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A novel two-qubit entangling gate for RF-controlled trapped-ion quantum processors is proposed
theoretically and demonstrated experimentally. The speed of this gate is an order of magnitude
higher than that of previously demonstrated two-qubit entangling gates in static magnetic field
gradients. At the same time, the phase-modulated field driving the gate, dynamically decouples the
qubits from amplitude and frequency noise, increasing the qubits’ coherence time by two orders of
magnitude. The gate requires only a single continuous RF field per qubit, making it well suited
for scaling a quantum processor to large numbers of qubits. Implementing this entangling gate, we
generate the Bell states |Φ+⟩ and |Ψ+⟩ in ≤ 313 µs with fidelities up to 98+2

−3 % in a static magnetic
gradient of only 19.09 T/m. At higher magnetic field gradients, the entangling gate speed can be
further improved to match that of laser-based counterparts.

I. INTRODUCTION

Trapped atomic ions are a physical platform well suited
for quantum information processing [1, 2]. Intense re-
search into this platform has lead to outstanding per-
formance of trapped-ion quantum processors using laser-
controlled ionic qubits [3–6].

Trapped ions controlled by radio frequency (RF) sig-
nals are particularly suited for scaling up quantum com-
puters, since technological challenges associated with us-
ing laser light for coherent control of qubits are avoided
in this laser-free approach [7–11]. With RF-controlled
ions high fidelity single- and two-qubit gates have been
achieved [12–16], as well as low cross-talk suitable for
fault-tolerant quantum computing [17]. Also, com-
plete quantum algorithms were implemented using RF-
controlled ions [18, 19]. So far, however, two-qubit gate
speed has lagged behind its laser-based counterparts [15].
Here, we introduce and experimentally realize a novel
two-qubit entangling gate with gate speed an order of
magnitude faster than previous RF-gates in static mag-
netic field gradients. Another feature of this gate is its
built-in robustness against external noise making addi-
tional dynamical decoupling superfluous. Furthermore,
only a single modulated RF-driving field per ion is re-
quired for its operation, further simplifying the scaling
up of trapped-ion quantum computers.

II. EXPERIMENTAL OVERVIEW

We investigate double dressed state dynamics of a sin-
gle qubit and implement conditional quantum dynamics
with two qubits using 171Yb+ ions trapped in a macro-
scopic linear Paul trap with radial and axial trapping
frequencies of 2π × 380 kHz and ν = 2π × 98.08 kHz,
respectively. The experimental setup is similar to [16]

and only briefly described here. The two qubits are en-
coded in hyperfine states of the electronic ground state
of 171Yb+ ions, |0⟩ ≡ |2S1/2,F = 0,mF = 0⟩ and |1⟩ ≡
|2S1/2,F = 1,mF = −1⟩. A static magnetic field gradi-
ent of 19.09(1) T/m applied along the trap axis (z-axis)
yields individual Zeeman-shifts of the two qubits and re-
sults in individual resonance frequencies near 2π × 12.6

GHz, ω
(1)
0 and ω

(2)
0 , of the magnetic dipole transition be-

tween qubit states. Thus, qubits are individually coher-
ently controlled with low cross-talk using global RF radi-
ation near 2π × 12.6 GHz [17]. The entangling gate pro-
posed and implemented here takes advantage of a state
selective force induced by the static magnetic gradient
field coupling the internal qubit states to the axial vibra-
tional states of the 2-ion crystal [7]. Therefore, when us-
ing magnetic gradient induced coupling (MAGIC), laser
light is not required for implementing conditional gates
with trapped ions.
The ions are cooled close to their motional ground state

in two stages. Initial Doppler cooling is followed by RF
sideband cooling of both present vibrational modes giv-
ing a mean phonon number of 0.6(5) in the center-of-mass
(COM) mode measured with sideband thermometry [20].
The heating rate of one trapped ion in the current exper-
imental setup is 0.19(3) phonons/ms for this mode.
We use an Arbitrary Waveform Generator (AWG) to

generate the phase-modulated RF driving field that dou-
ble dresses both qubits, as in[21–23]. The driving field’s
action on the qubits is described by the Hamiltonian

HD =
∑
j=1,2

Ω
(j,Amp)
1 σ(j)

x (1)

× cos

(
ω
(j)
0 t+

Ω2

Ω
(j,Phase)
1

sin
(
Ω

(j,Phase)
1 t

))

where ω
(j)
0 is the j-th qubit’s transition frequency, σx

is a Pauli matrix, and Ω2 is a parameter quantifying the
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phase modulation amplitude. For this article we set ℏ = 1
while all occurring frequencies are angular frequencies.

Ω
(j,Amp)
1 is the Rabi frequency determined by the RF field

amplitude for qubit j and Ω
(j,Phase)
1 is set as a parameter

to create the second dressing field for the qubits via phase

modulation. For our gate scheme, we choose ΩAmp
1 =

ΩPhase
1 , (optimization over this condition may result in

longer coherence time [24]). To ensure ΩAmp
1 = ΩPhase

1 , a
calibration of RF-amplitudes is carried out by recording
and fitting Rabi oscillations of each individual qubit. The
effect on the entangling gate in case of detuned Rabi
frequencies is investigated in appendix F.

First, in Sec. III, we focus on the effect of the double
dressing field according to Eq. (1) on individual qubits.
Then, we describe the experimental procedure and re-
sults for the entangling gate in Sec. IV.

III. DOUBLE DRESSING OF SINGLE QUBITS

The MAGIC scheme requires a magnetic sensitive
qubit transition, making the qubits therefore suscepti-
ble to decoherence due to magnetic field fluctuations.
We demonstrate experimentally that the double dressing
field acts as continuous dynamical decoupling and im-
proves the coherence time significantly, by suppressing
the effect of addressing frequency fluctuations as well as
amplitude fluctuations of the RF driving field. The idea
of using double dressed states to counter noise has been
established in previous works on nitrogen-vacancy centers
in diamond [23–25]. Here, we extend double dressing to
individual trapped ions, and investigate the coupling of
the qubit resonance to vibrational modes by the phase
modulated driving field.

The double dressed scheme is illustrated for one qubit
in Fig. 1 and is described in appendix A in detail. In
brief, the ionic qubit in a harmonic oscillator potential is
modeled as

H =
ω0

2
σz + νb†b+

ην

2
σz
(
b+ b†

)
. (2)

Here, we include the COM vibrational mode and denote
b as the ladder operator of the motional quanta in the
effective harmonic trapping potential. ν is the motional
mode frequency and η = gIµB(∂zB)ν−3/2/

√
2NmYb is

the effective Lamb-Dicke parameter proportional to the
magnetic field gradient (∂zB) [7]. gI is the effective g-
factor in the electronic ground state of 171Yb+, mYb is
the mass of 171Yb, µB is Bohr’s magneton, and N is
the number of ions in a linear Coulomb crystal. When
turning on the driving field (Eq. (1)), we obtain the
Hamiltonian,

HI =
Ω1

2
Sz+

Ω2

2
Sx cos(Ω1t)+νb

†b− ην
2
Sx

(
b+ b†

)
, (3)

in the rotating frame w.r.t. ω0/2σz. Here, Sx = σz, Sy =
σy, Sz = −σx are the dressed basis operators. Dress-
ing suppresses fluctuations of the bare state energy gap

Ω1 Ω2

δω0

δΩ1

ω0 Ω1 Ω2

Bare Dressed Double-Dressed

|0⟩

|1⟩

Figure 1: Illustration of the emergence of double-dressed states
and the consequent protection against frequency and amplitude
fluctuations. Thin double arrows indicate resonance frequencies.
Thick double arrows indicate Rabi frequencies. The bare qubit is

driven near resonance, ω0 with a time dependent detuning
achieved by phase modulation according to Eq. (1) (left: Bare).
In the dressed state basis (middle: Dressed), the drive with Rabi

frequency Ω1 translates into the energy gap Ω1. Relative
frequency fluctuations δω0 between driving field and qubit are

suppressed in the dressed basis for δω0 ≪ Ω1. The phase
modulation transforms into an effective on-resonance drive in the

dressed basis, creating double dressed states (right:
Double-Dressed). In the double-dressed frame, the effective

second drive translates into the double-dressed states energy gap.
Amplitude fluctuations in the first drive δΩ1 are suppressed in

the double-dressed basis for δΩ1 ≪ Ω2.

δω0 ≪ Ω1 caused by either frequency fluctuations of the
driving field, or by fluctuations of magnetically sensi-
tive bare qubit states. Phase modulation of the dress-
ing field, in addition, suppresses fluctuations in the am-
plitude of Ω1: Phase modulation creates, in an appro-
priate rotating frame, an effective on-resonance second
drive in the dressed basis. This second drive dresses
the qubit a second time, and thus dynamically decou-
ples amplitude noise fluctuations in the drive δΩ1, which
would otherwise reduce the coherence time of the dressed
qubit. These fluctuations are suppressed as long as
δΩ1 ≪ Ω2. Furthermore, undesired coupling of the qubit
to the motional state, which leads to a decay in the
Rabi oscillations, is suppressed as long as Ω2 ≫ ην and
|Ω1 − ν| ≪ Ω2 ≪ |Ω1 + ν| (see appendix A for a detailed
description).

A. Extending the coherence time

The impact of the phase modulated dressing field on
a qubit’s coherence time is shown in Fig. 2. We study
the relaxation of a single qubit initialized in state |0⟩,
while the phase-modulated driving field given in Eq. (1)
is continuously applied. Note, that this is an equal super-
position state in the dressed basis, therefore, by fitting
the decay of the oscillations’ contrast to an exponen-
tial decay we can extract the coherence time T2,ρ of the
dressed state. For Ω2/Ω1 = 0.75, used for the entangling
gate mechanism, we observe two orders of magnitude im-
provement in T2,ρ, up to 0.27(2) s. The reduced coher-
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Figure 2: Relaxation time T2,ρ of a single qubit as a function of
the modulation depth Ω2/Ω1. The qubit is initialized in state |0⟩,

which is a superposition state in the dressed state basis. The
phase-modulated driving field is continuously applied and the

coherence time T2,ρ is extracted from a exponential decay of the
Rabi fringe contrast. At a modulation depth Ω2/Ω1 ≈ 0.75, the

relaxation time is enhanced by two orders of magnitude compared
to the scenario without second dressing field.

ence time for Ω2/Ω1 ≈ 1 is either explained by second-
order fluctuations of δΩ2 [23] or by the quantum stark
shift induced by the counter rotating terms.

B. Coupling to the motional degrees-of-freedom

The interaction between the qubits’ internal state
is mediated via the ions’ common vibrational motion.
Therefore, we investigate the qubit-phonon coupling, first
with a single ion. We do this by probing a qubit’s coher-
ence in a Ramsey-type experiment. An initial resonant
π/2-pulse prepares the qubit in the eigenstate |+⟩ of the
driving field. Then the phase-modulated driving field is
applied creating an initial spin-lock condition. A final
π/2-pulse with variable phase projects the state vector
into the z−basis, creating Ramsey fringes. Since the
phase-modulated driving field is continuously applied,
the state vector experiences continuous Rabi oscillations,
traversing the Bloch sphere. Therefore, to map the co-
herence, we aim to apply the second Ramsey pulse while
the state vector is in a coherent superposition on the
Bloch sphere equator. We confirm the required evolu-
tion time by a projective measurement along the z−axis
to ensure the Bloch vector being located in the equato-
rial plane of the Bloch sphere prior to Ramsey readout.
Fig. 3 depicts the Ramsey fringe contrast measured as
outlined above, for multiple steps in time up to the ap-
proximate entangling gate time of 300 µs, at Ω1 = 2π×
94.8 kHz and Ω1 = 2π× 61 kHz, respectively. In both
cases, Ω2/Ω1 = 0.75. At Ω1 = 2π× 94.8 kHz, close to the
axial trap frequency, significant qubit-phonon entangle-
ment at about 150 µs occurs, indicated by the reduction
of the qubit’s internal coherence.

Figure 3: Entanglement and disentanglement of qubit states and
motional states of a single ion by application of a phase

modulated field (Eq.(1)) for the duration of a two-qubit gate. For
Rabi frequency Ω1 = 2π × 94.8kHz, close to the secular trap
frequency, entanglement is signified by a maximal reduction of
Ramsey fringe contrast at t = 150µs, which corresponds to

approximately half the two-qubit gate time. At t = 300µs, qubit
and motion are disentangled again, signified by a recovery of the

fringe contrast. For Rabi frequency Ω1 = 2π × 61.0kHz,
qubit-phonon coupling, and, therefore, qubit-phonon

entanglement is smaller, resulting in a smaller reduction of fringe
contrast halfway through the gate. The dotted lines are added to

guide the eye.

We see in Fig. 3 the recovery of the Ramsey fringe con-
trast after the full duration of the entangling gate’s time
(≈ 300µs). At this time, the ion’s internal qubit states
are disentangled again from the vibrational motion. This
is the desired condition after an entangling gate has been
completed, as described in Sec. IV. For comparison, at
Ω1 = 2π×61 kHz where the ion-phonon coupling is weak,
a smaller reduction of the fringe contrast in Fig. 3 occurs.

IV. TWO-QUBIT ENTANGLING GATE

A. Experimental procedure

The qubits are first optically pumped into the state
|00⟩. Subsequently, they are both initialized in the super-
position state |++⟩ by applying a resonant π/2-pulse to
each of the qubits. Then, the phase-modulated driv-
ing field (Eq. (1)) is applied to both qubits for du-
ration t with Rabi frequency Ω1 set close to the COM
mode frequency, ν. The difference ϵ between ν and Ω1

is determined by the effective Lamb-Dicke parameter, η
and by ν as detailed in Sec. IVC, Eq. (10). Here,
we use Ω1 = 2π × 94.8 kHz to fulfill this condition.
Ω2, characterizing the phase modulation depth, is set
to Ω2 = 2π × 71 kHz, for double dressing and protect-
ing the qubit’s coherence against RF amplitude fluctu-
ations. For a chosen Ω1, the value of Ω2 is given by
assumptions described in Sec. IVC and guided by nu-
merical simulations, searching for the minimal residual
excitation of the ions’ motion. To reconstruct the den-
sity matrix ρ, after application of the gate, tomography
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of the two- qubit state is carried out. For this purpose,
the sequence of initial state preparation, subsequent two-
qubit entangling gate, and measurement is repeated M
times (200 < M < 600). After preparation of the en-
tangled state, in order to effectively measure in different
bare state bases, different sets of local single-qubit rota-
tions are applied before a projective measurement in the
z−basis takes place [26] (for details see appendix C).

B. Experimental results

A full reconstruction of the two qubit density matrix
allows calculating the purity P = tr(ρ2) as well as the
negativity N of the quantum state as basis-independent
measures. Here, the purity of a state indicates the en-
tanglement between the qubits and their state of mo-
tion. For qubit and motional states that are perfectly
disentangled at the end of the gate as desired, the pu-
rity of the state is unity, while deviations from unity
are attributed to residual entanglement with phonons.
For a maximally entangled state (such as a Bell state

|Φ+⟩ = (|00⟩ + |11⟩)/
√
2 and |Ψ+⟩ = (|01⟩ + |10⟩)/

√
2)

the negativity is 0.5. The evolution of negativity from
zero (the unentangled 2-qubit state) towards the value of
0.5 (that indicates a maximally entangled state) reaching
the experimental maximum of 0.48+2

−6, is shown in Fig. 4.
The statistical error of the negativity is calculated as

standard error of a set of numerically sampled density
matrices. Here, we assume the entries of the recon-
structed density matrix to be the mean value of a nor-
mal distribution with the width of the standard error
assigned during the reconstruction (see appendix D for
details). Due to this reconstruction, the error interval
might exceed physical limits. In this case, we truncate
the statistical error bars of physical quantities. Similarly,
we truncate the error interval of fidelity and purity val-
ues which are based on Gaussian propagation of normal
distributions.

An oscillation in the state’s purity between ≈ 0.6 and
1.0 is evident in Fig. 4. This is due to varying qubit-
phonon entanglement during the gate evolution time.
This oscillation is a direct indication of the phase space
trajectory generated by the gate, where at half the gate
time, the purity is minimal and at the gate time, the pu-
rity is recovered (compare also Fig. 3). This indicates
that one closed loop in phase space during the evolution
of the gate has been completed, realizing the fastest pos-
sible two-qubit gate for the parameter set used here.

Based on the time evolution measurements of the
product-state excitation probability in the bare state ba-
sis (see appendix E), we select a gate time where the
product state excitation probability matches the Bell
state |Φ+⟩, i.e. P|00⟩ = P|11⟩ = 0.5 and P|01⟩ = P|10⟩ = 0,

or the Bell state |Ψ+⟩, i.e. P|00⟩ = P|11⟩ = 0 and
P|01⟩ = P|10⟩ = 0.5. The gate time for generating a the

Bell state |Φ+⟩ is texpg = 313 µs, while the Bell state |Ψ+⟩
is generated after time (texpg = 310 µs). Fig. 5 shows the

Figure 4: Time evolution of the two-qubit entangling gate
quantified by the two-qubit state’s negativity and purity,

calculated from a full state reconstruction at interaction times t.
Throughout the gate evolution, the negativity increases to 0.48+2

−6
at time t = 313 µs. This evolution time creates the Bell state

explicitly shown in Fig. 5. The oscillation between purity of ≈ 0.6
and 1.0 indicates varying qubit-phonon entanglement during the
gate evolution signifying no entanglement between qubits and
motional states at the beginning and end of the gate sequence.

Here the achieved pururity at the gate time t = 313 µs is 0.99+1
−3 .

Based on Eq. (1), the gate evolution is simulated using
Ω1 = 2π × 94.8 kHz, Ω2 = 2π × 71 kHz, and a trap frequency of

ν = 2π × 98.08 kHz yielding the gate time tsimg = 309.5 µs.

reconstructed density matrices, corrected for state detec-
tion errors (details are given in appendix B).
For texpg = 313 µs, we report measurement outcomes of

N = 0.48+2
−6 and P = 0.99+1

−3. Once the density matrix is
reconstructed, numerically an optimal set of single qubit
rotations is computed to rotate the entangled state into
a desired Bell state. While the entangling gate’s param-
eters are chosen such that the produced state is close to
|ψ⟩ = |Φ+⟩ (|Ψ+⟩), these numerical single-qubit rotations
are applied to infer the resulting state fidelity as

F = max
α1,β1,γ1,α2,β2,γ2

⟨ψ|R†
1R

†
2ρR1R2|ψ⟩ (4)

where Rj(αj , βj , γj) represents the rotation of qubit j

around the angles αj , βj , and γj . A fidelity of F = 98+2
−3 %

w.r.t a maximally entangled |Φ+⟩ Bell state is achieved
(see appendix D). For a gate time of texpg = 310 µs, we

reportN = 0.47+3
−6 and P = 0.98+2

−3, and F = 97+3
−3 % w.r.t

a maximally entangled |Ψ+⟩ Bell state. Both Bell states
can be selectively generated by choosing appropriate gate
times.

C. Gate description

The idea to use double-dressed states for two-qubit
gates was first proposed in [27]. Our gate extends that
scheme using the phase modulation as an effective second
drive, making it robust to amplitude fluctuations. The
gate operation can be readily understood in terms of its
optical counterparts [1, 28, 29]. Let us observe Eq. (3)
with Ω2 = 0. The Hamiltonian is similar to the Cirac-
Zoller interaction Hamiltonian [1], where Ω1 replaces the
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(a) (b)

(c) (d)

Figure 5: Reconstructed density matrices of entangled two-qubit
states close to |Φ+⟩ = (|00⟩+ |11⟩)/

√
2 (a, b) and

|Ψ+⟩ = (|01⟩+ |10⟩)/
√
2 (c,d), using the phase modulated driving

field for an interaction time of 310 µs and 313 µs, respectively.
The resulting states close to |Φ+⟩ and |Ψ+⟩ show a negativity of
0.48+2

−6 and 0.47+3
−6, and a purity value of 0.99+1

−3 and 0.98+2
−3,

respectively. The reconstructed density matrices result from 200
measurements in each basis.

detuning of the laser drive frequency from the optical
transition (e.g. qubit) frequency and where the carrier
transition is eliminated. Therefore, in an analogous way,
we can implement an entangling interaction by choosing
Ω1 to be close to the motional sidebands. The effective
second drive is then used to decouple the motional mode
dependent frequency shift turning the interaction into a
Mølmer-Sørensen-type gate.

The entangling gate can be explained by starting from
the two-qubit Hamiltonian [7],

H =
∑
j=1,2

ω
(j)
0

2
σ(j)
z + νb†b+

ην

2
σ(j)
z

(
b+ b†

)
, (5)

where the stretch mode is neglected as the coupling to
stretch mode is smaller, and it is far detuned.

Both ions are driven with a phase-modulated drive de-
scribed by the Hamiltonian given in Eq. (1), where we

set ΩAmp
1 = ΩPhase

1 = Ω1 for both qubits. Following
similar transformations as for the one qubit interaction
(see appendix A), we arrive at the double dressed state
Hamiltonian

HII =
∑
j=1,2

Ω2

4
F (j)
z (6)

− ην

2

(
F (j)
z cos(Ω1t)− F (j)

y sin(Ω1t)
) (
be−iνt + b†eiνt

)
.

Here, we define the double-dressed basis operators Fz =
Sx, Fy = Sy, Fz = −Sz, and we assume the rotating
wave approximation (RWA) like in the single-qubit in-
teraction. Denoting Ω1 = ν− ϵ, the term proportional to

F
(j)
y in Eq. (6) is negligible, assuming that |ϵ± Ω2

2 | ≫ ην
2 ,

|Ω1 + ν − Ω2

2 | ≫ ην
2 , and |ϵ| ≪ Ω1 + ν. The interaction

is simplified to

HII =
∑
j=1,2

Ω
(j)
2

4
F (j)
z − ην

4
F (j)
z

(
be−iϵt + b†eiϵt

)
(7)

which is a Mølmer-Sørensen-like Hamiltonian, that cre-
ates the effective interaction

Heff = − (ην)
2

8ϵ
F (1)
z F (2)

z , (8)

at times ϵt = 2πn for non-zero integer n [28, 29]. There-
fore, a maximally entangled state can be achieved by
initializing the qubits in the x−basis (an equal super-
position state) and turning on the phase modulated drive
for times

(ην)
2

8ϵ
t =

π

4
+
πk

2
, (9)

where k is an integer. The shortest gate is achieved for
k = 0, n = 1 which results in

ϵ = ην, tg =
2π

ην
. (10)

For the present axial trap frequency and static magnetic
gradient, this analytical gate time of 309.8 µs matches
well the experimental observed one. With the simu-
lated gate time of 309.5 µs, corresponding to the time
when phonon entanglement is minimized, we expect a
unitary gate fidelity of 99.3 %. The residual infidelity is
attributed to the quantum stark shift remaining in the
double dressed basis, which is on the order of (ην)2/4Ω2.
Therefore, the infidelity scales as (πην/2Ω2)

2 ∼ 0.7% .
By parameter optimization or pulse shaping methods this
can be further reduced. The remaining infidelity in the
measured entangling gates is explained by the effect of
phonon heating.

V. CONCLUSION

The best entangling gate reported for RF-controlled
ions [15], although high in fidelity, is still an order of
magnitude slower (740 µs) than its optical counterparts.
In this work, we lay the theoretical and experimental

framework for implementing RF driven double dressed
state entangling gates with further increasing gate speed.
Using this novel gate scheme, we create the Bell states
|Φ+⟩ and |Ψ+⟩ simply by choosing the appropriate in-
teraction time of qubits with a phase-modulated driving
field. Using this novel gate, fidelities up to 98+2

−3 % with
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gate time of ≤ 313 µs were achieved, using readily avail-
able experimental parameters.

The qubits are double dressed by a single phase-
modulated RF field which acts as continuous dynamical
decoupling driving the entangling operation, and at the
same time, protects the qubits’ coherence. Thus, this
gate is intrinsically robust against RF field amplitude
fluctuations, as well as magnetic field fluctuations that
otherwise would adversely affect magnetically sensitive
hyperfine-qubits.

The experiments described here were carried out in
a macroscopic linear Paul-trap using a relatively small
magnetic field gradient (19 T/m), secular trap frequency
(2π× 98 kHz) and Rabi frequency (2π× 95 kHz). Cryo-
genic surface traps with integrated permanent magnets
will allow for enhanced magnetic field gradients up to
120 T/m. This will allow for even faster gates down to
gate times of 50 µs. At similar heating rates and trap
frequencies ν, we expect the infidelity to decrease propor-
tionally to the gate time. This will lead to an improve-
ment in fidelity up to 99.6 %. Based on our simulations,
we conclude that the two limiting factors of the gate fi-
delity are (i) the unitary infidelity which can be improved
by about an order of magnitude using pulse shaping and
(ii) the heating of the motional quanta during gate exe-
cution. The large ion-surface distance of d = 130 µm in
these novel cryogenic traps is favorable, since motional
heating scales as ˙̄n ∝ d−3.79 and ˙̄n ∝ ν−2.13[30]. This
will be advantageous for high gate fidelity.

We note that RF driven Mølmer-Sørensen-type gates
with a gate time comparable to the results achieved in
this work have recently been reported in [31].
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Appendix A: Double dressed state of a single Qubit

We consider a single ion trapped in a harmonic po-
tential. The Hamiltonian that describes two hyperfine
states, given that the ion is subjected to a linear mag-
netic field gradient, is [7]

H =
ω0

2
σz + νb†b+

ην

2
σz
(
b+ b†

)
, (A1)

where ω0 is the transition frequency between the two hy-
perfine states, ν is the motional mode frequency, η is the
effective Lamb-Dicke parameter, σi is the Pauli matrix

in the i-th direction (i = x, y, z) and b/b† is the lower-
ing/raising operator of the motional quanta.
We drive the ion near-resonance with a phase modu-

lated field such that

HD = Ω1σx cos

(
ω0t+

Ω2

Ω1
sin (Ω1t)

)
, (A2)

where Ω1 is the Rabi frequency of the RF drive and Ω2

is a parameter quantifying the phase modulation ampli-
tude.
The total Hamiltonian, H+HD, in the rotating frame

w.r.t. H0 = ω0

2 σz +
Ω2

2 σz cos(Ω1t), can be written as

HI ≈ Ω1

2
σx − Ω2

2
σz cos(Ω1t) + νb†b+

ην

2
σz
(
b+ b†

)
,

(A3)
where we made the RWA assuming Ω1 ≪ 2ω0 and Ω2 ≪
Ω1.
We define the dressed basis operators by the canoni-

cal transformation Sx = σz, Sy = σy, Sz = −σx. The
Hamiltonian in Eq. (A3) then takes the form,

HI =
Ω1

2
Sz +

Ω2

2
Sx cos(Ω1t) + νb†b− ην

2
Sx

(
b+ b†

)
.

(A4)
As in other continuous dynamical decoupling schemes,
DC noise components perpendicular to the dressed en-
ergy gap are suppressed as long as they are much smaller
than Ω1. Specifically, magnetic field noise that causes
a shift of the bare energy gap ω0 → ω0 + δω0 is sup-
pressed when δω0 ≪ Ω1. Similarly, time dependent noise
is suppressed, if the power spectral density of the noise
at frequency Ω1 is small. We also note that the specific
choice of phase modulation in Eq. (A2) translates into an
on-resonance drive on the dressed qubit in the rotating
frame (Eq. (A4)).
Moving into a second rotating frameH1 = Ω1

2 Sz+νb
†b,

Eq. (A4) transforms to

HII ≈ Ω2

4
Sx−

ην

2

(
S+e

iΩ1t + S−e
−iΩ1t

) (
be−iνt + b†eiνt

)
,

(A5)
where we made the RWA assuming Ω2 ≪ 4Ω1.
We define the double dressed states operators by the

transformation Fz = Sx, Fy = Sy, Fx = −Sz. Con-
sequently, the Hamiltonian in Eq. (A5) can be written
as

HII =
Ω2

4
Fz (A6)

− ην

2
(Fz cos(Ω1t)− Fy sin(Ω1t))

(
be−iνt + b†eiνt

)
.

The effective second drive in Eq. (A4) translates into a
second dressed energy gap in the double rotating frame
(Eq. (A6)). This suppresses noise sources perpendicu-
lar to the double dressed energy gap that survive in the
rotating frame, Eq. (A4). Specifically, amplitude fluctu-
ations in the drive, Ω1 → Ω1+δΩ1 will cause the dressed
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energy gap to fluctuate, reducing the coherence time of
the dressed qubit. These will be suppressed as long as
Ω2 ≫ δΩ1.

Another noise source arises from the coupling of the
internal qubit states to the motional states. To unfold
this statement, we first take Ω2 = 0, which describes a
Rabi experiment. Then Eq. (A5) describes the undesired
coupling to the motional states in the dressed basis. As-
suming that Ω1+ ν ≫ ην, the interaction can be written
as

HII ≈ −ην
2

(
S+be

−i(ν−Ω1)t + S−b
†ei(ν−Ω1)t

)
. (A7)

The Hamiltonian in Eq. (A7) creates an effective shift
on the dressed basis that depends on the motional state
of the ion. In the limit ην ≪ |ν−Ω1| it can be described
by [32]

Hqss = − (ην)
2

2 (ν − Ω1)
Szb

†b. (A8)

Therefore, if the motional state is far from the motional
ground state we will observe a decay in the Rabi oscilla-
tions due to this state dependent frequency shift.

The effective second drive decouples this interaction
as well when Ω2 ≫ ην and as long as |Ω1 − ν| ≪ Ω2 ≪
Ω1+ν. In the laser-free trapped ion setting, using a static
magnetic field gradient, this allows to counter further
decoherence induced by the motional states.

Appendix B: Detection correction

The qubit readout is realized by collecting resonance
fluorescence using a global laser beam close to 369 nm.
The fluorescence of each ion is imaged onto an EMCCD
camera, producing a spatially resolved image of the ion
chain. Using a two-threshold method to analyze the
collected fluorescence, we distinguish the qubit’s logical
states |0⟩ and |1⟩ [33]. For the experiments reported here,
the product state probabilities Pi, i = 1, 2, 3, 4 of the
computational basis states {1 : |00⟩ , 2 : |01⟩ , 3 : |10⟩ , 4 :
|11⟩} need to be reconstructed. Due to imperfect spatial
separation of the ions’ fluorescence, the readout may be
assigned wrongly. To account for this detection error, we
carry out a correction of the detected excitation proba-
bilities of the product states. To this end, we prepare
all possible computational basis states by first optically
pumping into state |00⟩, then applying a Rapid Adiabatic
Passage (RAP)[34] pulse, specific for the state to prepare,
and finally read out the ions’ internal state. In this way,
the probabilities of wrong assignments of readouts can
be inferred. Here, P1, P2, P3 and P4 are the excitation
probabilities of state |00⟩,|01⟩,|10⟩, and |11⟩ respectively.
P̃ is the measured excitation probability assigned using
the double threshold detection. The state vector

P⃗ = (P1, P2, P3, P4) , (B1)

therefore, describes the excitation probability of all com-
putational basis states. A linear map, M between the

real probability vector P⃗ and the apparent probability
⃗̃
P = MP⃗ can be found. Here, M is a real-valued 4 × 4
matrix, and the elements ofM are given by the measured

probabilities i.e Mji = P̃i. This linear map, therefore,
contains all possible wrong assignments. Applying the

inverse matrix P⃗ =M−1 allows for reconstructing the ex-
citation probabilities of the ions’ state, compensating for

detection errors: P⃗ =M−1 ⃗̃P . For the two-qubit system,
we show as an example the corresponding detection ma-
trix in Fig. 6. Assuming that all statistical errors follow
a normal distribution, the error of the readout correction
can be propagated following the descriptions in [35]. The
standard deviation of the inverse matrix’s elements is

σ2
M−1

αβ

=
∑
i,j

(
M−1

αi σMij
M−1

jβ

)2
. (B2)

Using Gaussian error propagation, the standard errors of
the reconstructed state is

σ2
Pi

=
∑
j

(
M−1

ij σP̃j

)2
+
∑
j

(
P̃jσM−1

ij

)2
. (B3)

Since the correction of readout error is not guaranteed
to be unitary, using this correction for detection errors
might result in nonphysical probabilities exceeding the
interval [0, 1]. In further analysis, we therefore truncate
nonphysical quantities. For the |Ψ+⟩(|Φ+⟩) Bell state,
the reconstructed density matrix has one negative eigen-
value of -0.04(-0.05).

Appendix C: Tomography

The density matrix of a quantum state can be ex-
panded into a superposition of mutually orthogonal basis
operators Ai,

ρ =

15∑
i=1

λiAi, (C1)

where the coefficients λi are the expectation values of the
operators shown in Tab. I. Following [36], we reconstruct
the density matrix for a two-qubit system by measuring
the expectation values ⟨σi ⊗ σj⟩, i, j = 0, 1, 2, 3, where σi
runs over the set of Pauli matrices 1, σx, σy, σz. In the
experiment described here, only the σz eigenvalue can be
measured directly by a projective measurement detecting
resonance fluorescence near 369 nm. Therefore, in the
two-qubit system investigated here, we can only directly
measure the observables

O1 = σz ⊗ 1 (C2)

O2 = 1⊗ σz (C3)

O3 = σz ⊗ σz (C4)
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Figure 6: Determining the detection matrix M . (a) The matrix
entries are conditional probabilities measured for computational

basis states. (b) The standard error of the matrix in (a) is
calculated according to Eq. (B3)

The corresponding expectation values are calculated us-
ing the experimental probabilities as,

λ
(k)
1 = P|00⟩ + P|01⟩ − P|10⟩ − P|11⟩ = ⟨σz ⊗ 1⟩ (C5)

λ
(k)
2 = P|00⟩ − P|01⟩ + P|10⟩ − P|11⟩ = ⟨1⊗ σz⟩ (C6)

λ
(k)
3 = P|00⟩ − P|01⟩ − P|10⟩ + P|11⟩ = ⟨σz ⊗ σz⟩. (C7)

Measuring the expectation values of σx and σyis real-
ized by mapping the quantum state onto the eigenvector
of σz, by applying single qubit rotations R(θ, ϕ). We ap-
ply nine different sets of qubit rotations, shown in Tab.

I, to extract all 16 expectation values. λ
(k)
i , is the expec-

tation value of the observable Oi after the qubit rotation
(k), shown in the k-th row of Tab. I, is applied. The
reconstructed density matrix then is given by

ρ =
1

4
(λ

(1)
1 · σz ⊗ 1+ λ

(1)
2 · 1⊗ σz + λ

(1)
3 · σz ⊗ σz

+ λ
(2)
1 · σx ⊗ 1+ λ

(2)
3 · σx ⊗ σz

+ λ
(3)
1 · σy ⊗ σz + λ

(3)
3 · σy ⊗ σz

+ λ
(4)
2 · 1⊗ σx + λ

(4)
3 · σz ⊗ σx

+ λ
(5)
2 · 1⊗ σy + λ

(5)
3 · σz ⊗ σy

+ λ
(6)
3 · σx ⊗ σx

+ λ
(7)
3 · σx ⊗ σy

+ λ
(8)
3 · σy ⊗ σx

+ λ
(9)
3 · σy ⊗ σy).

k Ion 1 Ion 2 Exp. values

1 - - ⟨σz ⊗ 1⟩ ⟨1⊗ σz⟩ ⟨σz ⊗ σz⟩
2 3π/2 - ⟨σx ⊗ 1⟩ - ⟨σx ⊗ σz⟩
3 π - ⟨σy ⊗ 1⟩ - ⟨σy ⊗ σz⟩
4 - 3π/2 - ⟨σx ⊗ 1⟩ ⟨σz ⊗ σx⟩
5 - π - ⟨σy ⊗ 1⟩ ⟨σz ⊗ σy⟩
6 3π/2 3π/2 - - ⟨σx ⊗ σx⟩
7 3π/2 π - - ⟨σx ⊗ σy⟩
8 π 3π/2 - - ⟨σy ⊗ σx⟩
9 π π - - ⟨σy ⊗ σy⟩

Table I: The density matrix of a two-qubit system is reconstructed
by mapping the quantum state to the σz basis. This is realized

applying either one of the transformations k, which correspond to
single-qubit rotations R(π/2, ϕ). Subsequently, the state is read

out in the σz basis to reconstruct expectation values.

Assuming standard errors and using Gaussian error
propagation, the variance of the real and imaginary parts
of ρ are obtained.

Appendix D: Negativity

In this work, we use negativity N to quantify the de-
gree of entanglement. N is a state-indepedent measure
of entanglement, which is defined as the absolute value
of the sum of the negative eigenvalues of ρΓA [37]. Here,
ρΓA is the partial transpose of the two-qubit density ma-
trix with respect to the subset of the first qubit. For
a maximally entangled state, the negativity is equal to
0.5. The measure is meaningful, since a mixed two-qubit
state is entangled if and only if its partial transpose has
a negative eigenvalue. The statistical error of this mea-
sure is calculated by generating a set of density matrices
based on a Gaussian probability distribution using the
entries of the measured density matrix as mean and the
statistical error as width of the distribution (see Fig. 7).
Sampling the negativity of all generated density matri-
ces, give the standard deviation of the measured density
matrix.

Appendix E: Gate evolution in the computational
basis

To investigate the full gate evolution in terms of the
excitation probability in bare state basis, we apply a res-
onant π/2-pulse to both ions, bringing them into a su-
perposition state. Then, the phase modulated driving
field interacts with the ions for time t. Fig. 8 shows
the two-qubit product state excitation probabilities P|ij⟩
(i, j denote qubit states.) The left column presents the
initial stage of the time evolution, while the right col-
umn presents the time evolution around the entangling
gate time. The experimental results are overlapped with
simulation results agreeing well with the experimental
results by using the parameters ν = 2π × 97.85 kHz,
Ω1 = 2π × 94.83 kHz, and Ω2 = 23 × ην for the simu-
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(a) (b)

Figure 7: Numerically obtained probability distribution of the
negativity for the |Φ+⟩ (a) and |Ψ+⟩ (b) Bell state. The

histogram is synthesized by sampling a set of density matrices
based on a Gaussian probability distribution using the entries of
the measured density matrix as mean and the statistical error as
width of the distribution. The orange line shows the mean of the
probability distribution, and the yellow line indicates the directly
calculated value of the original measured density matrix. The
dashed line shows the optimal value for a pure, maximally

entangled state.

lation. The dashed blue (orange) vertical line illustrates
the selected gate time at which the excitation probability
matches the |Φ+⟩ (|Ψ+⟩) Bell state.

Appendix F: Gate robustness

In a double dressed frame, addressing errors occur due
to detunings δΩ1 of the dressed states energy gap and the
second driving field’s frequency Ω1. In addition, the gate

scheme requires a well-calibrated Rabi frequency ΩAmp
1 ,

matching the chosen parameter ΩPhase
1 , explained in Eq.

(1). Experimentally, we investigate the robustness of the
double dressed entangling gate against symmetric (asym-

metric) detunings δ1 (δ2) of ΩAmp
1 w.r.t. ν − ϵ by mea-

suring the entangled state negativity at a gate time of
313 µs with ΩPhase

1 = 2π × 94.8 kHz. Fig. 9(a) shows
the effect of a mismatch δ1 between the physical Rabi

frequency ΩAmp
1 for both ions and the phase modulation

frequency ΩPhase
1 ( δ1 = ΩPhase

1 −ΩAmp
1 ). Fig. 9(b) shows

the impact of a mismatch of the physical Rabi frequen-

cies between the two ions (δ2 = ΩAmp,1
1 −ΩAmp,2

1 ), while

ΩAmp,1
1 = ΩPhase

1 holds. For δ1 ≈ 3 % and δ2 ≈ 8 %
of ΩPhase

1 , the measured negativity stays above 80 % of
the optimal negativity, showing the robustness of the en-
tangling gate against such mismatches of the RF field
amplitude. Similar results were observed for direct im-
plemented MS gates in [38], quantified in terms of fidelity.
For small detunings, as typically occur in experiments, a
quadratic dependence between negativity and detuning is
observed, showing the stability against small detunings.
The robustness of the gate, made it possible to scan a
wide range of δ1,2, exceeding typical uncertainties during
the experiments by two orders of magnitude.

Figure 8: The gate’s time evolution is measured in terms of the
excitation probability in the bare state basis. The ions are

initialized in the eigenstate of the dressed basis and the gate field
is applied for duration t Then, the ions’ states are detected. Each

data point represents the result of 100 repetitions of the
experiment. The orange line indicates the gate time used to

implement the entangling gates for the Bell state |Ψ+⟩, and the
blue dashed line marks the gate time for the Bell state |Φ+⟩. The

solid black line shows the simulated gate evolution, using
parameters that best match the experimental data:

ν = 2π × 97.85 kHz, Ω1 = 2π × 94.83 kHz, and Ω2 = 23× ην.
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(a) (b)

Figure 9: Negativity of the two qubit state at the gate time
depending on the symmetric (asymmetric) detuning δ1 (δ2) in the

dressed state basis indicating the gate’s robustness. (a)

δ1 = ΩPhase
1 − ΩAmp

1 symmetric for both ions. (b)

δ2 = ΩAmp,1
1 − ΩAmp,2

1 while ΩAmp,1
1 = ΩPhase

1 = 2π×94.8 kHz.
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