginning of each sequence
measurements (hprep589%). These imperfections reduce th

purity of the state, i.e., the length of the Bloch vectoru^sW &u,
which is accounted for in the theoretical values. Theu^sW &u
values for these algorithms were equal within the given er
bounds, whereas the observed fidelities differ from ea
other by more than five standard errors. A variation in t
Bloch vector length of 1.4%~the difference between th
mean values corresponding to the self-learning and rand
algorithm! would lead to a variation in the achievable fideli
of only 0.5%.

Note that all fidelities given are average values valid
measurement sequences withN53, . . .,12. If instead, the
information ofall sequences~typically N3100) is used for
state estimation, then the experimental fidelity is better th
99%.

The method and results presented are not restricted
particular realization of qubits. When estimating quantu
states affected by decoherence, the advantage of the
learning algorithm is even larger than for pure states.

This work was supported by the Deutsche Forschungs
meinschaft and the Bundesministerium fu¨r Bildung und For-
schung.
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