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Adiabatic quantum simulation with a segmented ion trap: Application
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We investigate theoretically systems of ions in segmented linear Paul traps for the quantum simulation of
quantum spin models with tunable interactions. The scheme is entirely general and can be applied to the realization
of arbitrary spin-spin interactions. As a specific application we discuss in detail the quantum simulation of models
that exhibit long-distance entanglement in the ground state. We show how tailoring of the axial trapping potential
allows for generating spin-spin coupling patterns that are suitable to create long-distance entanglement. We
discuss how suitable sequences of microwave pulses can implement Trotter expansions and realize various kinds
of effective spin-spin interactions. The corresponding Hamiltonians can be varied on adjustable time scales,
thereby allowing the controlled adiabatic preparation of their ground states.
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I. INTRODUCTION

Entanglement is a central resource for quantum technologi-
cal applications [1,2]. Great effort has been devoted to the gen-
eration and distribution of entanglement between nondirectly
interacting systems, which can be either nodes of a quantum
internet or distant elements inside a quantum computer [3–13].
Particularly intriguing in this context is the prediction that
certain spin models are naturally endowed with peculiar
entanglement properties in their ground state which could be
profitable for quantum communication purposes, for example,
between different spatial regions within a quantum processor.
Specifically, the concept of long-distance entanglement (LDE)
has been introduced and discussed in order to identify the
occurrence of sizable nonlocal quantum correlations between
distant, nondirectly interacting spins in quantum spin chains
and networks [8–14]. This phenomenon emerges in models
with nondegenerate ground states, when the end spins (spins
at the boundary of the system) interact weakly with their
immediate neighbors, such that a strongly correlated bulk
mediates effective interactions between the distant, nondirectly
interacting, end spins. In this work we discuss the feasibility of
schemes for the experimental observation of this effect using
trapped ions as quantum simulators of quantum spin models.

Trapped ions are highly versatile systems which have been
proven to be effective in quantum technological applications.
The simulation of quantum models of strongly interacting
quantum matter using trapped ions holds promise for the
investigation of those quantum dynamics that remain so far
unexplored due their inescapable complexity [15,16]. Indeed,
the natural many-body dynamics of trapped atoms is very rich
and interesting by itself; on the other hand, in the present work
we will be mainly concerned with the subtle and intriguing
task of realizing models that are not directly provided by the
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natural, i.e., nonengineered, physics of trapped ions. Although
spin interactions emerge quite naturally in ion chain systems,
engineering and control of a desired complex Hamiltonian can
be a challenging task with high payoff. Spectacular proof of
principle experimental demonstrations [17–20] have shown the
potential of trapped ion based quantum simulators. However,
so far none of these experiments has explored the ground state
of spin models that are expected to exhibit highly nonclassical
properties. Here, we propose to implement spin-Hamiltonians
with trapped ions taking advantage of the following features:
(i) shaping of the trapping potentials in order to suppress the
effect of long-range interactions, (ii) well controlled adiabatic
processes driving the system to the ground state, and (iii)
implementation of Trotterization (Trotter expansion) in order
to generate the relevant spin-spin interactions in all needed
directions and components.

In what follows we will explore the capabilities of trapped
ion systems for the quantum simulation of specific spin
models, and we will apply them to propose the experimental
demonstration of LDE in quantum spin chains. LDE is a
global nonclassical effect which, on the other hand, can be
monitored by the analysis of only two spins, namely the end
spins of the chain. It is therefore a sufficiently simple, yet
rich phenomenon which is ideal to be demonstrated using
an ion trap quantum simulator. Differing from the previous
experiments cited above [18–20] in which the spin coherent
manipulation is realized with laser fields, here we focus on
segmented ion traps in the presence of a magnetic gradient
where the engineering of the quantum dynamics is realized by
microwave fields.

The paper is organized as follows. In Sec. II we introduce
the systems and discuss the basic features of the scheme that
we plan to implement for the simulation of long distance
entanglement. In Sec. III we discuss how to tailor the spin-spin
interactions and we describe the scheme of pulses (Trotter
expansion) for the simulation of spin Hamiltonians. In Sec. IV
we discuss the results for the adiabatic preparation of the
ground state and discuss the experimental feasibility of the
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protocol. Finally, in Sec. V we draw conclusions and discuss
possible outlooks.

II. SYSTEM

Doppler cooled ions held in a segmented ion trap [21,22]
and exposed to a magnetic field gradient realize effective spin-
1/2 models [15,23–27]. The effective spin-spin interactions
induced by the magnetic field are of Ising type and can be
adjusted by tailoring the axial trapping potential. In particular,
if the ions are sufficiently cold, such that the ion motion can
be neglected (the validity of this approximation is discussed
in Sec. IV B), the effective system of N spins is described by
the Ising Hamiltonian

H
(z)
Ising = Hz + Hzz, Hz = �

2

N∑
j=1

ωjσ
z
j ,

(1)

Hzz = −�

2

∑
i,j

Jij σ
z
i σ z

j ,

where the resonance frequencies of the atomic spins ωj depend
on the external magnetic field B(x0,j ) at the equilibrium
position of the ion x0,j [28]. The spin-spin couplings are
in general long range and their magnitude depends on the
trapping potential and on the spatial derivative of the spin
resonance frequency that, in turn, is determined by the
magnetic field gradient. They are given by

Jij = �

2

∂ωi

∂xi

∣∣∣∣
x0,i

∂ωj

∂xj

∣∣∣∣
x0,j

(A−1)ij , (2)

where A, whose elements are

Aij = ∂2V (x1, . . . , xN )

∂xi ∂xj

∣∣∣∣
x�=x0,�, ∀�

, (3)

is the Hessian matrix of the potential energy function
V (x1, . . . ,xN ) that confines the ions with xj indicating the
position of ion j . In addition, the magnetic gradient allows for
addressing individual spins with a microwave field that can,
therefore, be used to manipulate the spin dynamics [23,24,27]
(see also Sec. III B).

A. General considerations

Spin Hamiltonians with nontrivial ground-state correlations
(as in the case of LDE) are in general characterized by
noncommuting spin-spin interaction terms. This is not the
case for the simple Ising Hamiltonian (1) in which only
terms of the form σ z

j σ z
k are present. Therefore, the simulation

of LDE requires the ability to engineer interactions along
different axes, described for example by a term of the
form σx

j σ x
k . Such an effective interaction can be induced

using a sequence of π/2 microwave pules that realize the
transformation e−iπσ

y

j /4σ z
j eiπσ

y

j /4 = σx
j over all the spins [29].

In particular, a free evolution sandwiched by two trains of π/2
pulses (each pulse addressing a particular ion j = 1, . . . ,N)
with opposite phases performs the following transformation:

e−i(π/4)σy

N · · · e−i(π/4)σy

1 e−iH
(z)
Isingt ei(π/4)σy

1 · · · ei(π/4)σy

N = e−iH
(x)
Isingt

(4)

[where H
(x)
Ising is equal to the Hamiltonian in Eq. (1), with

all the operators σ z
j replaced with the corresponding σx

j ] and
realizes an Ising interaction along the x axes. In order for
this transformation to be effective, the duration of the pulses
have to be sufficiently short so that the evolution due to the
spin-spin interactions can be neglected during the pulse. This
is achieved with a sufficiently strong microwave driving field
resulting in a Rabi frequency � � Jij . On the other hand each
microwave pulse should operate on a single spin, and its effect
on the other spins should be negligible. This imposes a limit on
the maximum allowed intensity of the driving field � �
�, where � indicates the frequency difference between
neighboring spin resonances.

The simultaneous interaction along z and x can be simulated
by Trotterization, namely by repeated, fast application of the
two kinds of interactions [30]. Provided that the interaction
time τ/n is sufficiently small, it is possible to approximate

e−i[H
(x)
Ising+H

(z)
Ising]τ � [

e−iH
(z)
Isingτ/ne−iH

(x)
Isingτ/n

]n
, (5)

and to generate a stroboscopic evolution which simulates a
Hamiltonian that is the sum of two Ising Hamiltonians with
interactions along the two orthogonal axes.

We also note that typically the parameters in the Hamil-

tonian H
(z)
Ising defined in Eq. (1) are such that the spin-spin

coupling strengths are much smaller than the single site energy,
Jij � ω�, which hence dominate the dynamics of this model.
Nevertheless we note that we are interested in the situation in
which the system is driven by a series of microwave pulses. In
this case, as demonstrated in the next section, the relevant
dynamics is that obtained in a reference frame rotating at
the driving field frequency. In this representation, the relevant
single site energy is in fact given by the detuning b = ωj − ωj

between spin resonance frequency (ωj ) and driving field
frequency (ωj ), which can therefore be adjusted and controlled
during the dynamics.

These results can eventually be used for the adiabatic prepa-
ration of the ground state of, for example, XX Hamiltonians.
The system is prepared initially in the ground state of a
sufficiently simple Hamiltonian which is easy to prepare: In
our case it consists of the ferromagnetic or fully polarized
spin state that is the ground state of the Ising Hamilto-
nian with a finite magnetic field (Hinitial = � b/2

∑
j σ z

j −
�/2

∑
i,j Jij σ

z
i σ z

j ). Then, the effective magnetic field is slowly
switched off (b is reduced) while the interaction along x is
turned on by tuning the relative duration of the evolutions

under the two Hamiltonians H
(x)
Ising and H

(z)
Ising. If the variation

of the parameters is sufficiently slow, then the system remains
in the instantaneous ground state. And eventually it approaches
the ground state of the final modified target Hamiltonian
Hf inal = −�/2

∑
i,j Jij (σ z

i σ z
j + σx

i σ x
j ) where the effective

magnetic field is zero and both interactions along x and z are
present. This Hamiltonian exhibits ground-state long-distance
entanglement when the end spins are weakly coupled to the
bulk [8–13].

However, in general the typical harmonic trapping potential
of linear ion traps induces long-range interactions with
maximum couplings at the end of the chain. Thus, in order
to obtain ground-state LDE, the trapping potential has to be
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carefully engineered and the end spin interactions have to be
made weak. This can be realized with segmented microtraps
as discussed in Sec. III A.

III. ENGINEERING OF SPIN HAMILTONIANS
WITH TRAPPED IONS

In this section we study how to manipulate the coupling
strengths Ji,j and how various kinds of spin Hamiltonians
can be designed, which differ from the σ z

i σ z
j interaction

that arises naturally for strings of trapped ions exposed to a
magnetic gradient [23,24]. To be specific, we present detailed
calculations for an existing microstructured ion trap [21,22].
The principles used to obtain the concrete results presented
in what follows are, of course, applicable to other segmented
traps with a magnetic gradient as well.

A. Tailoring the coupling constants in a segmented trap

In what follows we will discuss how to generate the axial
trapping potential which results in the coupling pattern desired
for LDE. In Ref. [31], too, coupling patterns were calculated
for ions held in a microstructured trap. However, in that
treatment single ions (or ion chains) are located at the bottom
of an approximately harmonic potential. Thus the separation of
minima becomes large (on the order 200 µm) and the coupling
between different sites can become impractically small (Hz)
for the purpose described in this article. In contrast, here we
consider ions held in closely separated anharmonic wells, and
we tune both the harmonic and anharmonic part to obtain the
desired coupling pattern.

The effective potential can be written as

φeff = Prf

P0
φrf +

∑
i

Ui

U0
φi (6)

where φrf is the effective harmonic potential due to the
presence of the rf trapping field at an rf power level Prf = P0.
φi is the dc potential originating from electrode i set to the
voltage Ui = U0. The rf effective potential φrf is almost zero
on the axis of a linear segmented trap due to symmetry reasons
and thus its influence on the axial potential is neglected in the
following discussion.

With a given voltage pattern {Ui} applied to the electrodes,
and an initial guess of ion positions, one can calculate
equilibrium positions by minimizing the total energy. Note
that several local minima of the total energy are possible,
as the ions can be distributed differently over the wells of
the potential. In addition, permutations of ion positions yield
identical total energies. After the equilibrium ion positions
have been determined, we calculate the normal modes of an ion
string, the Zeeman shifts of individual ions, and the resulting
coupling constants.

For small excursion �xi of ion i from the equilibrium
position, the motion of the chain can be decomposed into
normal modes, which is equivalent to say that the force Fij on
ion j depends linearly on the excursion pattern ��x as

�F = Â ��x. (7)

Except for the harmonic case in Sec. III A 1 (see below), for
the purpose of creating LDE, one can conceptually think of the
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FIG. 1. (Color online) Triple well potential as in Eq. (8), with m

being the mass of 171Yb+, xo = 1 µm, ωc = 2π × 100 kHz, and ωo

varied uniformly between 20 and 300 × 2π kHz, where the curves
with the most pronounced outer well minima correspond to ωo =
2π × 300 kHz.

ions being trapped in three wells: the center well confines the
bulk ions, the coupling to the messenger ions in the outer wells
can be varied by the well separation and the well curvatures.
Three separate wells require a polynomial of at least sixth
order to be modelled. If the potential has reflection symmetry
with respect to the center of the middle well, only even powers
remain and, neglecting a vertical offset, only three parameters
specify the entire potential: the well separation xo, and the
curvatures at the center and at the outer wells, specified by the
local trap frequencies ωc and ωo, respectively, and the potential
has the form

φ(x) = m

(
2 ω2

c + ω2
o

12x4
o

x6 − 4 ω2
c + ω2

o

8x2
o

x4 + ω2
c

2
x2

)
. (8)

Figure 1 shows the symmetric triple-well potential for constant
well separation and central curvature and a variation of the trap
frequency of the outer well ωo.

In the following, we discuss five potential shapes, and
we analyze the resulting spin-spin coupling patterns for the
cases in which the trap is loaded with four or six ions. Those
are the simplest experimental situations in which the long-
distance entanglement can be observed and are the cases that
we will analyze in detail in the remainder of this article. The
corresponding values for the ion positions, the qubit level
splittings (for zero offset field), the normal modes, and the
spin-spin couplings are reported in the tables of Appendix A.
Note that, for the mirror symmetry discussed above, the ion
positions are symmetric (unless forced to be asymmetric by
prior splitting and shuttling operations), and the couplings are
also symmetric, specifically for a string of four ions,

J1,2 = J3,4 and J1,3 = J2,4.

Our simulations slightly deviate from this symmetry (see, for
example Table V in Appendix A), as we take into account the
real geometry of our segmented trap. The relative deviations
in the couplings from a symmetric pattern are on the order of
a few percent, so for all four ion couplings this is neglected
and only one value is given for each almost identical pair of
couplings.

The lowest mode was kept at ν0 = 2π × 50 kHz in all
patterns, to produce scenarios with comparable susceptibility
to finite temperature and stray fields. The maximum effective
Lamb-Dicke parameter, as defined in [23,32], was chosen to
be ηmax = 0.1 for all simulations to have comparable coupling
between internal and motional states.
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FIG. 2. (Color online) (a) Axial potential and equilibrium ion
positions for four ions in a a predominantly harmonic single well.
The values correspond to Table I in Appendix A. (b) Axial potential
and equilibrium ion positions for four ions confined in three wells.
The values correspond to Table II in Appendix A.

1. Coupling in a common harmonic well

The first voltage pattern discussed here is optimized to
give an almost purely quadratic dependence in the vicinity
of its minimum. The normal modes are strongly delocalized
and the coupling pattern shows next-neighbor coupling but
also long-range couplings beyond next neighbors with almost
identical strength. Figure 2(a) shows the potential in the
vicinity of its minimum together with the equilibrium positions
and the resulting coupling pattern. Numerical values for
positions, level splittings (compared to the situation with no
gradient), normal modes, and couplings are given in Table I of
Appendix A.

2. Coupling in three wells

Trapping ions in three independent wells is an intuitive
approach to generate LDE: the inner ions are confined in a
common well and couple strongly. The outer ions are located
in separate wells and show only small coupling to the center
“bulk” string due to their large separation and, depending
on the shape of the outer well, potentially due to a stiff
confinement [see Fig. 2(b)], left image). All eigenvectors cor-
responding to the normal modes are predominantly localized
to one single well. Thus the outer ions couple weakly to all
others which can be seen in the resulting coupling pattern
[see Fig. 2(b), right image and Table II in Appendix A]. All
couplings are negligible compared to the coupling between the
two center ions which are confined in the same well, and the
situation is comparable to separate microtraps [31]. Numerical
values for positions, levels splittings, normal modes, and
couplings are given in Table II of Appendix A.

3. Coupling in a single strongly anharmonic well

Making a potential well strongly anharmonic substantially
alters ion positions [33] and normal-mode spectrum and allows
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FIG. 3. (Color online) Axial potential and equilibrium ion po-
sitions for four, (a) and (b), and six (c) ions confined in a single
anharmonic well, whose shape generates a coupling pattern suitable
for creating LDE. Plots (a)–(c) correspond, respectively, to the values
in Tables III–V of Appendix A.

us to generate a pattern suitable for creating LDE. Changing
ωo allows us to choose the ratio of the coupling of outer ions
to their neighbors with respect to the coupling between the
two center ions in a wide range (see Fig. 3). Note that three
very shallow minima can be created within a region of 150 µm,
whereas the segment width of 130µm (of the trap that serves as
a concrete example here) suggests that for a naı̈ve alternating
voltage pattern three minima would have a spatial extent of
approximately 500 µm. Compared to ions trapped in three
almost independent wells, where the two lowest modes are
degenerate (the two outer ions oscillating separately), here
there is one single lowest mode, separated from all others.
The eigenvectors corresponding to the normal modes show
stronger collective motion of all ions compared to ions trapped
in individual wells. The flatness of the potential over the region
of the trapped ions indicates a sensitive dependence of the
coupling on the applied voltages and puts strict requirements
on voltage stability and accuracy which have to be taken into
account in the design of the voltage supplies [34]. Figures 3(a)
and 3(b) correspond, respectively, to the two sets of numerical
values for positions, levels splittings, normal modes, and
couplings given in Tables III and IV of Appendix A. The set in
Table III corresponds to a slightly wider spatial configuration
of the ions than that in Table IV.

In the first case the resulting couplings of the outer ions is
smaller hence the corresponding long-distance entanglement
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is expected to be larger. On the other hand, the energy gap,
that is, the energy difference between the eigenvalues of Heff

corresponding to the ground and first excited states, for an
XX spin model with such a set of coupling is smaller than
that corresponding to the second set, and as a consequence
the preparation time has to be larger in order for the adiabatic
condition to be fulfilled during the dynamics (see Appendix D).

A potential very similar to the one described above,
optimized for six ions, is shown in Fig. 3(c). It is generated by
only slightly modifying the potential shown in Fig. 3(b), and
keeping the softest mode at ν0 = 50 kHz and the maximum
Lamb-Dicke parameter at ηmax = 0.1. The corresponding
numerical values for positions, modes, and couplings are
reported in Table V of Appendix A.

B. Spin dynamics with microwave pulses

The spin dynamics can be manipulated using external mi-
crowave fields that can drive selectively a given spin by tuning
the driving frequency to the corresponding resonance [27]. The
Hamiltonian for the interaction between the ion spins and the
driving field in the rotating wave approximation and neglecting
the ion motion (see Sec. IV B for an analysis of the effects of
the motion) takes the form

HL(t) = −i��(t)
N∑

j=1

{σ+
j e−i[ω(t)t+ϕ(t)] − σ−

j ei[ω(t)t+ϕ(t)]}.

(9)

In general the amplitude �, the frequency ω, and the phase
ϕ of the driving field can be time dependent. In particular we
consider a sequence of steplike driving pulses: We identify
a set of time instants tm with m = 0,1,2, . . . which define a
corresponding set of time intervals (tm−1,tm] (see lower part
of Fig. 4) during which the driving Hamiltonian is constant,
[�(t) = �m, ω(t) = ωm and ϕ(t) = ϕm for t ∈ (tm−1,tm]]. In
certain intervals the driving field can also be zero. If we define
the square-pulse function

εm(t) = θ (t − tm−1) − θ (t − tm) (10)

FIG. 4. (Color online) Sequence of driving pulses corresponding
to the evolution operator in Eq. (19).

with θ (t) = 0 for t < 0 and θ (t) = 1 for t � 0, then Eq. (9)
takes the form

HL(t) =
∑
m

εm(t)H
(m)
L (t), (11)

where

H
(m)
L (t) = −i��m

N∑
j=1

[σ+
j e−i(ωmt+ϕm) − H.c.]. (12)

In each time interval in which �m �= 0, the driving frequency
is close to resonance to a single spin jm, with a small
detuning bm = ωjm

− ωm � �m. All the other spins are far
off resonance and their dynamics is not relevantly affected
by the driving pulse. Hence, the Hamiltonian of the system,
including the driving field, reads

H (t) = Hz + Hzz + HL(t) (13)

with Hz and Hzz defined in Eq. (1).
The system dynamics is more conveniently analyzed in

a reference frame rotating at the driving field frequency
as detailed in Appendix B. The Hamiltonian in the new
representation takes the form

H (t) =
∑
m

εm(t)
[
H (m)

z + Hzz + H
(m)
L (t)

]
(14)

with

H (m)
z = �

2
bm

N∑
j=1

σ z
j , (15)

H
(m)
L (t) = −i��m

N∑
j=1

{σ+
j e−i�jm,j t − H.c.}, (16)

where we have introduced the detuning between the spin-
resonance frequencies,

�k,j = ωk − ωj .

In this specific reference frame (see Appendix B for details),
the effective magnetic field along the z axes, i.e., bm in Eq. (15),
is the same for all spins. On the other hand, the spin-spin
detuning which is much larger than both the effective magnetic
field and the Rabi frequency, �jm,j � �m � bm, for j �= jm,
enters into the new time-dependent driving Hamiltonian in
Eq. (16). In each time interval m, only the spin jm is driven
resonantly (�jm,jm

= 0), and it is the only spin that is relevantly
affected by the driving field. Correspondingly, the nonresonant
terms in Eq. (16) can be neglected and the Hamiltonian in
Eq. (14) can be approximated as

H (t) � �

∑
m

εm(t)

⎡
⎣bm

2

N∑
j=1

σ z
j − 1

2

∑
i,j

Jij σ
z
i σ z

j + �mσ
y

jm

⎤
⎦ ,

(17)

where in each time step a single spin jm sees an additional
effective magnetic field directed along the y axes. We highlight
that the dynamics in the two representations are related by
a unitary and local transformation, thus the corresponding
entanglement properties are equal in the two representations.
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C. Stroboscopic engineering of the X X spin dynamics

In order to engineer the dynamics of an XX quantum spin
model we consider a sequence of driving pulses made of
2N + 2 steps (m = 1, . . . ,2N + 2), characterized by specific
values of the parameters of the Hamiltonian in Eq. (17), as
depicted in Fig. 4. During the sequence of pulses the value of
the detuning is fixed, bm = b, ∀m, while the 2N + 2 time steps
are engineered as follows (see Fig. 4): After a free evolution
(no driving) of time �t1, each spin is driven sequentially with
a Rabi frequency � and for a time δt in order to realize π/2
pulses, i.e., � δt = π/4; then after another free evolution of
time �t2, the spins are driven again sequentially with opposite
phase (that is, in the second train of pulses the value of Rabi
frequency is the opposite of that in the first train of pulses).

As discussed in Appendix C the evolution operator corre-
sponding to this sequence, at the final time t̄ = �t1 + �t2 +
N δt , with

� δt = π

4
, (18)

can be approximated, in the limit |�j,jm
| � |�| � |bm|,|Jj,k|,

as

Ut̄ = e−iH
(x)
Ising�t2 e−iH

(z)
Ising�t1 , (19)

where

H
(ζ )
Ising = b

2

N∑
j=1

σ
ζ

j − 1

2

∑
j,k

Jij σ
ζ

i σ
ζ

j , for ζ ∈ {x,z}. (20)

Hence, the stroboscopic evolution at times nt̄ , with n ∈ N,
given by the repeated application of this sequence of pulses is
described by the operator

Unt̄ = Ut̄
n = (

e−iH
(x)
Ising�t2e−iH

(z)
Ising�t1

)n
. (21)

According to the Trotter formula [30]

e−i(H1+H2)t = lim
n→∞(e−iH1t/ne−iH2t/n)n, (22)

and in the limit �t1,�t2 � |Jij |−1,|b|−1, we can approximate
the evolution operator in Eq. (21) as

Unt̄ � e
−i

(
H

(z)
Ising+αH

(x)
Ising

)
n�t1 = e

−iβ

(
H

(z)
Ising+αH

(x)
Ising

)
nt̄

, (23)

where

α = �t2

�t1
, β = �t1

t̄
= �t1

(1 + α)�t1 + 2N δt
. (24)

This result demonstrates that the stroboscopic evolution
defined by Eq. (21) approximates the evolution, at times nt̄ , of
a spin system with the effective Hamiltonian

Heff = β
[
H

(z)
Ising + αH

(x)
Ising

]
. (25)

IV. ADIABATIC PREPARATION AND
STROBOSCOPIC/PULSED DYNAMICS

The parameters b and α (and consequently β) can be varied
adiabatically in order to prepare the ground state of an XX

Hamiltonian: The effective external magnetic field b is varied
by adjusting the detuning between the driving field and the
ion-spin resonance frequencies. On the other hand α and
correspondingly β are varied by controlling the time �t2 (see

Appendix D for details). If the variation is slow enough, then
the system will follow adiabatically the instantaneous ground
state of the effective Hamiltonian.

The system is initialized in the ferromagnetic state with all
the spins aligned along the z axes, that is, the ground state of
the Ising Hamiltonian (α = 0). The value of b is initially set to
some value b0 in order to remove the ground-state degeneracy.

The parameters α and b are then slowly varied to realize
the adiabatic preparation of the LDE. In particular during each
sequence of pulses, that is described in Sec. III C, the values
of b and α are kept fixed, while they are varied from sequence
to sequence in order to realize a stepwise approximation of the
functions (see Appendix D)

α(t) = 1 − e−rt , b(t) = b0e
−rt , (26)

where r is the rate of variation of the Hamiltonian. By these
means large time b = 0 and α = 1 so that the final effective
Hamiltonian is of XX type. In particular for sufficiently small
r the corresponding ground state is achieved.

The efficiency of this stepwise adiabatic protocol is ana-
lyzed numerically by evaluating the evolution corresponding
to the Hamiltonian (14) with the time sequence and the
parameters discussed in Sec. III C, and the corresponding
stepwise variation of b and α. The results are shown in Figs. 5
(solid lines) for different values of r and using the parameters
reported in Table III. They are compared with that obtained
by the numerical integration of the Schrödinger equation with
the effective time-dependent Hamiltonian in Eq. (25) where
the time-dependent parameters α and b are defined in Eq. (26)
(dashed lines).

The protocol is characterized in terms of the fidelity
between the resulting state and the expected instantaneous
ground state of the effective Hamiltonian (25) (red, thin
curves), and in terms of the end-to-end concurrence (blue,
thick curves). The fidelity indicates the extent to which the
resulting state differs from the expected one: Fidelity equal
to 1 corresponds to perfect adiabatic following, while equal
fidelity for both the standard adiabatic evolution (dashed lines)
and the stepwise adiabatic evolution (solid lines) means that
the protocol realizes a perfect simulation of the effective
Hamiltonian. On the other end, the concurrence measures the
entanglement between the end spins, and concurrence equal to
1 indicates a maximally entangled Bell state.

When the rate of variation of the Hamiltonian parameters
r is sufficiently small [Fig. 5(a)] the ground-state preparation
is good: The fidelity is close to 1 and as expected the ground
state exhibits large entanglement. When on the other hand the
rate is increased [Figs. 5(b) and 5(c)] then the evolution is
no more adiabatic and the system ends up in a state which is
not exactly the ground state of the final Hamiltonian and the
fidelity is reduced. The faster the manipulation, the smaller
is the corresponding fidelity. Nevertheless in all cases, the
end-to-end entanglement can be very large at certain times
meaning that the end spins approach a Bell state.

In all cases the results obtained with the effective
Hamiltonian and that obtained via the sequence of pulses
are similar meaning that the protocol is faithful and a good
simulation of the effective model is realized.

Figures 5(d)–5(f) describe how the efficiency of the scheme
is reduced when implemented with insufficiently fast π/2
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FIG. 5. (Color online) End-to-end concurrence (thick, blue lines) and fidelity (thin, red lines) with the instantaneous ground state for a
chain of four ions. The spin-spin coupling constants and the spin resonance frequencies are identified in Table III. The dashed lines are obtained
integrating the time-dependent effective Hamiltonian in Eq. (25) with the time dependence defined in Eq. (26) (b0 = 2π × 0.1 kHz). The solid
lines are obtained using the Hamiltonian in Eq. (17), following the pulse scheme described in Sec. III C and with the stepwise variation of the
parameters b and α. The upper plots, (a)–(c), are obtained with δt = 1 µs as defined in Eq. (18) and the lower plots, (d)–(f), with δt = 5 µs. From
left to right the velocity of the adiabatic manipulation is gradually increased: in (a) and (d) r = 2π × 3.2 Hz, in (b) and (e) r = 2π × 10.6 Hz,
and in (c) and (f) r = 2π × 15.9 Hz. In all plots �t1 = 100 µs.

driving pulses. In this case during the pulses the system
dynamics is not negligible and the transformation which
generates the spin-spin interaction along the x axis is not exact.

Faster preparation of the LDE can be achieved with
systems with a larger gap. This can be obtained by

careful shaping of the trapping potential as discussed
in Sec. III A. Simulations realized with the spin-spin
coupling strengths reported in Table IV are shown in
Fig. 6. Here the preparation time is shorter than that of
Fig. 5.
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FIG. 6. (Color online) As in Fig. 5 with the spin-spin coupling constants and the spin resonance frequencies defined in Table IV. In panels
(a) and (d) r = 2π × 10 Hz; in (b) and (e) r = 2π × 20 Hz; and in (c) and (f) r = 2π × 40 Hz.
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FIG. 7. (Color online) Results obtained for a chain of six ions.
The lines code is as in Fig. 6. The spin-spin coupling matrix is
reported in Table V. In (a) δt = 1 µs, while in (b) δt = 0.5 µs.
The other parameters are b0 = 2π × 0.2 kHz, r = 2π × 8 Hz, and
�t1 = 40 µs.

Similar results are obtained also with larger chains; see
Fig. 7 that is realized with six ions. In this case the driving
pulses have to be made shorter in order to optimize the
preparation as described by Fig. 7(b).

A. Effect of nonresonant spins

The results that we have discussed so far are based on
Eq. (17) where we have neglected the effect of the driving field
on the spins which are not close to resonance. This is justified
when the difference in frequency between the spin resonances
is much larger than the Rabi frequency �: �jm,j � �m. In
this case the spins experience a dynamical Zeeman shift δ

(m)
j

whose magnitude can be evaluated in perturbation theory and
is given by

δωjm,j �
∣∣∣∣ �2

m

2�jm,j

∣∣∣∣. (27)

Correspondingly, during a driving pulse on spin jm, whose
duration is δt = π/4�, the phase accumulated by spin j as a
result of the dynamical Zeeman shift is �jm,j = δt × δωjm,j =
π |�/8�jm,j |.

The largest phase for the parameters of Figs. 5 and 6 is
�2,3 � 7.6 × 10−3. Similarly we find that the largest phase
for the parameters of Fig. 7 is �3,4 = 19.7 × 10−3. In all cases
these values are very small and they justify our approximation.

B. Mechanical effects

So far we have neglected the motion of the ions. Internal
electronic dynamics and motion can be coupled by an electro-
magnetic field. In particular when the ions are in a magnetic
gradient also long-wavelength radiation, as microwaves, can
have a significant mechanical effect allowing for example for
sideband cooling [23,24,35]. In the following we justify our
treatment in which we neglect the atomic motion.

In a magnetic gradient the coupling between an ion j

and a mechanical normal mode k is scaled by the effective

Lamb-Dicke (LD) parameters [24]

ηj,k =
√

�

2m νk

μB g

� νk

∂B

∂x

∣∣∣∣
x=x0,j

Sj,k, (28)

where νk is the frequency of the normal modes, and S

is the matrix that diagonalizes the Hessian matrix A (see
Sec. II) of the potential-energy function that confines the
ions, that is (ST AS)j,k = δj,k m ν2

j . These parameters are
typically small and allow for a systematic expansion of
the corresponding dynamics in powers of ηj,k . Including
the lowest-order mechanical effects the Hamiltonian for the
interaction between the ions and the driving field [see also
Eq. (9)] takes the form

HL(t) = −i��(t)
∑

j

{
σ+

j

[
1 +

∑
k

ηj,k(a†
k − ak)

]

× e−i[ω(t)t+ϕ(t)] − H.c.

}
, (29)

where H.c. stands for the Hermitian conjugate, and a
†
k , ak

are the creation and annihilation operators for the vibrational
mode k. This Hamiltonian accounts for sideband transitions at
frequencies ωj ± νk . The mechanical transitions are negligible
when

η2 (nk + 1) � 1, (30)

where nk is the average number of excitations in the the
vibrational mode k.

For the parameters used in Figs. 5–7, the LD parameters
take values between 0.1 and 2.5 × 10−6, which demonstrate
the validity of our results also for Doppler cooled trapped ions,
without additional sub-Doppler cooling to the ground state of
the axial potential. Increasing the gradient of the B field, the
coupling strengths increase allowing for a faster preparation;
however, the system approaches the regime in which the
mechanical effects are relevant. In fact, stronger gradient of
the magnetic field corresponds to larger LD parameters.

C. Effect of spin dephasing

In practice stray magnetic fields induce fluctuating spin
resonance frequencies, which in turn induce decay of the
spin coherence, namely dephasing. The curves in Fig. 8 are
evaluated including the dephasing of the spins. They are
obtained by solving a master equation for the spin dynamics
of the form

ρ̇ = −i[H (t),ρ] + LDρ, (31)

where H (t) corresponds to the Hamiltonian (17) for the solid
lines and to the effective Hamiltonian (25) for the dashed lines.
Moreover LD accounts for the spins dephasing at rate γ and
takes the form

LDρ = γ

2

∑
j

(
σ z

j ρ σ z
j − ρ

)
. (32)

This model describes a system of spins with randomly
fluctuating resonance frequencies ωj = ωj,0 + ξj (t), where
ξj (t) are δ-correlated random variables [i.e., 〈ξj (t),ξj (t ′)〉 ∝
δ(t − t ′)]. As expected, the dephasing reduces the efficiency of
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FIG. 8. (Color online) Panels (a)–(c): as in Fig. 6, panels (a)–(c), with dephasing time Tdeph ≡ 1/γ = 50/r , that is in (a) Tdeph = 0.8 s, in (b)
Tdeph = 0.4 s, and in (c) Tdeph = 0.2 s. Panels (d)–(f): as in Fig. 6, panels (a)–(c), with dephasing time Tdeph = 25/r , that is in (d) Tdeph = 0.4 s,
in (e) Tdeph = 0.2 s, and in (f) Tdeph = 0.1 s.

the scheme, and both the resulting fidelity and concurrence are
slightly lower than the corresponding ones obtained without
dephasing. In particular, Fig. 8 shows that the scheme works
also under the effect of dephasing processes with dephasing
times sufficiently larger than the preparation time, where the
preparation time is roughly one order of magnitude larger than
1/r with r the rate of variation of the Hamiltonian parameters
which is introduced in Eq. (26).

Resistance to dephasing can be achieved by implementing
dynamical decoupling techniques [38]. In fact the Trotter
expansion scheme makes use of microwave pulses for rotating
the Bloch vector by π/2 to achieve a stroboscopic implemen-
tation of XX Hamiltonians. Hence, by changing phases of all
microwave pulses by π at every other instance, the system
effectively flips for example between z, x, −z, and −x and
refocussing of low-frequency noise components is achieved at
no extra cost.

D. Experimental feasibility

In Ref. [22] the operation of a segmented trap with
a built-in switchable gradient based on a microstructured
solenoid is reported. Different isotopes of ytterbium with or
without hyperfine structure can be trapped. For the experiment
proposed here, we use 171Yb with a nuclear spin of I = 1/2
yielding two hyperfine levels with F = 0, F = 1 in the
electronic ground state [27,40] (see Fig. 9). Different qubit
implementations are possible: either magnetic sensitive states
can be used to allow for magnetic gradient induced coupling
(MAGIC) [15,23,24] as required for the experiments discussed

FIG. 9. Chain of 33 172Yb ions in our segmented trap.

here. Or magnetic insensitive states can be used to yield a
quantum memory with a long coherence time [36].

In this segmented trap experiment [22], the qubit is manip-
ulated using microwave fields (applied through a conventional
wave guide) and Rabi frequencies exceeding � ≈ 100 kHz on
the σ transition and a bare coherence time of the magnetic
field sensitive hyperfine qubit on the order of 5 ms have been
observed. Applying spin-echo techniques [37], dynamical
decoupling, [38] or dressed states [39], we expect to be able to
observe a coherent time evolution on a second time scale. The
gradients required for the experiments here are expected to be
possible with the present setup. Splitting and merging of ion
strings (which involves the generation of anharmonic trapping
potentials), as well as shuttling have been demonstrated. Stable
trapping could be observed down to axial trap frequencies
around ν1 = 2π × 40 kHz.

In order to improve the level of control over the anhar-
monicity of the axial trapping potential, it might be necessary
to use smaller axial trapping segments, possibly in a surface
trap. Larger gradients would boost the coupling and allow
for stiffer axial confinement, making the scheme more robust
against thermal excitation and external stray fields.

V. CONCLUSION AND OUTLOOK

In this article we have introduced and investigated schemes
for the the implementation of LDE with trapped ions. The
spin-spin Hamiltonians required for this purpose may as well
be used for quantum simulations. In particular, we have shown
how to tailor the trapping potential in order to engineer a
specific spin-spin coupling pattern in one-dimensional lattices,
and we have designed a sequence of microwave pulses able
to engineer effective spin-1/2 Hamiltonians of XX type.
The same technique can be used to engineer any kind of
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isotropic and anisotropic Heisenberg and XY models. In this
perspective, our scheme and techniques may be expected to be
especially useful for the verification of recent predictions about
some nontrivial ground-state entanglement patterns, including
field-interaction balancing and the onset of ground-state fac-
torization [41,42], general bounds between universal measures
of frustration and ground-state entanglement [43,44], and
universality in the scaling behavior of the entanglement
spectrum [45]. Finally, we have analyzed the efficiency of
the adiabatic quantum preparation of the ground state of an
effective Hamiltonian which exhibits LDE, demonstrating its
feasibility within the limits of current ion trap technology. In
the course of the investigation, we have introduced and com-
bined trap shaping, adiabatic preparation, and Trotterization of
the interactions. These elements are necessary for the realiza-
tion, so far not yet attained, of highly nonclassical features of
complex models of interacting quantum many-body systems.
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APPENDIX A: ION POSITIONS, NORMAL MODES,
TRANSITION FREQUENCIES AND COUPLINGS

In this appendix we present Tables I–V. They identify
the parameters used in the plots discussed in the main text.
Specifically, Table I refers to Fig. 2(a), Table II to Fig. 2(b),
Table III to Figs. 3(a) and 5, Table IV to Figs. 3(b), 6, 8
and 10(c), and Table V to Figs. 3(c) and 7.

APPENDIX B: THE DYNAMICS IN A NEW
REFERENCE FRAME

Let us consider the model described by the Hamiltonian in
Eq. (13), and study the dynamics in a new reference frame
defined by the unitary transformation

U0(t) =
∑
m

εm(t)e−(i/�)H (m)
0 (t−tm−1)

× e−(i/�)H (m−1)
0 (tm−1−tm−2) · · ·

× e−(i/�)H (1)
0 (t1−t0) + θ (t0 − t) (B1)

TABLE I. Positions xi , changed qubit splittings �ωi , normal
modes νi , and couplings Jij for an ion chain of four ions in
an approximately harmonic axial trapping potential. The gradient
required to obtain these values is 29.38 T/m.

i 1 2 3 4

xi (µm) −28.7 −8.9 8.3 29.3
�ωi/2π (MHz) −11.8 −3.7 3.9 12.0
νi/2π (kHz) 50.0 86.6 120.5 152.6

i,j 1,2 1,3 1,4 2,3
Jij (Hz) 479 349 273 457

TABLE II. Positions xi , qubit splittings ωi , mechanical normal
modes νi , and couplings Jij for an ion chain of four ions in
three approximately harmonic axial trapping potential. The gradient
required to obtain these values is 15.06 T/m.

i 1 2 3 4

x0,i (µm) −145.9 −10.8 11.4 146.4
�ωi/2π (MHz) −30.7 −2.3 2.4 30.9
νi/2π (kHz) 50.0 50.1 59.9 105.4

i,j 1,2 1,3 1,4 2,3
Jij /2π (Hz) 2.1 1.8 0.4 123.8

with

H
(m)
0 = �

2

∑
j

(ωj − bm) σ z
j , (B2)

where bm is the detuning between the driving field frequency
ωm and the resonance frequency ωjm

of spin jm which is driven
close to resonance in each time step, bm = ωjm

− ωm. Since
the unitary transformation is local, the entanglement properties
in the new representation are the same as that in the original
one.

If |ψ(t)〉 is the state in the original representation, then
the dynamics of the transformed state |ψ(t)〉 = U

†
0 (t)|ψ(t)〉 is

ruled by the Hamiltonian

H (t) = U
†
0 (t)H (t)U0(t) −

∑
m

εm(t)H (m)
0

=
∑
m

εm(t)
[
H (m)

z + Hzz + H
(m)
L (t)

]
(B3)

with

H (m)
z = H

(m)
z − H

(m)
0 = �

2

∑
j

bmσ z
j

H
(m)
L = −� i �m

∑
j

{σ+
j e−i[(ωjm −ωj )t+φm+ϕm] − H.c.}, (B4)

where

φm =
m−1∑
m′=1

(bm′+1 − bm′ )tm′ . (B5)

The last Hamiltonian is obtained exploiting the relation
eiζσ z

j tσ+
j e−iζσ z

j t = σ+
j e2iζ t . If the value of the phase of the

TABLE III. Positions xi , qubit splittings ωi , normal modes νi , and
couplings Jij for an ion chain of four ions in a strongly anharmonic
axial trapping potential. The gradient required to obtain these values
is 20.81 T/m.

i 1 2 3 4

x0,i (µm) −83.0 −11.8 12.3 83.7
�ωi/2π (MHz) −24.2 −3.4 3.6 24.4
νi/2π (kHz) 50.0 71.8 72.3 91.8

i,j 1,2 1,3 1,4 2,3
Jij /2π (Hz) 17.6 13.8 1.3 351.5
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TABLE IV. Positions xi , qubit splittings ωi , normal modes νi , and
couplings Jij for an ion chain of four ions in a strongly anharmonic
axial trapping potential. The gradient required to obtain these values
is 19.27 T/m.

i 1 2 3 4

x0,i (µm) −76.9 −11.7 12.2 77.6
�ωi/2π (MHz) −20.7 −3.2 3.3 20.9
νi/2π (kHz) 50.0 59.1 59.7 92.4

i,j 1,2 1,3 1,4 2,3
Jij /2π (Hz) 28.8 22.2 2.2 298.8

driving field is set to the value

ϕm = −φ
(m)
jm

(B6)

then

H
(m)
L = −� i �m

∑
j

[σ+
j e−i(ωjm −ωj )t − H.c.]. (B7)

Thereby we obtain Eq. (14). We note that, in this representa-
tion, in each time step, the spin jm sees an effective magnetic
field along the y axis [see Eq. (C2)].

APPENDIX C: THE SEQUENCE OF DRIVING PULSES

We are interested in the limit in which |ωj − ωjm
| �

|�m| � |bm|,|Jj,k|, for j �= jm. Hence we can approximate
the Hamiltonian (14) by retaining only the resonant terms as

H (t) �
∑

m : �m=0

εm(t)
[
H (m)

z + Hzz

] +
∑

m : �m �=0

εm(t)H (m)
L

(C1)

with

H
(m)
L � ��mσ

y

jm
, (C2)

where the sum over the time intervals is divided into two sums
over the intervals in which the driving field is on (�m �= 0)
and off (�m = 0) respectively.

TABLE V. Positions xi , qubit splittings ωi , normal modes νi , and
couplings Jij for an ion chain of six ions in a strongly anharmonic
axial trapping potential. The gradient required to obtain this values is
27.22 T/m.

i 1 2 3 4 5 6

x0,i (µm) −84.2 −26.0 −7.8 8.3 26.4 84.9
�ωi/2π (MHz) −32.1 −9.9 −3.0 3.2 10.0 32.3
νi/2π (kHz) 50.0 90.0 90.9 92.1 136.2 181.7

Jij (Hz)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 27.9 19.5 16.7 16.7 1.4

27.9 0 411.8 319.7 300.3 16.5

19.5 411.8 0 348.3 319.2 16.4

16.7 319.7 348.3 0 410.9 19.1

16.7 300.3 319.2 410.9 0 27.3

1.4 16.4794 16.4 19.1 27.3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The evolution operator corresponding to the sequence
of pulses described in Sec. III C can be written, using the
approximate Hamiltonian (C1), in the form

Ut̄ = e−iH
(+)
N δt · · · e−iH

(+)
1 δt e−iH

(z)
Ising�t2 e−iH

(−)
1 δt · · · e−iH

(−)
N δt

× e−iH
(z)
Ising�t1 ,

(C3)

where

H
(z)
Ising = b

2

N∑
j=1

σ z
j − 1

2

∑
i,j

Jij σ
z
i σ z

j

H
(±)
jm

= ±� σ
y

jm
, (C4)

and the total time of the sequence is

t̄ = �t1 + �t2 + N δt. (C5)

Now we use the relation

�(�) ≡ e−i�σ
y

j σ z
j ei�σ

y

j = cos(2�)σ z
j + sin(2�)σx

j ,

which reduces to �(�) = σx
j when � = π

4 + nπ with n ∈ Z.
Thus setting, for example,

� δt = π

4
, (C6)

then

Ut̄ = e−iH
(x)
Ising�t2 e−iH

(z)
Ising�t1

(C7)

where

H
(x)
Ising = b

2

N∑
j=1

σx
j − 1

2

∑
i,j

Jij σ
x
i σ x

j . (C8)

APPENDIX D: ADIABATIC PREPARATION OF THE
GROUND STATE

A system initially in an eigenstate |ψj (0)〉 of its Hamil-
tonian follows the instantaneous eigenstate |ψj (t)〉, which
derives from the initial state by continuity, when the cor-
responding Hamiltonian is deformed adiabatically [46]. A
condition for the adiabatic evolution is that during the evolution
the probability for the transition from the eigenstate |ψj (t)〉 to
a different one |ψk(t)〉 (∀k) is negligible; this can be estimated
as [46]

∑
k �=j

∣∣∣∣� 〈ψk(t)|∂H (t)/∂t |ψj (t)〉
[Ek(t) − Ej (t)]2

∣∣∣∣
2

� 1. (D1)

It means that the larger the difference in energy between the
eigenstate state |ψj (t)〉 and all the others, the more easily the
adiabatic condition can be satisfied.

In particular if initially the system is prepared in the ground
state then it will remain in the instantaneous ground state under
a slow variation of some Hamiltonian parameters. This idea
can be applied to prepare the ground state of complicated
Hamiltonians: One can first prepare the ground state of a
sufficiently simple one which is easy to prepare. Then the
Hamiltonian is adiabatically changed until approaching the
final target Hamiltonian. Correspondingly the system will end
up in the ground state of the final Hamiltonian.
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In our case according to the result of Sec. III C, we are able
to generate the dynamics corresponding to the Hamiltonian
[see Eq. (25)]

Heff(α,b) = β(t)
∑

j

b(t)
[
σ z

j + α(t) σx
j

]

−β(t)
∑
i,j

Jij

[
σ z

i σ z
j + α(t) σx

i σ x
j

]
, (D2)

where β(t) is the function of α(t) as specified in Eq. (24).
We want to prepare the ground state of HXX ≡ Heff(1,0) =

−β
∑

i,j Jij (σ z
i σ z

j + σx
i σ x

j ). Hence we can first prepare the
ground state of a ferromagnetic Ising Hamiltonian HIsing ≡
Heff(0,b0) = β(b0

∑
j σ z

j − ∑
i,j Jij σ

z
i σ z

j ) which simply cor-
responds to the ferromagnetic state in which all the spins are
polarized along z. Then the ground state of HXX is obtained
by the adiabatic variation of the parameters b/b0 : 1 → 0 and
α : 0 → 1.

An example of adiabatic preparation of the ground state
of the Hamiltonian Heff(1,0) is shown in Fig. 10. The
parameters α and b are varied according to [see the curves
Fig. 10(b)]

b(t) = b0 e−rt , α(t) = 1 − e−rt . (D3)

Initially the parameters can be varied rapidly because the
corresponding gap between ground and first excited states is
relatively large as depicted in Fig. 10(a). As Heff approaches
the target Hamiltonian the gap reduces and correspondingly
the variations have to slow down. The final gap obtained
for α = 1 and b = 0 and for the parameters of Fig. 10 is
Gap/� = 21 Hz. The curves in Fig. 10(c) are obtained by
numerical integration of the Schrödinger equation with the
time-dependent Hamiltonian (D2), and are equal to the dashed
curves in Fig. 6(a). The red, thin line in Fig. 10(c) is the
fidelity between the state obtained with the adiabatic evolution
and the instantaneous ground state. This curve is very close
to 1 at all times indicating that the system actually follows
the adiabatic ground state. The spin-spin couplings that are
used in these calculations are that reported in Table IV. The
Hamiltonian Heff(1,0) with these coupling strengths exhibits

1 r 5 r 10 r
0

1(b)

Α t

b t b0

0.0
0.5

1.0Α

0.0

0.5
1.0

b b0

0.0
0.1
0.2
0.3
0.4Gap

kHz

(a)

0 0.02 0.04 0.06 0.08
0

0.5

1

time (s)

 

 (c)

α

α(t)

FIG. 10. (Color online) (a) Gap between ground and first excited
state of Heff in Eq. (25) with four ions, in the space of parameters
{b,α}. The red line indicates the gap corresponding to the adiabatic
variation of α and b. (b) Time evolution of the parameters α(t) and
b(t). (c) End-to-end concurrence (thick, blue line) and fidelity with
the instantaneous ground state (thin, red line), obtained integrating the
time-dependent Schrödinger equation with the effective Hamiltonian
in Eq. (25) with four ions, and with b0 = 2π × 0.1 kHz and
r = 2π × 10 Hz. The spin-spin couplings are reported in Table IV.
Although not relevant for the present result, in order to be consistent
with the results of Sec. IV, we have set the parameter β to the
values defined in Eq. (24) (a different value of β corresponds to
a rescaling of the energy and correspondingly of the duration of
the protocol). The two curves are equal to the dashed curves of
Fig. 6(a).

long-range entanglement, that is, strong entanglement between
the first and last spin. This feature is described by the blue
ticked curve in Fig. 10(c) that displays the entanglement,
as measured by the concurrence between first and last
spins. As expected, at large time the end spins are strongly
entangled.
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