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The prospect of quantum-simulating lattice gauge theories opens exciting possibilities for understanding
fundamental forms of matter. Here, we show that trapped ions represent a promising platform in this context
when simultaneously exploiting internal pseudospins and external phonon vibrations. We illustrate our ideas
with two complementary proposals for simulating lattice-regularized quantum electrodynamics (QED) in (1 + 1)
space-time dimensions. The first scheme replaces the gauge fields by local vibrations with a high occupation
number. By numerical finite-size scaling, we demonstrate that this model recovers Wilson’s lattice gauge theory
in a controlled way. Its implementation can be scaled up to tens of ions in an array of microtraps. The second
scheme represents the gauge fields by spins 1

2 , and thus simulates a quantum link model. As we show, this allows
the fermionic matter to be replaced by bosonic degrees of freedom, permitting small-scale implementations in
a linear Paul trap. Both schemes work on energy scales significantly larger than typical decoherence rates in
experiments, thus enabling the investigation of phenomena such as string breaking, Coleman’s quantum phase
transition, and false-vacuum decay. The underlying ideas of the proposed analog simulation schemes may also
be adapted to other platforms, such as superconducting qubits.
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I. INTRODUCTION

Quantum-optical setups, with their high controllability,
provide an ideal means to realize quantum simulators [1],
i.e., engineered quantum-mechanical systems that mimic a
desired dynamics which would be difficult to access on a
classical computer. Particularly attractive targets for quantum
simulation are lattice gauge theories (LGTs), which consti-
tute a central framework of theoretical many-body physics.
They describe not only the fundamental interactions between
elementary particles [2,3] but also exotic phases of matter
such as quantum spin liquids [4–6]. However, especially when
their real-time dynamics is concerned, gauge theories are
notoriously challenging to tackle on a classical computer [2,3].
For these reasons, recent years have seen a surge of interest
for studying gauge theories in engineered quantum simulators
[7–16].

There exist two main difficulties to realize a gauge theory
in a synthetic system, besides the design of the correct
interaction terms. First, a gauge theory is characterized by
local conservation laws, which need to be imposed on the
physical quantum simulator. Second, to simulate the interac-
tion between elementary particles, both bosonic and fermionic
degrees of freedom (DOFs) need to be realized simultaneously
(for a case where this requirement can be circumvented, see
Refs. [17–19]). Both challenges can be addressed in digital
or analog quantum simulation, and in diverse quantum-optical
setups, with proposals existing especially for ultracold atoms
in optical lattices (see Refs. [7–10] for recent reviews) and
superconducting qubits [11–15]. In a recent work, it has
been shown how these challenges can be tackled in the
well-controlled platform provided by trapped ions [16]. There,
it has been proposed to encode both fermionic matter and
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gauge degrees of freedom in pseudospins formed by the
internal electronic states of the ions. The local conservation
laws and correct interactions can then be transmitted between
the pseudospins by the collective vibrational DOFs of the ions,
which are eliminated in perturbation theory. In the present
work, we pursue an alternative route where the vibrational
modes are included as active DOFs, rather than eliminated in
perturbation theory. In this way, we obtain a larger number
of useful DOFs per ion, and as an additional benefit improve
the relevant time scales. Our proposal is complementary to
efforts for realizing LGTs in trapped ions via digital quantum
simulation [18,19], and to recent progresses in simulating
LGTs via tensor networks on classical computers [20–26].

We illustrate the versatility of our approach by two
complementary schemes, which simulate a simple LGT,
namely (1+1)D lattice quantum electrodynamics (QED), i.e.,
the massive Schwinger model [27–29]. First, we introduce
a representation of the gauge fields via local vibrational
DOFs at high occupation number. Additionally, in one spatial
dimension, the fermions are mapped to spins via the Jordan-
Wigner transformation. This scheme, which we call the highly
occupied boson model (HOBM), simulates a strict LGT and
is scalable to large ion numbers. By analyzing the real-time
dynamics after a quantum quench as well as by performing
finite-size scalings for the ground-state phase diagram, we
demonstrate that it approximates a usual Wilson LGT in a
well-controlled manner. As such, it may also be interesting
for realizations in other platforms, such as superconducting
qubits. In the second scheme, which relies on the quantum
link model (QLM) [30–33], we propose a different mapping
which represents the gauge fields by internal pseudospins,
and maps the fermionic matter to bosonic DOFs. Because
this scheme has excellent time scales, but acquires systematic
deviations at moderate ion numbers, it is especially suitable
for small-scale proof-of-principle experiments. Both schemes
can be implemented with one-dimensional ion chains in linear
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Paul traps or arrays of microtraps, exploit only experimentally
realistic abilities for controlling and coupling spins and
phonons [34–44], and are robust against the most common
sources of imperfections.

This paper is organized as follows. First, in Sec. II, we lay
the background for our proposals. We describe the LGT that
we aim at simulating, as well as two phenomena that we use for
illustrating our ideas (Sec. II A). We also discuss on a general,
abstract level two truncation schemes for the gauge fields,
which are convenient for physical implementations in quantum
simulators: a formalism introduced in this work, the HOBM
(Sec. II B), as well as the better known QLMs (Sec. II C).
Afterwards, we discuss feasible implementation schemes as
well as relevant error sources, first for the HOBM (Sec. III),
and then for the QLM proposal (Sec. IV). We conclude our
work with a short summary in Sec. V.

II. (1 + 1)D LATTICE QED AND TRUNCATION SCHEMES

To illustrate our ideas, we concentrate on the simulation
of QED in (1 + 1)-dimensional space-time. (1 + 1)D QED,
also known as the Schwinger model, describes interactions
between a U(1) Abelian gauge field and fundamental charges
(single-species fermions). Despite its simplicity, it shares
much physics with (3 + 1)D SU(3) quantum chromodynamics,
which describes the strong interactions of the Standard Model,
such as confinement, nontrivial θ vacuum, or chiral symmetry
breaking and anomaly [28,29]. The Schwinger model has thus
become a test bed for new techniques devised to study gauge
theories [17,45–47]. We shall present first an introduction to
its standard formulation on a lattice. Afterwards, we describe
two truncation schemes for the gauge fields, which approach

lattice QED in a given limit and are specifically suited for
building analog quantum simulators.

A. (1 + 1)D lattice QED

We adopt the Kogut–Susskind Hamiltonian formulation of
the Wilson LGT [48], in which the time dimension is kept
continuous while the space dimensions are discretized into
a lattice geometry. Originally, this lattice discretization has
been developed to facilitate numerical calculations, but it also
provides a very convenient framework for implementations
in physical quantum simulators with discrete DOFs [7–16].
Following Ref. [45], (1 + 1)D QED can be represented as
hopping of “staggered fermions” on a lattice with sites
i = 1 . . . L, with the dynamical gauge fields sitting on the
links connecting neighboring sites [see Fig. 1(a)]. In this
representation, the fermion operator ψi on an even (odd) site
corresponds to the upper (lower) component of the original
Dirac spinor of the continuum theory, which are connected
by the discrete chiral transformation [2]. The corresponding
Hamiltonian reads (we set � = c = 1)

H = −J
∑

i

(ψ†
i Ui,i+1ψi+1 + H.c.)

+μ
∑

i

(−1)iψ†
i ψi + V

∑
i

E2
i,i+1. (1)

Here, J is the kinetic energy term, which couples matter and
gauge field, μ is the fermionic rest mass, and V measures
the electric field energy. The link electric field Ei,i+1 and
parallel transporter Ui,i+1 satisfy [Ei,i+1,Ui,i+1] = Ui,i+1. In
the standard Kogut–Susskind formulation, the Hilbert space
of the gauge field is the same as that of a 2D rotor, of which
the basis states are labeled as |n〉i,i+1, with Ei,i+1 |n〉i,i+1 =

a a†

s− s+
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FIG. 1. (1 + 1)D QED on a lattice and truncation schemes. (a) The lattice representation of (1 + 1)D QED considers a system of free
fermions living on sites (ψi), coupled to a U(1) Abelian gauge field living on the links connecting neighboring sites (Ei.i+1,Ui,i+1). In the
standard Wilson LGT, the gauge-field degrees of freedom on each link span a 2D quantum rotor Hilbert space. (b) We introduce here a
complementary LGT, the highly occupied boson model, by representing the gauge fields by local boson modes (ai,i+1,a

†
i,i+1), illustrated as

harmonic oscillators. In the limit of large occupation number, N → ∞, the Wilson LGT is recovered exactly. (c) An alternative scheme, the
quantum link model [7,8], represents the gauge fields by spin operators (sz

i,i+1,s
+
i,i+1). It approaches the Wilson formulation in the limit of large

spins, S → ∞. (d) In one spatial dimension, the lattice fermions can be mapped to spins via the Jordan-Wigner transformation. They represent
the Dirac spinor of charges (e−) and anticharges (e+) in a staggered fashion; i.e., on an even (odd) site, the presence (absence, denoted by Ø in
the figure) of a staggered fermion corresponds to the presence of e− (e+). (e) The gauge-field Hilbert space on a single link, from top to bottom
for (1 + 1)D QED, the highly occupied boson model, and the quantum link model.
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n |n〉i,i+1, n ∈ Z. The parameters in Eq. (1) are connected to
the model parameters of the continuum theory, by J = 1/2a,
μ = m, and V = g2a/2, in which g and m are respectively
the fermion-matter coupling strength and fermion rest mass
in the continuum model, and a the lattice constant. By taking
the limit a → 0, lattice QED recovers conventional QED in
continuous space-time.

The model in Eq. (1) becomes a gauge theory through
gauge-fixing the Hilbert space into the physical Coulomb
sector G by enforcing the Gauss law GiG = 0, where we
assumed a vanishing background charge. Here, Gi is the local
U(1) gauge generator at lattice site i,

Gi = ψ
†
i ψi + 1

2 [(−1)i − 1] − (Ei,i+1 − Ei−1,i). (2)

This formula is the lattice equivalent of the familiar Gauss law
in the continuum, div E = ρ, with ρ the charge density.

In the later Secs. III and IV, we are interested in constructing
analog quantum simulators for (1 + 1)D lattice QED in a
trapped-ion setup, where no fermionic DOFs appear naturally.
A convenient work-around, valid in one spatial dimension, is to
map the single-species fermions in the original 1 + 1D lattice
QED to S = 1

2 spins by the Jordan-Wigner transformation [see
Fig. 1(d)]:

ψ
†
i = (−1)

∑i−1
j=1(τ z

j +1)/2τ+
i , (3a)

ψi = (−1)
∑i−1

j=1(τ z
j +1)/2τ−

i , (3b)

ψ
†
i ψi = (τ z

i + 1)/2. (3c)

Here, we use τi to denote the S = 1
2 Pauli matrices on site

i, while reserving σi for the two-level systems describing the
ionic internal states. In the spin language, the Hamiltonian of
(1 + 1)D lattice QED becomes

H = −J
∑

i

(τ+
i Ui,i+1τ

−
i+1 + H.c.)

+ μ

2

∑
i

(−1)iτ z
i + V

∑
i

E2
i,i+1, (4)

while the local gauge generator is converted to

Gi = 1
2

[
τ z
i + (−1)i

] − (Ei,i+1 − Ei−1,i). (5)

To demonstrate the viability of the proposed quantum-
simulator schemes, we will in later sections study two
prominent physical phenomena contained in (1 + 1)D QED.
The first one, called string breaking, appears in its dynamical
evolution after a quantum quench. The second, Coleman’s
quantum phase transition, is a property of its ground-state
behavior. We now explain the basic physics related to these
phenomena.

1. String-breaking dynamics

(1 + 1)D QED is confined at all energy scales [28,29],
meaning there exist no free fundamental charges in the energy
spectrum. Thus, thanks to the large energy contained in the
electric-field string connecting opposite charges, a sufficiently
far separated charge-anticharge pair is highly unstable. If such
a pair is prepared initially, it will evolve by spontaneous
creation of charge-anticharge pairs in the space in between, and

thus break the electric-field string. The dynamical evolution
of this “string breaking” can be analyzed by monitoring the
space-averaged electric field, 〈E〉 = ∫

dr〈E(r)〉/ ∫
dr, which

takes a large nonzero value in the initial state and decreases in
the subsequent dynamics.

A simple quantitative analysis for when string breaking
occurs can be made in the J → 0 limit. Consider an initial
pair of charge-anticharge sitting at the boundaries of a 1D
lattice of size L. The Gauss law, Eq. (2), prescribes that the
gauge fields are in the state |−1〉i,i+1 on the L − 1 links
of the lattice. Thus, the average electric field of this initial
state is 〈E〉 = ∑L−1

i=1 〈Ei,i+1〉/(L − 1) = −1, and the energy
is (L − 1)V + 2μ. As the field energy grows linearly with
L, for sufficiently large L it becomes advantageous for the
system to spontaneously create a charge-anticharge pair, and it
will thus evolve into a so-called two-meson state. The average
electric field of this state is 〈E〉 = −2/(L − 1) and its energy
2V + 4μ. Comparing the energies of these two states, one
finds the following lower bound of the pair separation for string
breaking: L = 3 + �2μ/V � (where �X� is the smallest integer
not less than X). For J > 0, the string-breaking dynamics will
show more complex behavior, as more high-lying states are
involved in the dynamics, but the general physics remains the
same.

2. Ground-state phase transition

The second phenomenon of (1 + 1)D QED that we are
interested in is a ground-state phase transition that breaks
spontaneously parity symmetry, as predicted by Coleman
[29]. (1 + 1)D QED possesses a nontrivial vacuum angle
θ ∈ [−π,π ], among which θ = ±π are gauge equivalent
configurations. The vacuum state with nonzero θ contains
a background electric field, E0 = θ/2π . At vacuum angle
θ = π , there are two vacuum candidates if the gauge-matter
coupling is zero, which have no excitation of fermionic matter
nor the gauge field, but nonzero background field E0 = ±1/2.
The two possibilities are energetically degenerate and gauge
equivalent, and are connected to each other by the parity
transformation.

In the limit of large fermion rest mass, m/g → ∞, the
ground state of the model in the thermodynamic limit L → ∞
will be one of these two states as they contain no fermionic
excitations. Thus parity symmetry is spontaneously broken,
leading to a nonzero order parameter 〈E〉 = ±1/2. On the
other hand, for sufficiently small m/g > 0, proliferation
of charge-anticharge pairs due to nonzero fermion-gauge
coupling will restore the broken symmetry, and the ground
state of the model is a parity-invariant disordered state,
with 〈E〉 = 0. This parity-symmetry-breaking phase transition
appears in both the continuum model and its lattice counterpart.
It is convenient to use the parameter of the continuum model,
m/g, as the indicator of the phase transition, which is related
to the parameters of the LGT by g = 2

√
JV and m = μ.

Such a quantum phase transition has been studied extensively
through numerical methods [46,47], which show that it lies in
the universality class of the 1D transverse-field Ising model,
with critical exponents ν = 1 for the correlation length and
β = 1/8 for the order parameter.
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B. Highly occupied boson model (HOBM)

The direct quantum simulation of Eqs. (4) and (5) in
quantum-optical platforms is challenging, as the representation
of Ui,i+1 requires the proper designation of a 2D quantum-rotor
Hilbert space on each link. Instead, motivated by experimental
possibilities in trapped ions as will be discussed below in
Sec. III, we introduce the following LGT.

Its essence, illustrated in Fig. 1(b), is a replacement of
the rotor gauge-field operators of the Kogut–Susskind for-
malism by bosonic DOFs, Ui,i+1 → Ub

i,i+1 = a
†
i,i+1/

√
N and

Ei,i+1 → Eb
i,i+1 = a

†
i,i+1ai,i+1 − N . The resulting interaction

Hamiltonian reads

HHOBM = − J√
N

∑
i

(τ+
i a

†
i,i+1τ

−
i+1 + H.c.)

+ μ

2

∑
i

(−1)iτ z
i + V

∑
i

(a†
i,i+1ai,i+1 − N )2. (6)

In this replacement, the electric field is taken to evolve around
some offset value N , such that the bosonic Fock state |N〉bi,i+1
is mapped to the zero electric field state |0〉i,i+1. The local
gauge generator now takes the form

Gi = 1
2

[
τ z
i + (−1)i

] − (a†
i,i+1ai,i+1 − a

†
i−1,iai−1,i). (7)

As long as the system is initialized in a bosonic Fock state
with the Gauss law implemented, the interaction Hamiltonian
HHOBM will keep the system in the gauge-invariant subspace
satisfying the Gauss law GiG = 0.

This model preserves strict gauge symmetry, as the bosonic
commutation rules lead to the required commutation rela-
tion [Eb

i,i+1,U
b
i,i+1] = Ub

i,i+1. However, replacing the rotor
by the more easily controllable bosonic DOFs comes with
the price of sacrificing unitarity of the parallel transporter,
[Ub†

i,i+1,U
b
i,i+1] = 1/N . Unitarity is recovered in the limit

N → ∞.
Importantly, the differences between the highly occupied

boson model (HOBM), Eqs. (6) and (7), with the Kogut–
Susskind formalism, Eqs. (4) and (5), are controlled by the
parameter N , which can be tuned in experiment. For systems
of finite size L under open boundary conditions, the largest
theoretically possible boson-number deviation from N that
is allowed by the Gauss law is 1 + 
L/4� on a single link,
where 
X� is the largest integer not larger than X. Thus, for
N � L, we can expect the HOBM to recover the finite-size
(1 + 1)D lattice QED. To go to the thermodynamic limit, the
correct order of limits is limL→∞ limN→∞. Subsequently, we
will quantify these statements in more detail, first in the string-
breaking dynamics, and then in the scaling behavior of the
ground-state phase transition.

1. String-breaking dynamics

Since string-breaking dynamics will in principle involve
all the physical states, it serves as a good measure of how
well the HOBM approximates the original lattice QED across
the energy spectrum. We analyze the real-time string-breaking
dynamics on a lattice of size L = 12 with open boundary
conditions. The initial state is a highly unstable single-meson
state, in which an anticharge (down-spin) sits at the left

FIG. 2. String-breaking dynamics on a lattice with L = 12 sites,
as a quantitative measure of how reliably the HOBM approximates
the lattice QED. Parameters are μ = V = 0.2J , and the initial state
is a charge-anticharge pair at the boundary of the lattice connected
by a string of electric field. (a) The electric-field string breaks by
spontaneous creation of charge-anticharge pairs, as indicated by a
reduction of the absolute value of the space-averaged electric-field
strength, 〈E(t)〉. The HOBM (light solid line and squares) manifests
similar string-breaking dynamics to that of lattice QED and reaches
quantitative agreement over the considered times for moderate N .
After additional time averaging (dashed), the curves for both models
are hard to discern. (b) The time-averaged error, ε(t), quantifying the
difference between the HOBM and lattice QED, remains bounded
during time evolution and is suppressed by higher boson number
N . (c) Also under varying the matter–gauge-field coupling J , ε(t)
remains always bounded (here shown at t = 40π/J as an example),
and is suppressed with larger boson number N .

boundary of the lattice while a charge (up-spin) sits at the
right boundary, with a string of electric field connecting them.

In Fig. 2(a), we show the exact evolution of the space-
averaged electric field, 〈E(t)〉 = ∑L−1

i=1 〈Ei,i+1(t)〉/(L − 1).
Already for N = 10 a rough agreement between the HOBM
and the lattice QED is reached, which becomes excellent for
N = 50. We also plot the space- and time-averaged electric
field, defined as 〈〈E(t)〉〉 = ∫ t

0 dt ′〈E(t ′)〉/t , which allows us to
quantify how the long-time limit is approached. The curves for
the two models are hardly discernible, even for only N = 10.
Since 〈〈E(t)〉〉 extracts low-frequency components in the time
evolution, this agreement indicates that already with N = 10
the low-lying spectrum of the two models is practically the
same. When N � L, the full spectrum of the HOBM recovers
that of the lattice QED.

To further quantify the difference between HOBM and lat-
tice QED, we introduce the space- and time-averaged electric-
field difference ε(t) = 1

t

∫ t

0 dt ′|〈E(t ′)〉HOBM − 〈E(t ′)〉QED|. As
shown in Figs. 2(b) and 2(c), ε(t) remains bounded during time
evolution and decreases with increasing N . These findings
indicate that the HOBM can faithfully represent the dynamics
of (1 + 1)D lattice QED.

2. Ground-state phase transition

As a second illustration, we study the parity-symmetry-
breaking quantum phase transition of the lattice QED at
vacuum angle π [29,46,47]. Figure 3(a) displays the order
parameter 〈E〉 across the quantum critical region from exact
diagonalization of systems up to L = 16, for both lattice QED
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FIG. 3. Quantitative analysis of Coleman’s parity-symmetry-
breaking phase transition at vacuum angle π , for both lattice QED and
the HOBM. The coupling parameter is chosen as ga = 0.3, which
locates the quantum critical point of lattice QED at (m/g)c = 0.297
[47]. (a) The phase transition is quantified by the order parameter
〈E〉, with a slight shift between the HOBM and lattice QED. (b), (c)
Finite-size scaling for (b) the order parameter at criticality and (c)
the position of the pseudocritical point. Boson occupation number
N ∈ [10,200], while curves from light to dark blue denote increasing
lattice sites L = 10,12,14,16,18. The rescaled data collapse onto a
single curve, suggesting that the HOBM has the same quantum critical
behavior as lattice QED, as long as N → ∞ faster than L → ∞.

and the HOBM. The precise position of the critical point is
shifted at finite N , but as we will show now the replacement
of gauge fields by boson operators does not affect the critical
scaling behavior.

In the critical region, one expects a universal scaling for the
order parameter in the lattice QED as [47]

〈E〉QED ∼ L�φ(L1/νh), (8)

where φ is a universal function, h = m/g − (m/g)c is the
distance from the quantum critical point, and we have assumed
the finite-size cutoff 1/L to be the most relevant perturbation,
i.e., 1/L � hν . The precise position of (m/g)c depends on the
other dimensionless parameter ga; nevertheless the critical
exponents ν = 1 and � = −β/ν = −1/8 are independent
of the lattice discretization ga [47]. For the HOBM, we
assume 1/N as another relevant perturbation, and write down
a tentative scaling ansatz

〈E〉HOBM ∼ L�′
φ′(L1/ν ′

h,L1/η′
N−1), (9)

with a universal function φ′, still assuming 1/L � hν ′
,N−η′

.
Here, �,ν and �′,ν ′,η′ are two, a priori different, sets of
critical exponents.

We now demonstrate numerically that the critical exponents
�′ and ν ′ are in fact the same as those of (1 + 1)D QED. Fol-
lowing Ref. [17], we map (1 + 1)D QED and the HOBM to the
equivalent long-range-interacting spin models that facilitate
numerical investigation, for which we perform exact diagonal-
ization on finite lattices of size L ∈ [10,18] and with various
boson occupation offsets N ∈ [10,200], and study their finite-
size scaling behavior across the quantum critical region. At
the critical point, i.e., h = 0, we expect 〈E〉c

HOBM/〈E〉c
QED ∼

L�′−�φ′′(L1/η′
N−1), where φ′′(L1/η′

N−1) = φ′(0,L1/η′
N−1).

As displayed in Fig. 3(b), we obtain a perfect scaling collapse
for various choices of L and N , which indicates that � = �′.
To determine ν ′, we calculate the pseudocritical point hpc,
defined as the value of m/g where ∂〈E〉/∂h reaches its
maximum. From Eqs. (8) and (9), and using �′ = �, we expect
the scaling behavior h

pc
HOBM/h

pc
QED ∼ L1/ν ′−1/νφ′′(L1/η′

N−1).
The perfect scaling collapse in Fig. 3(c) indicates that also
ν = ν ′. The results shown in Figs. 3(a)–3(c) are performed at
ga = 0.3, but we have checked that a similar scaling collapse
happens also at other values of ga. These results indicate that
the proposed HOBM has the same quantum critical behavior as
(1 + 1)D lattice QED. What is more, the two scaling collapses
in Figs. 3(b) and 3(c) show that the scaling ansatz (9) is indeed
valid with η′ � 0.8. This means that, with decreasing 1/N ,
the HOBM approaches lattice QED in a well-controlled and
continuous manner.

In Sec. III, we discuss a feasible experimental scheme to
realize the HOBM with trapped ions. Importantly, however,
the above general analysis is independent of experimental
platforms and may also be fruitful, for example, for quantum
simulators based on superconducting qubits.

C. Quantum link model (QLM)

Before discussing a possible realization of the HOBM,
we want to briefly remark on a related truncation scheme
for LGTs, the quantum link model (QLM) [30–33]. The
QLM formalism preserves the local gauge invariance strictly
by expressing the gauge field living on the link as spin
operators in a proper spin-S representation [see Fig. 1(c)].
For the (1 + 1)D U(1) model considered here, the conversion
from the standard Kogut–Susskind formalism to the QLM is
straightforward, by replacing in Eqs. (1) and (2) the parallel
transporter Ui,i+1 (U †

i,i+1) by the spin variable s+
i,i+1 (s−

i,i+1) and
the electric field Ei,i+1 by sz

i,i+1. Since [s+
i,i+1,s

−
i,i+1] = 2sz

i,i+1,
the parallel transporter realized in this way is not unitary.
The representation approaches the standard Kogut–Susskind
formulation in the large-S limit [7,8]. Remarkably, represen-
tations with modest S already provide qualitatively similar
physics to the standard LGT. For example, for (1 + 1)D QED
considered here, the corresponding S = 1

2 QLM manifests
parity-symmetry-breaking quantum phase transition, the same
as the lattice QED at vacuum angle π , and the S = 1 QLM
displays string-breaking dynamics [21,49].

Since in QLMs the gauge variables on the links have
finite-dimensional Hilbert spaces [see Fig. 1(e)], they are
very appealing for quantum simulations [7,8]. For example,
quantum simulators for Abelian and non-Abelian QLMs
with cold atoms in optical lattices have been proposed in
Refs. [49,50], with an emphasis on observing the underlying
physics in a small-S setting, rather than taking the S → ∞
limit. In Sec. IV, we will describe a scheme to build an
analog quantum simulator of the S = 1

2 Abelian QLM in
(1 + 1) space-time dimensions in trapped ions with modest
experimental demands. While this scheme obtains systematic
deviations for increasing ion numbers, it strongly improves
the working energy scale over existing proposals [16], and
may thus provide an alternative to the HOBM for small-scale
proof-of-principle experiments.
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III. A QUANTUM SIMULATOR OF (1 + 1)D LATTICE QED:
THE HOBM SCHEME

In this section, we propose and discuss a scheme to simulate
the HOBM, by encoding the spins in Eq. (6) in ionic internal
states, while the bosonic gauge fields are represented by local
vibrational quanta of the ions. The scheme can be scaled up
to tens of ions trapped in an array of microtraps. The bosonic
occupation offset N is controlled by initial-state preparation,
allowing the quantum simulator to approach smoothly the
standard (1 + 1)D lattice QED. Moreover, by exploiting
phonons as active DOFs participating in the dynamics of
the gauge theory, the proposed quantum simulator works on
a favorable energy scale compared to typical decoherence
rates. We first discuss in detail the engineering of the HOBM
Hamiltonian with the microscopic building blocks from the
trapped-ion toolbox, after which we move on to discuss
experimental issues, including initial-state preparation and
numerical predictions for a modest-size quantum simulator.

A. Trapped-ion implementation of the HOBM

In this section, we introduce our envisioned experimental
setup and show how the HOBM can be realized within it by
designed sideband-addressing using lasers.

1. Employed degrees of freedom: Pseudospins
and localized phonon modes

Our envisioned setup consists of L ions, each trapped in a
local potential minimum, which form a string of microtraps
in space, as can be generated with designed surface-trap
electrodes [51–54]. The internal DOFs of the ions are restricted
to two electronic levels and can be described by a collection of
pseudospin operators. Their Hamiltonian is Hs = ∑

l ωegσ
z
l ,

with σ z
l the Pauli operator associated with ion l and ωeg the

corresponding electronic transition frequency. We use these
pseudospin DOFs to represent the spin-matter τi appearing in
Eq. (6).

To encode the bosonic gauge fields ai,i+1 in Eq. (6), we
consider a special arrangement of the transverse frequencies of
individual microtraps along the ion string, so that the collective
phonon modes describing the transverse vibration of the ions
are effectively localized between two nearest-neighbor ions.
We will use these localized phonons to represent the bosonic
gauge fields. In the following, we shall first briefly review
the physics of the phonons in a microtrap setting in as far as
pertinent to the present proposal. Then, we move on to the
engineering of these phonon modes by local adjustment of the
trapping frequencies of individual microtraps.

We assume that the microtraps are nearly equally spaced
along the string with the distance between neighboring trap
centers being a constant d. Similarly to the linear Paul
traps [55,56], the balance between local trapping potential
and mutual Coulomb interaction determines the equilibrium
position of the ions, around which they vibrate. We assume the
trapping frequencies along radial x,y directions are far larger
than those along the axial z direction, so that the ions form a
1D chain. Due to the symmetry of this 1D geometry, in the
harmonic regime of small-amplitude vibrations, the motions of
the ions in different directions decouple [56], Hph = ∑

α Hα
ph,

with α = x,y,z, and

Hα
ph =

∑
l

(pα
l )2

2MI
+ 1

2
MI

∑
lm

V α
lmrα

l rα
m, (10)

where MI is the ion mass, rα
l is the deviation of the lth ion

along the α direction from its equilibrium position, and pα
l

is the conjugate momentum. The strength of the quadratic
potential induced by the Coulomb interaction, V α

lm, depends on
the distance between the ions in their equilibrium configuration
[57],

V α
lm =

⎧⎨
⎩

(ωα
l )2 − γα

∑
n�=l

e2/MI

4πε0|z0
l −z0

n|3 , l = m,

γα
e2/MI

4πε0|z0
l −z0

m|3 , l �= m,
(11)

with γx,y = 1,γz = −2. Here, ωα
l is the trapping frequency

along the α direction of the lth microtrap, and z0
l is the

equilibrium position of the lth ion. The above Hamiltonian
Eq. (10) can be diagonalized by defining collective phonon
modes shared by the whole string of ions, rα

l = ∑
q Mα

lq(cα†
q +

cα
q )/

√
2MIεα

q , yielding

Hα
ph =

∑
q

εα
q cα†

q cα
q . (12)

The matrix Mα diagonalizes V α
lm,

∑
lm Mα

lqV
α
lmMα

mq ′ =
δqq ′ (εα

q )2, and relates the local vibration of the ions to collective
phonon modes.

In view of the experimental progress in local control of the
trapping frequencies for individual ions [54,58], we consider
in the following a suitable segmentation of the microtrap
frequencies, where the collective phonon modes become
localized between pairs of ions (see Fig. 4 as an illustration).
To this end, we choose the frequency of the lth microtrap along
the x direction as

ωx
l = ωx +

⌊
l − 1

2

⌋
�T + 1 + (−1)l

2
δT , (13)

while in the y direction

ω
y

l = ωy +
⌊

l

2

⌋
�T + 1 − (−1)l

2
δT . (14)

Here, ωx(y) is a (large) global trapping frequency that we
assume equal for each ion. On top of this, the trapping
frequency is adjusted locally by two frequency offsets, �T

and δT . We will use δT further below to adjust the parameter J

of the model Eq. (6), while �T will serve to suitably engineer
the vibrational modes. To this end, we choose the frequencies
to satisfy the condition

�T � δT ∼ max
[
V

x(y)
l,l+1

]
/ωx(y), (15)

in which V α
l,l+1/ωα measures the hopping rate of the quanta of

local vibrations between ion l and l + 1 along the α direction
[59].

With the choice of Eqs. (13) and (14), ωx
2n−1 is near-resonant

to ωx
2n, in the sense that their frequency difference δT is

comparable to the hopping rate of local vibrational quanta.
In contrast, ωx

2n and ωx
2n+1 have a frequency difference ∼ �T ,

far larger than their mutual coupling strength. Under such a
trap arrangement, the local vibrations of the (2n − 1)th and the

052321-6



ANALOG QUANTUM SIMULATION OF (1 + 1)- . . . PHYSICAL REVIEW A 94, 052321 (2016)

1 2 3 4 5 6
1 2 3 4 5 6

0

0.5

1

ql1 2 3 4 5 6
1 2 3 4 5 6

0

0.5

1

ql

m
ax

[|M
α
−

M
α 0
| lq

]

L

(a) (b)

(c)

x

y

T
T

T
T

T

quantum
data bus

x x + B x +m B

y y + B y +m B

ideal case non-ideal case

x

y
z

α = x
α = y(d) α = x

α = y

|Mx
lq| |My

lq|

FIG. 4. Engineering of localized radial phonon modes in a string of microtraps. (a) The radial trapping frequencies ωx,y increase by �T

along the chain in a stepwise fashion, with an offset of one lattice site between x (blue) and y (green). The large trapping-frequency mismatch
�T effectively localizes hybridized phonon modes within pairs of ions. Phonon modes cα

l and cα
l+1 are shared by ions l and l + 1 (with α = x

for l = odd and α = y for l = even). In each pair, the phonon mode cα
l is chosen to encode the bosonic gauge field, while the residual phonon

cα
l+1 serves as quantum data bus to transmit interactions. (b) Calculation of the matrix M

x(y)
lq , which diagonalizes the vibrations, for realistic

parameters (9Be+ ions, with the trap parameters �T = 2π × 500 kHz, δT = 2π × 5 kHz, ωx = ωy = 2π × 5 MHz, and distance between trap
centers d = 30 μm). The leakage of Mα

lq out of pairs of ions is well below 0.01 along both x and y directions, showing that the phonons are
efficiently localized in pairs of ions. (c) Since the trapping frequency cannot be increased infinitely, scaling to long ion chains requires repetition
of elementary blocks containing a few pairs of ions [such as depicted in panel (a)]. A global trapping-frequency offset �B between each block
eliminates long-range interblock hopping of the localized phonons. (d) For realistic parameters, the leak-out of vibrational modes outside of
the desired pair remains well below 0.01 even for a large number of blocks. Here, �B = 2π × 50 kHz, with other parameters the same as
in panel (b); block size is 6 ions, and the number of blocks is in the range of 1–10. The leak-out is measured by the maximum element of
|Mα − Mα

0 |, where Mα is the normal-mode distribution matrix in the α direction, and the block diagonal Mα
0 is its zeroth-order approximation.

Two situations are considered: the ideal case, where the radial trapping frequencies are designated by Eqs. (18) and (19), and the nonideal case,
where a local randomness of the trapping frequencies, uniformly distributed in 2π × [−30,30] kHz, is added on top of Eqs. (18) and (19), to
reflect the uncertainties in the frequency control in experiments.

2nth ions along the x direction hybridize into two collective
phonon modes, which contain little contribution from the
vibration of other ions because of their large frequency
mismatch. Similarly, along the y direction, ωy

2n is near-resonant
to ω

y

2n+1, while being far off-resonant to all the other trapping
frequencies. The mutual Coulomb interaction hybridizes these
vibrations into two collective phonon modes shared mainly by
the 2nth and (2n + 1)th ions.

These localized radial phonon modes are exploited to build
the bosonic gauge fields ai,i+1 in Eq. (6). To be more concrete,
a2n−1,2n is encoded by cx

2n−1, the (2n − 1)th localized phonon
along the x direction, while a2n,2n+1 is encoded by c

y

2n [see
Fig. 4(a)]. The remaining radial phonon DOFs, namely cx

2n

and c
y

2n+1, will be exploited as quantum data buses to transmit
the interaction between nearest-neighbor ions (see Sec. III A 2
below). Here, the radial phonon modes are labeled so that c

x(y)
q

connects adiabatically to the local vibration of the qth ion in
the x (y) direction in the d → ∞ limit, where d is the distance
between neighboring trap centers.

As can be seen in Fig. 4(b), the desired hybridization
of phonon modes is well achievable with realistic exper-
imental parameters. It is possible to quantify the residual
undesired coupling between phonon modes in perturba-
tion theory in the small parameter V α

lm/(�T ωα). In zeroth
order, the matrix Mx(y) that diagonalizes the couplings

of local vibrations becomes block-diagonal, Mx � Mx
0 =

diag(T12,T34, . . . ,T2n−1,2n, . . . ) and similarly My � M
y

0 =
diag(1,T23,T45, . . . ,T2n,2n+1, . . . ,1). The 2 × 2 matrix Tl,l+1

diagonalizes the near-resonant blocks consisting of ion l and
l + 1, with l = odd in the x direction and l = even in the y

direction,

Tl,l+1 =
(

cos θl,l+1 sin θl,l+1

− sin θl,l+1 cos θl,l+1

)
, (16)

where the angle θl,l+1 characterizes the distribution of the two
localized modes within the pair of ions l and l + 1,

θl,l+1 =

⎧⎪⎨
⎪⎩

1
2 arctan

(
2V x

l,l+1

V x
l+1,l+1−V x

l,l

)
, l = odd,

1
2 arctan

(
2V

y

l,l+1

V
y

l+1,l+1−V
y

l,l

)
, l = even.

(17)

By tuning the small frequency offset δT within the near-
resonant pairs, the relative strength between V

x(y)
l,l and V

x(y)
l+1,l+1

can be adjusted via Eq. (11), thus allowing us to control
the angle θl,l+1. In Appendix A, we calculate perturbatively
the elements of Mx(y) beyond the lowest order, i.e.,
[Mx(y) − M

x(y)
0 ]lq , and find they are bounded by max[V x(y)

l,l+1]/
(�T ωx(y)). Under the condition (15), the leak-out of these
localized phonon modes from the corresponding pair of ions
is thus negligible.
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The microtrap design in Eqs. (13) and (14) requires a
stepwise increase of the trapping frequencies along the radial
directions. Thus, its scalability is restricted by the strength of
radial confinement achievable in experiments. Nevertheless,
the rapid dipolar power-law decay of the coupling V α

lm [see
Eq. (11)] allows for further scaling-up of such a local-phonon
setup. We envision a microtrap array consisting of several
blocks, each block containing a string of segmented microtraps
constructed as Eqs. (13) and (14) [see Fig. 4(a)], while a global
trapping-frequency shift �B between blocks avoids the cross
talk of local phonons in different blocks, as schematically
illustrated in Fig. 4(c). In such a microtrap array, the frequency
selections for the lth trap, ω

x(y)
l , can be generalized from

Eqs. (13) and (14) to

ωx
mNI +j =ωx + m�B +

⌊
j−1

2

⌋
�T + 1 + (−1)j

2
δT , (18)

ω
y

mNI +j+1 = ωy + m�B +
⌊

j + 1

2

⌋
�T + 1 + (−1)j

2
δT ,

(19)

where NI = even is the number of microtraps in each block,
m � 0 is the block index, and 1 � j � NI specifies individual
traps in each block. The frequency hierarchy Eq. (15) is
generalized to

�T � �B � δT ∼ max
[
V

x(y)
l,l+1

]
/ωx(y), (20)

which leads to an upper bound max[V x(y)
l,l+1]/[(NI −

1)3�Bωx(y)] to the cross talk between localized modes in
different blocks (see Appendix A for a detailed derivation).

The scalability of such a microtrap array can be estimated
as L � NI�T /�B , where L is the total number of ions. For
ion arrays even longer, the local phonons in far-separated
blocks become near-resonant due to the accumulation of
block-dependent trapping energy offset m�B . Because of
the finite accuracy of frequency control, they can become
accidentally resonant, leading to significant leak-out of the
phonon modes. Another practical limitation is the zigzag
transition [60] in such a microtrap array, which depends on
the trapping frequencies in all three spatial directions as well
as the spacing between individual traps in experiments [61].

The conditions in Eq. (20) can be experimentally realized
in current microfabricated surface ion traps [51–54]. For
concreteness, we consider the surface-trap setup for 9Be+ in
the NIST group [52], in which the typical value of radial
trapping frequencies is ωx(y) = 2π × 5 MHz, while in the
axial direction ωz = 2π × 0.5 MHz. The separation of nearest-
neighbor trap centers is d = 30 μm, leading to a Coulomb
coupling V

x(y)
l,l+1 ∼ (2π × 0.12 MHz)2. To satisfy Eq. (20),

one can choose δT � 2π × 5 kHz, �B � 2π × 50 kHz, and
�T � 2π × 500 kHz, suppressing undesired mode leak-out
within the same block to below max[V x(y)

l,l+1]/�T ωx(y) < 0.01.
We assume each block contains NI = 6 ions, leading to
a mode leak-out between different blocks of max[V x(y)

l,l+1]/
[(NI − 1)3�Bωx(y)] < 0.005. This is confirmed by the numer-
ical calculation presented in Figs. 4(b) and 4(d), where we
calculate the maximum leak-out of localized phonon modes in
ion arrays consisting of various number of ion blocks. The

extremely small leakage of the local phonons out of each
ion-pair shows that even at a length of 60 ions the engineered
vibrational modes behave as desired.

2. Spin–gauge-field coupling: Design of sideband transitions

With the matter-field and gauge-field DOFs at hand, the
next step is to design the desired spin–gauge-field coupling
[the term ∝ J in Eq. (6)]. This is achieved by applying two
local laser beams to each ion, one along the x direction (with
frequency ωLx

l and Rabi frequency �x
l ) and the other along

the y direction (with frequency ω
Ly

l and Rabi frequency �
y

l )
respectively, as illustrated in Fig. 5(a). The corresponding
light-matter coupling Hamiltonian is [55]

Hd =
∑
l,α

�α
l

2
exp

(−iωLα
l t + ikα

l rα
l

)
σ+

l + H.c., (21)

with α = x,y. The total Hamiltonian of the system is then H =
Hs + Hx

ph + H
y

ph + Hd, with Hs = ∑
l ωegσ

z
l /2 describing the

dynamics of the internal electronic DOFs and the phonon
Hamiltonian Hα

ph given by Eq. (12).
In the frame rotating with Hs + Hx

ph + H
y

ph, and neglecting
the leak-out of the localized phonons from each ion pair,
the total Hamiltonian can be written as H = ∑

l H
l,l+1,

where Hl,l+1 describes the interaction within the lth element,
consisting of the ions l and l + 1 and the two local phonon
modes, cα

l and cα
l+1 (with α = x for l = odd while α = y for

l = even), coupled by the two local lasers �α
l and �α

l+1 [see
Fig. 5(a)]. The engineering of the spin–gauge-field interaction
becomes independent in each element, with the two local
lasers �α

l and �α
l+1 driving designed transitions only to the

sidebands involving the gauge-field phonon mode cα
l and the

data-bus phonon mode cα
l+1. In the following, we take as an

example the first element, (l,l + 1) = (1,2), α = x, of which
the relevant internal transitions are illustrated in Fig. 5(b). The
corresponding Hamiltonian in the rotating frame is

H 1,2 =
2∑

l=1

�x
l

2
exp

[−iδLx
l t + ikx

l xl(t)
]
σ+

l + H.c., (22)

where δLx
l = ωLx

l − ωeg is the detuning between laser fre-
quency and internal transition frequency. The momentum
kick from the photon provides the coupling to the vibrational
modes. It can be expressed in terms of the two localized phonon
modes by(

kx
1 x1(t)

kx
2 x2(t)

)
=

(
ηx

1,1 cos θ1,2 ηx
1,2 sin θ1,2

−ηx
2,1 sin θ1,2 ηx

2,2 cos θ1,2

)

×
(

cx
1e−iεx

1 t

cx
2e−iεx

2 t

)
+ H.c., (23)

where the angle θ1,2 is given in Eq. (17), and the Lamb-Dicke
parameter is defined as ηx

lq = kx
l /

√
2MIεx

q . In the following,
we shall neglect the small difference between the Lamb-Dicke
parameter defined inside the same block; i.e., we take
ηx

1(2),1(2) � ηx
1,2.

We assume the near-resonant condition δLx
1 = εx

1 + εx
2 +

δ + μ and δLx
2 = εx

2 + δ − μ, with δ � εx
1(2). Here, μ � δ is

a small offset, which will contribute to the correct alternating
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FIG. 5. Design of the HOBM Hamiltonian Eq. (6). (a) The
engineering is independent in each basic element consisting of two
neighboring ions l and l + 1. The design of the spin–gauge-field
interaction ∝ J involves the pseudospins with states {|g〉l , |e〉l}
and {|g〉l+1 , |e〉l+1}, as well as the local phonon modes cα

l and
cα
l+1, and uses two local laser beams �α

l and �α
l+1 (with α = x for

l = 2n − 1 = odd and α = y for l = 2n = even). The creation of the
gauge-field energy term ∝ V relies on a strongly detuned standing-
wave radiation (red sinusoid) to the first ion in the element, applied
in the x (y) direction depending on l = odd (even). (b) Generation of
the spin–gauge-field coupling illustrated for the element consisting
of ions 1 and 2. �x

1 drives the first ion on the second blue sideband
consisting of the excitation of one gauge-field phonon (cx

1 ) and one
data-bus phonon (cx

2 ), while �x
2 drives the second ion on the first blue

sideband of the data-bus phonon cx
2 . The detuning δ is chosen far

larger than the sideband-transition strengths, so the resonant process
is a flip-flop transition between the two pseudospins. (c) Creation of
the gauge-field energy term ∝ V , exemplified for the first element,
where a standing wave acts on ion 1 along the x direction. Here, we
consider the example of 9Be+ ions, where the pseudospin is encoded
by the two hyperfine levels (F,mF ) = (1,1) and (F,mF ) = (2,2)
of the 2S1/2 manifold. The standing wave drives off-resonantly the
optical transitions from both spin states to the 2P1/2 manifold, with
detuning �sw

1 and Rabi frequency �sw
1 . For large enough �sw

1 , it
creates nearly equal ac Stark shifts to both spin-up and spin-down
states, as discussed in detail in Sec. III A 3.

mass term of the spins. In the Lamb-Dicke regime ηx
1,2

√
N �

1, we can expand the photon kick into a series of phonon-
sideband transitions. Here, we consider only the near-resonant
terms, as shown schematically in Fig. 5(b), and defer the
analysis of the impact of far off-resonant transitions to other
sidebands to Appendix B. The near-resonant transitions of
ion 1 consist of the three blue second sidebands of the two
local phonons, of which the transition frequencies are ωeg +
2εx

1 ,ωeg + εx
1 + εx

2 ,ωeg + 2εx
2 , respectively. The near-resonant

transitions of ion 2 include the two blue first sidebands, with
transition frequencies ωeg + εx

1 and ωeg + εx
2 . Keeping only

these near-resonant sidebands, we thus have

H 1,2 = −1

2

[
f1,2 cos θ1,2 sin θ1,2σ

+
1 c

x†
1 c

x†
2 e−i(δ+μ)t

+ f1,2 cos2 θ1,2σ
+
1 (cx†

1 )2e−i(δ+εx
2 −εx

1 +μ)t

+ f1,2 sin2 θ1,2σ
+
1 (cx†

2 )2e−i(δ−εx
2 +εx

1 +μ)t

+ g1,2 sin θ1,2σ
+
2 c

x†
1 e−i(δ+εx

2 −εx
1 −μ)t

− g1,2 cos θ1,2σ
+
2 c

x†
2 e−i(δ−μ)t

] + H.c., (24)

with f1,2 = �x
1(ηx

1,2)2 and g1,2 = i�x
2η

x
1,2, which measure

the strengths of the corresponding sideband transitions of
each ion. Further, assuming the conditions |f1,2|

√
N sin θ1,2,

|g1,2| cos θ1,2 � 2|δ| and |f1,2|N,|g1,2|
√

N sin θ1,2 � 2|δ ±
(εx

2 − εx
1 )|, the terms in Eq. (24) are off-resonant due to

their relatively small sideband-transition strengths. In these
conditions, we assumed that the operators cx

1 describe the
gauge-field mode, which has occupation ∼ N , while the
operators cx

2 describe the quantum data bus with occupation
� 0.

The system dynamics is governed by the effective Hamilto-
nian H

1,2
eff obtained through second-order perturbation theory

on top of Eq. (24), taking all resonant processes into account.
H

1,2
eff can be decomposed into three contributions, H

1,2
eff =

H 1,2
sg + H 1,2

sm + H
1,2
ls,n , in which H 1,2

sg and H 1,2
sm are the desired

spin–gauge-field coupling and spin-mass term in the HOBM
respectively, while H

1,2
ls,n describes undesired ac Stark shifts

(light shifts) induced by the excitation-deexcitation cycle
involving the near-resonant sideband transitions of individual
ions. Explicitly, in the frame where the pseudospins rotate with
frequency μ, we have

H 1,2
sm = μ

2

(
σ z

2 − σ z
1

)
, (25)

whereas the effective spin–gauge-field coupling comes from
two resonant second-order processes on top of Eq. (24), one
involving the first and the fifth lines therein, and the other
involving the second and the fourth lines,

H 1,2
sg = − 1√

N
J1,2σ

+
1 c

x†
1 σ−

2 + H.c., (26)

with the effective tunneling strength J1,2 = √
Nf1,2g

∗
1,2

cos2 θ1,2 sin θ1,2[1/(4δ) − 1/2(δ + εx
2 − εx

1 )]. Other second-
order processes generate undesired additional ac Stark shifts
H

1,2
ls,n. In Appendix B, we make a thorough analysis of these

terms, together with the ac Stark shifts from far off-resonant
sideband transitions. We show they are gauge-invariant, and
can be highly suppressed, thus inducing negligible detriment
to the reliability of the proposed quantum simulator.

The above analysis applies equally to any other element
involving ions l and l + 1, as long as the labels are replaced
correspondingly, i.e., 1 → l, 2 → l + 1, and x → α with
α = x for l = odd, while α = y for l = even. To contribute
correctly to the staggered mass term, the small detuning offset
μ should be replaced by μ → (−1)l+1μ for the ion pair
(l,l + 1). The tunneling strength in each element can be made
constant, i.e., Jl,l+1 = J , by tuning the Rabi frequency �

x(y)
l

of the local lasers. The effective Hamiltonian for the whole
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system is thus Heff = ∑
l H

l,l+1
eff . This correctly reproduces

the spin–gauge-field couplings and spin mass terms in Eq. (6)
via Eqs. (25) and (26).

3. Gauge-field energy: Phonon nonlinearity

To complete the HOBM Hamiltonian, Eq. (6), we require
the gauge-field energy term ∝ V . It can be realized in a similar
manner to what has been proposed in Ref. [62] for generating
phonon-phonon interactions. For the element consisting of the
ion pair (l,l + 1), we envision applying a standing-wave laser
beam to the lth ion, of which the wave vector is along the x (y)
direction depending on l = even (odd) [see Fig. 5(a)]. The
applied standing-wave field is far off-resonant to the internal
electronic transitions of the ions. Nevertheless, it induces an
appropriate amount of nonlinearity to the local phonon modes
through the position-dependent ac Stark shift.

We assume that the pair of levels forming the pseudospin,
|g〉l and |e〉l , receive the same ac Stark shift from the standing-
wave light field. This can be realized, e.g., in the hyperfine-
qubit configuration for 9Be+ ions, where the pseudospin is
encoded by the two hyperfine levels (F,mF ) = (1,1) and
(F,mF ) = (2,2) of the 2S1/2 manifold, as depicted in Fig. 5(c).
We take the element (l,l + 1) = (1,2) as an example. Two
phase-locked counterpropagating lasers are applied to ion 1
along the x direction. These beams are linearly polarized
along the quantization axis of the electronic DOFs of the ions,
thus forming a standing wave, which drives off-resonantly the
optical transitions between the 2S1/2 and the 2P1/2 manifold.
The two off-resonant transitions shown in (c) have the same
Rabi frequency, with a typical value of �sw

1 ∼ 2π × 1 GHz at
the antinode of the standing wave. The detuning of the standing
wave has a typical value of �sw

1 ∼ 2π × 1 THz, far larger than
the hyperfine splitting in the ground/excited state manifold
(on the order of 10 GHz [63]). As a result, the standing-wave
laser creates nearly equal ac Stark shifts to both spin-up and
spin-down states.

We assume the equilibrium position of ion 1 is at one of
the antinodes of the applied standing wave laser. The position-
dependent ac Stark shift of ion 1 can be written as

H 1,2
sw =

∣∣�sw
1

∣∣2

4�sw
1

cos2
(
ksw

1 x1
)

=
∣∣�sw

1

∣∣2

4�sw
1

(
α+βc

x†
1 cx

1 + γ (cx†
1 cx

1 )2
)+O

[(
ηsw

1

)4]
, (27)

where 2π/ksw
1 is the spatial periodicity of the standing wave,

α = 1 − (ηsw
1 )2 + (ηsw

1 )4, β = −2(ηsw
2 )2[1 + (ηsw

1 )2] cos2 θ1,2,
γ = 2(ηsw

1 )4 cos4 θ1,2, and ηsw
1 = ksw

1 /
√

2MIε
x
1 , and nonreso-

nant terms have been neglected in the rotating-wave approx-
imation. After reabsorbing the frequency correction ∝ β into
the local vibrational frequency εx

1 , we arrive at the desired
gauge-field energy term with effective coupling strength V =
γ |�sw

1 |2/4�sw
1 . By replacing the labels (1,2) → (l,l + 1) and

cx
1 → c

x(y)
l depending on l = odd (even), the above analysis

applies equally to any other element (l,l + 1). By tuning the
Rabi frequency of the standing-wave lasers in each element,
we can adjust their phonon nonlinearity to the same value V ,
which gives the desired gauge-field energy term in Eq. (6).

B. Experimental feasibility

Having outlined the construction of a trapped-ion quantum
simulator for the HOBM in Sec. III A, in this section we discuss
its experimental feasibility. In Sec. III B 1, we first analyze the
scalability and error sources of the proposed scheme. Then,
we discuss in Sec. III B 2 the possibility to realize it in an array
of individual traps. Based on these analyses, in Sec. III B 3
we perform a numerical study of the predicted performance of
such a trapped-ion quantum simulator.

1. Practical limitations and imperfections

As discussed in Sec. III A, the segmentation scheme of the
microtrap frequencies allows for scaling up to several tens
of ions, as long as the radial phonon modes are effectively
localized. Nevertheless, there exists another technical restric-
tion for the number of ions. The HOBM scheme requires
initial preparation of the gauge-field phonons into a Fock
state with phonon number N , and quantitatively approaches
(1 + 1)D lattice QED only in the regime N � L, where L

is the number of lattice sites. The useful number of ions L

in the quantum simulator is thus in practice limited by the
maximum achievable phonon Fock state in the initial-state
preparation. Already twenty years ago, experiments using
repeated sideband pulses created Fock states with N = 16
with good accuracy [64], and there seem to be no fundamental
roadblocks for the preparation of higher Fock states. Our
envisioned quantum simulator thus has the scalability to a
few tens of ions, when implemented with current trapped-ion
technology.

Additionally, to simplify the analyses of the sideband
selections in Sec. III A 2, we have assumed the perfect
localization of the radial phonon modes within each ion pair. In
practice, the small but nonzero leak-out of these local phonons
communicates with the ions far away. Thus, the addressing
lasers for each ion pair also stimulate sideband transitions
involving phonon modes outside the pair. They correspond
to an unphysical, gauge-symmetry-violating process where a
fermion is created but the gauge field changes at a different
link. Fortunately, such sideband transitions are extremely
weak, as their strength is proportional to the phonon leakage
[which is extremely small; see Fig. 4(d) as a realistic example],
and are highly off-resonant, thanks to the large frequency
difference between the phonons localized in different ion
pairs. Thus, they induce negligible detriments to the quantum
simulation, and the ideal localization of the phonons remains
an excellent approximation.

Finally, in the design of the spin–gauge-field interaction,
the laser configuration in Fig. 5(b) inevitably induces ac
Stark shifts due to off-resonant virtual population of the
phonon sidebands of individual ions. As explained in detail
in Appendix B, upon appropriate compensation by additional
laser beams in each element, all the relevant ac Stark shifts can
be summed up to a compact form

L−1∑
l=1

l+1∑
m=l

[
El,l+1

m + F l,l+1
m

(
c
α†
l cα

l − N
)]

σ z
m, (28)

with α = x for l = odd, and α = y for l = even. The energy
scale E

l,l+1
l for the phonon-independent ac Stark shift is
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typically larger than the working energy scale of the quantum
simulator. However, it can be compensated nearly completely
by adjusting the detuning of the local laser beams, δLx

l →
δLx
l + 2E

l−1,l
l + 2E

l,l+1
l and δ

Ly

l → δ
Ly

l + 2E
l−1,l
l + 2E

l,l+1
l .

The phonon-dependent ac Stark shifts cannot be compensated
by adjusting the laser frequency, but their energy scale F l,l+1

m

can be made far smaller than the working energy scale of the
quantum simulator, as quantified in Appendix B, using typical
experimental parameters. Thus, once compensated properly,
the ac Stark shifts induce negligible errors to the performance
of the quantum simulator.

2. Experimental parameters in a surface-trap realization

The envisioned array of microtraps is best realized by
current microfabricated surface traps [51–54], where the ions
are trapped above the plane of electrodes in electromagnetic
potential landscapes. These offer the necessary control to
implement the segmented trapping potential described in
Sec. III A 1. In this section, we consider such a surface-trap
realization, by presenting typical experimental parameters and
analyzing possible experimental imperfections.

We take the microfabricated surface traps for 9Be+ ions in
the NIST group [52] as a concrete illustration. We consider
a trap array consisting of 2 blocks of segmented traps, i.e.,
12 ions in total, built according to the scheme described
in Sec. III A 1, with the same trap parameters as therein.
The gauge-field phonons are prepared initially in the Fock
state with N = 10. Since the engineering of the HOBM
Hamiltonian is independent in each element consisting of
two nearest-neighbor ions (l,l + 1), we once again take the
first element (l,l + 1) = (1,2) as an example. The trapping
frequencies, as selected in Sec. III A 1, lead to θ1,2 = 0.25
for the local-phonon distribution, and εx

2 − εx
1 � 2π × 10 kHz

for the mode splitting. We assume ηx
1,2 = 0.08, thus fulfilling

the Lamb-Dicke condition ηx
1,2

√
N � 1. By choosing δ =

−2π × 50 kHz, the two lasers are near-resonant to the desired
sideband transitions [see Fig. 5(b)], while other sidebands are
detuned at least ∼ ωx(y) = 2π × 5 MHz. We further assume
the Rabi frequencies �x

1 = 2π × 180 kHz and �x
2 = 2π ×

210 kHz, which leads to the corresponding sideband-transition
strengths f1,2 = 2π × 1.2 kHz and g1,2 = 2π × 17 kHz. As
a result, the effective spin–gauge-field coupling strength
becomes J = 2π × 120 Hz, on the order of energy scales
of current experiments with effective spin models [65–67].
By adjusting the small frequency offset μ, one can create
easily the spin mass term at the same energy scale as J .
To generate the desired gauge-field nonlinearity, we choose
�sw

1 � 2π × 1 GHz, �sw
1 � 2π × 1 THz, and ηsw

1 � 0.08,
yielding V � 2π × 20 Hz.

Realistic surface ion traps contain uncertainties in the
control of the trap frequencies as aimed at by Eqs. (18)
and (19), due to the complexity in engineering the potential
landscapes above the electrodes [54,58]. Nevertheless, the
effectiveness of the frequency segmentation only relies on
the clear separation of the energy scales, Eq. (20). As long
as the radial frequencies of individual traps are controlled
to an accuracy significantly smaller than �B , the phonon
modes are still localized efficiently. To reflect the limited
accuracy of frequency control we add a local randomness,

uniformly distributed in the interval 2π × [−30,30] kHz, to
the radial frequency of each trap. As shown in Fig. 4(d),
the calculated normal phonon modes are still highly con-
centrated in pairs of ions. Thus, the full scheme presented
in Sec. III A applies well, even with such experimental
imperfections.

Among the sources of decoherence in trapped-ion systems,
phonon heating due to the electromagnetic field noise is the
most detrimental one. Operation at cryogenic temperature can
reduce phonon heating significantly. For example, the phonon
heating rate for axial phonons at ωz � 2π × 2.3 MHz can
be reduced as low as 70/s for ion spacing d ∼ 30 μm in
the cryogenic surface traps in the NIST group [59]. Even
lower phonon heating rates are being actively pursued [68].
We expect similar low heating rates for the radial phonon
modes considered here. Additionally, fluctuations of the global
magnetic field (which determines the quantization axis of the
pseudospins) result in dephasing of the internal DOFs of the
ions. Nevertheless, for Hamiltonians that preserve the total
polarization

∑
l σ

z
l , e.g., for the HOBM Hamiltonian Eq. (6)

considered here, the dynamics in decoherence-free subspaces
possesses coherent evolution for as long as 10 ms, as shown
in Refs. [69,70]. Since these decoherence rates are smaller by
nearly one order of magnitude than the working energy scale
of the proposed quantum simulator, we expect that they have
a small effect on the performance of the proposed quantum
simulator, at least over short simulated times.

3. Numerical studies of a modest-size quantum simulator

Based on the experimental parameters in Sec. III B 2,
in this section we study numerically the string-breaking
dynamics and Coleman’s quantum phase transition on a
modest-size quantum simulator consisting of L = 12 ions, as a
quantitative measure of the reliability of the present proposal.
To estimate the potential errors in the performance of the
proposed quantum simulator, we compare the behavior of the
ideal model, Eq. (6), to the dynamics taking the systematic
imperfections due to ac Stark shifts into account, choosing
experimentally feasible parameters J = 2π × 120 Hz, and
V,μ = 2π × 25 Hz. The initial boson occupation offset is
N = 10, realistic for current trapped-ion technology.

Figures 6(a)–6(c) present the expected string-breaking
dynamics. The exact evolution of the space-averaged electric
field 〈E(t)〉 and the space- and time-averaged electric field
〈〈E(t)〉〉 are compared to the behavior of the ideal HOBM as
well as lattice QED. The systematic ac Stark shifts only slightly
alter 〈E(t)〉, while the difference in 〈〈E(t)〉〉 is hard to discern.
Moreover, the resulting error is bounded during time evolution
[Fig. 6(b)], and decreases with increasing N [Fig. 6(c)].
With other experimental imperfections, especially the deco-
herence rates discussed in Sec. III B 2, it will be possible to
observe the dynamics of string breaking over several steps
of 1/J .

In Fig. 6(d), we show the behavior of the space-averaged
electric field across the parity-symmetry-breaking phase tran-
sition at vacuum angle π , and compare it to that of the HOBM.
Again, the error due to the ac Stark effect only slightly shifts
the critical point, and the quantum simulator is expected to
represent the ground-state phase diagram well.
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FIG. 6. Numerical predictions for string breaking and Coleman’s quantum phase transition on a modest-size quantum simulator, built
according to the HOBM scheme proposed in Sec. III, compared to that of the ideal HOBM and (1 + 1)D QED. (a) String-breaking dynamics in
a system of L = 12 ions, over a relatively long evolution period t ∈ [0,40π/J ], to benchmark the imperfections induced by the ac Stark shifts.
The experimental parameters are chosen so that J = 2π × 120 Hz, V = μ = 2π × 25 Hz, and the local radial phonon modes which encode the
gauge-field DOFs are prepared into an initial Fock state with occupation number N = 10. (b), (c) Similar to the case of the ideal HOBM, Fig. 2,
the time-averaged error for the quantum simulator, ε(t) = ∫ t

0 dt ′|〈E(t ′)〉QS − 〈E(t ′)〉QED|/t , is bounded during time evolution and is suppressed
with increasing boson number N . The error is dominated by the ac Stark shifts, which however only induce small deviations from the ideal
results and do not break the Gauss law. (d) Comparison of the critical behavior of the order parameter 〈E〉, between the quantum simulator and
the ideal HOBM, in the Coleman’s quantum phase transition at vacuum angle π . We choose J = 2π × 120 Hz and V = 2π × 25 Hz, yielding
g = 2

√
JV � 2π × 55 Hz. By changing the small detuning μ = m, we scan across the quantum critical point, and find that the quantum

simulator represents the critical behavior of the HOBM faithfully.

IV. A QUANTUM SIMULATOR OF THE S = 1
2 QLM:

THE ENERGY LATTICE SCHEME

The quantum simulator for the HOBM proposed above
allows for the exploration of rich physics and has good
scalability, but requires an advanced experimental apparatus
with high tunability of vibrational frequencies. In this section,
we propose and discuss an alternative scheme based on
the S = 1

2 QLM (see Sec. II C), which is feasible with
current trapped-ion technology such as available in the setup
described in Ref. [71,72]. This scheme requires only phase-
coherent second-sideband transitions, and even improves on
the energy scale compared to the HOBM scheme discussed
in the preceding sections. These advantages come at the
price of certain intrinsic (though gauge-invariant) errors,
which reduce the quantitative agreement with the ideal QLM
for increasing ion number, making the quantum simula-
tor proposed here ideal for small-scale proof-of-principle
experiments.

To benchmark the proposed quantum simulator, we study
the quench dynamics across the parity-symmetry-breaking
quantum phase transition present in the S = 1

2 QLM, as a
simple example of false vacuum decay, a nonperturbative
phenomenon that exists commonly also in more complicated
gauge theories [73]. Below, we first briefly introduce the
model we exploit to design the quantum simulator, a bosonic
realization of the S = 1

2 QLM. Then, we move on to discuss
in detail a possible implementation in a trapped-ion setup, as
well as potential sources of errors.

A. Bosonic realization of the S = 1
2 QLM

As introduced in Sec. II C, QLMs can be viewed as a special
class of spin models with three-body interaction terms plus

gauge constraints. Thus, in principle they can be realized by
exploiting the internal pseudospin DOFs of trapped ions, as
discussed in Ref. [16]. However, the energy scale of such
higher-order spin-spin interactions is suppressed by the small
Lamb-Dicke parameter η. An interesting feature of the S =
1
2 QLM can help overcome this difficulty: the spin matter
σi can be replaced by bosonic DOFs ci . As we shall prove
in a moment, in the physical gauge sector prescribed by the
Gauss law, double occupation of bosons is forbidden, thus
making the bosonic theory equivalent to the original S = 1

2
QLM. This fact allows us to exploit the phonon DOFs in the
ion trap to design a quantum simulation scheme that works
on an energy scale containing fewer powers of Lamb-Dicke
parameters.

To arrive at the bosonic realization of the S = 1
2 QLM,

we start from its spin version, which is obtained straightfor-
wardly by the substitutions Ui,i+1 → s+

i,i+1, Ei,i+1 → sz
i,i+1 in

Eqs. (4) and (5). Note that the matter spins τi in Eqs. (4)
and (5) are Pauli matrices, while the gauge spins si,i+1

here are S = 1
2 representations of the angular-momentum

algebra (which contain a prefactor 1
2 compared to Pauli

operators). Further, it proves convenient to remove the alter-
nating signs in these equations by a staggered rotation [16],
U = ∏

i=odd exp[−iπ (τ x
i /2 + sx

i−1,i)], to both the matter (τi)
and the gauge (si,i+1) spins, resulting in the transformation
Uτ

z(y)
i U † = (−1)iτ z(y)

i , Us
z(y)
i,i+1U

† = (−1)i+1s
z(y)
i,i+1. The spin

Hamiltonian is then transformed to

H = −J
∑

i

(τ−
i s+

i,i+1τ
−
i+1 + H.c.) + μ

2

∑
i

τ z
i , (29)

while the local gauge generator is converted to

Gi = (−1)i
[

1
2

(
τ z
i + 1

) + (
sz
i,i+1 + sz

i−1,i

)]
. (30)
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FIG. 7. The energy lattice scheme for the quantum simulation of
a S = 1

2 U(1) quantum link model in (1 + 1) space-time dimensions.
(a) In this scheme, the S = 1

2 gauge link variable si,i+1 is encoded
in the internal pseudospin states of the ith ion, |g〉i and |e〉i . The
matter field ci is realized by the collective phonon mode cz

q with same
index number, ordered by energy εz

q . The Gauss law, implemented
by initial-state preparation, forbids double excitation of the phonons,
thus rendering the bosonic model a valid S = 1

2 QLM. (b) The gauge-
field–matter interaction can be realized by near-resonant second red-
sideband transitions on individual ions, which can be implemented
straightforwardly with single-ion addressability.

The prefactor (−1)i in Eq. (30) is unimportant as we stay in
the physical Coulomb sector G prescribed by GiG = 0, and
will be omitted in the following.

The bosonic realization of the S = 1
2 QLM is obtained

simply by replacing the spin matter by bosonic DOFs in
Eq. (29),

H = −J
∑

i

(cis
+
i,i+1ci+1 + H.c.) + μ

∑
i

c
†
i ci , (31)

and similarly for the local gauge generator

Gi = c
†
i ci + (

sz
i,i+1 + sz

i−1,i

)
. (32)

Compared to the HOBM, Eqs. (6) and (7), the role of bosons
and pseudospins is interchanged.

The proof that Eqs. (31) and (32) yield a valid gauge theory
in the QLM formalism is straightforward: The quantum link
operators si,i+1 are S = 1

2 spins with eigenvalues ± 1
2 . When

enforcing the Gauss law GiG = 0, the boson number c
†
i ci at

a single site can only be 0 or 1. This means in the physical
sector G the bosons are equivalent to S = 1

2 spins. We note,
however, such a feature is unique only to the S = 1

2 QLM. For
S � 1 the Gauss law does not forbid higher occupancy of the
bosonic DOFs, and the representation of matter-field operators
by bosonic ones is no longer valid.

B. Implementation with trapped ions

To implement the QLM Hamiltonian, Eq. (31), we consider
an array of L ions confined in a standard linear Paul trap,
with axial collective phonon modes cz

q , q = 1 . . . L, distributed
among all ions. As sketched in Fig. 7, we order these by
increasing energy (i.e., εz

q < εz
q+1 with q = 1 being the axial

COM mode) and identify each bosonic matter field ci in
Eq. (31), i = 1 . . . L, with the phonon mode cz

q with the
same index number, q = i. To implement periodic boundary

conditions, we further make the identification cL+1 = c1. This
construction effectively yields a lattice in energy with sites
labeled by q. The S = 1

2 link variables si,i+1, on the other
hand, are encoded in the internal states of the ions.

The matter–gauge-field interaction term, cis
+
i,i+1ci+1, can

then be realized as a set of properly designed second-sideband
transitions, which can be achieved straightforwardly with
the capability of single-ion addressing. For concreteness,
we consider a microwave driving scheme as in Ref. [74],
although the idea also applies to laser driving schemes with
coherent single-site addressability (see, e.g., Refs. [72]). In
this scheme, each ion is driven independently by a plane-wave
microwave field (with frequency ωM

l and Rabi frequency �l).
Assuming that the microwave fields are applied along the axial
z direction (with wave vector kl), the total Hamiltonian for such
radiation-ion interaction can be written in the frame rotating
with the spin and phonon frequencies [similar to Eq. (22), but
coupling to axial collective phonon modes] as

Hd = 1

2

L∑
l=1

�le
−i�l texp

[
i
∑

q

ηz
lqM

z
lqzq(t)

]
σ+

l + H.c.,

(33)

with zq(t) = cz
qexp(−iεz

q t) + (cz
q)†exp(iεz

q t). The detunings
are defined as �l = ωM

l − ωeg , while the Lamb-Dicke param-
eters are ηz

lq = kl/
√

2MIε
z
q with MI the ion mass.

For each ion l, the microwave detuning �l is chosen indi-
vidually so as to drive the internal transition to the second red
sideband, with simultaneous absorption of one phonon with
frequency εz

l and another one with frequency εz
l+1. For this, we

require the near-resonant condition �l = −εz
l − εz

l+1 + 2μ,
where the small detuning offset 2μ accounts for the nonzero
mass of the matter fields. In the microwave setup of Ref. [71],
the required single-ion addressing is realized in a linear Paul
trap, by (i) applying a linear static magnetic gradient to modify
the hyperfine transition frequency of the ions along the string
and (ii) simultaneously applying microwave fields to drive
the transitions of specific ions. Since adjacent ions have a
transition frequency difference much larger than the radiation
linewidth, individual driving is highly accurate in the sense
that cross talk between different ions and microwave fields is
negligible [75].

Keeping only the near-resonant terms, and moving into a
frame where the axial phonons rotate with the frequency μ,
the Hamiltonian Eq. (33) takes a form analogous to the QLM
Hamiltonian Eq. (29),

H = −
∑

l

(Jlclσ
+
l cl+1 + H.c.) + μ

∑
l

c
†
l cl, (34)

with Jl = �lη
z
l,lη

z
l,l+1M

z
l,lM

z
l,l+1/2. By the identification

σ+
l → s+

l,l+1, Eq. (34) recovers the QLM Hamiltonian. The
tunneling strength can be made homogeneous, Jl = J , by
properly arranging the Rabi frequencies �l along the ion string.
By exploiting the phonon DOFs to encode the matter field, the
present energy lattice scheme improves on the energy scale
O(η4) of the proposal [16] by two orders of η. Moreover, it is
on the same order of η’s as existing quantum simulations of
spin models [65–67], with the additional advantage of being a
resonant instead of a perturbative interaction.
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Finally, the Gauss law, GiG = 0, with Gi as given in
Eq. (32), is enforced by initial-state preparation (in contrast
to the proposal [16] where it is protected by a large energy
constraint). In the subsequent section, we show that the
interaction term realized through Eq. (34) works on an energy
scale much higher than the typical decoherence rates in
trapped-ion experiments, so the Gauss law remains intact
during a typical experimental period. The employed set of
designed second-sideband transitions thus realizes the desired
S = 1

2 QLM.

C. Performance under realistic imperfections

While the quantum simulator proposed in this section is
characterized by excellent energy scales and straightforward
experimental implementation, there are nevertheless some
possible sources of errors. Most important are off-resonant
transitions to sidebands that we neglected in Sec. IV B. As
we will demonstrate now, these will not break the Gauss
law and do not significantly modify the dynamics for small
systems.

For illustration purposes, we study numerically the quench
dynamics of the S = 1

2 U(1) QLM, which resembles false
vacuum decay, with various error sources taken into account.
As mentioned in Sec. II C, the S = 1

2 QLM displays a parity-
symmetry-breaking quantum phase transition: for small μ the
ground state (the so-called false vacuum) of the system is
parity-invariant, indicated by the order parameter 〈E〉 = 0,
while for sufficiently large μ the system favors one of the
parity-symmetry-broken states as its ground state (the true
vacuum), with 〈E〉 �= 0. For the bosonic version of the QLM
realized here, the order parameter is 〈E〉 = ∑

l(−1)lσ z
l /L,

where the alternating minus sign is due to the staggered
rotation leading to Eq. (29). We quench across this transition
by initially preparing the system in |ψspins〉 ⊗ |ψphonons〉 =
|gegege〉 ⊗ |000000〉, a parity-symmetry-broken ground state
at large μ, and then reducing the mass of the matter field
μ abruptly at time t = 0 to μ = 0, thus realizing an inverse
situation to false-vacuum decay. This leads to coherent
oscillation of 〈E〉 in a finite-size system. To calibrate the
dynamics of a real system in experiment, we numerically
propagate the system under the full Hamiltonian Eq. (33) (in
a frame rotating with the frequency offset μ), rather than
the near-resonant one Eq. (34). The phonon operators are
truncated to a maximum occupation Nb

max = 4, sufficiently
large for the study here. In Fig. 8(a), we show the resulting
dynamics in a system with lattice size L = 6, and compare
the ideal evolution to the one with the imperfections due to
off-resonant transitions and ac Stark shifts, which we quantify
now.

As mentioned in the previous section, the idea of the current
simulation scheme is to be near-resonant to desired second
sidebands while keeping away from any other unwanted
transitions. A strong undesired contribution, which however
can be compensated, comes from ac Stark shifts from the
carrier transition of each ion,

Hls0 = −
∑

l

|�l|2
4�l

σ z
l . (35)

E
(t

)

J t/2π

QLM
QS, Hls0 compensated
QS, Hls0 not compensated

l
G

2 l

J t/2π

E

J t/2π

(b)

(a)

(c)

FIG. 8. Numerical comparison of the dynamics after a quench,
between the ideal S = 1

2 QLM and a small-scale quantum simulation
according to the energy lattice scheme proposed in Sec. IV. The
lattice size is chosen as L = 6, and the matter–gauge-field coupling
strength J = 2π × 500 Hz. The system is initially prepared in a
parity-symmetry-broken ground state at large μ. For t > 0 it evolves
under the Hamiltonian at μ = 0, which favors a parity-symmetry-
restored ground state. (a) Coherent oscillations of the order parameter
〈E〉 = ∑

l(−1)lσ z
l /L. The carrier-transition light shift, Hls0, if not

compensated, induces significant errors (orange dotted curve). If Hls0

is compensated by a local adjustment of the detuning of the driving
frequencies, the quantum simulator (blue dashed curve) simulates
the quantum link model (red solid curve) well, with small gauge-
invariant errors induced by light shifts from first-sideband transitions.
(b) Evolution of the order parameter for the quantum simulator, taken
from (a) but with amplified resolution. The fast, small-amplitude
oscillations are due to off-resonant transitions to other sidebands.
They have negligible influence on the quantum simulation. (c) The
Gauss law remains intact to an extremely high degree during the
entire quench dynamics, since the main errors due to ac Stark shifts
are gauge invariant. The insignificant violation of the Gauss law is
due to small off-resonant transitions to other sidebands, as seen in
panel (b).

Its energy scale is significantly higher than the working energy
scale of the proposed quantum simulator (which is ∝ η2).
However, by controlling the detuning �l → �l − |�l|2/(2�l)
of the microwave fields, these phonon-number-independent
ac Stark shifts can be compensated nearly completely. This
is demonstrated in Fig. 8(a): the uncompensated evolution
(orange dotted line) deviates significantly from the ideal evo-
lution, but the compensated dynamics (blue dashed) remains
close to the desired one (red solid). Thus, in practice these
phonon-number-independent shifts prove insignificant.

The residual deviation from the ideal dynamics seen in
Fig. 8(a) arises mainly from phonon-number-dependent ac
Stark shifts due to first-sideband transitions, which cannot be
compensated in this manner. They can be written compactly
as

Hls1 = −
∑
lq

(E−
lq + E+

lq)cz†
q cz

qσ
z
l , (36)
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with E±
lq = |�l|2(Mlqηlq)2/4(�l ± εq), where we omitted the

phonon-independent part of Hls1, as it can be compensated
along with Hls0. These ac Stark shifts describe an undesired
interaction between spin and phonon populations. Their energy
scale is suppressed by a factor |�l|/(�l ± εq) compared to the
energy scale of the desired QLM, Eq. (34). However, their
weight grows faster as the number of ions increases, due to the
double summation

∑
lq . This increase limits the scalability

of the present scheme to a small number of ions. Through
numerical studies, we find that good quantitative agreement
can be achieved in a standard linear Paul trap for L � 7 ions.
Importantly, however, all the above ac Stark shifts are gauge-
invariant errors, as [Hls0(1),Gi] = 0. Consequently, they only
modify the dynamics within the physical Hilbert space, but
do not break the Gauss law, and the model, though modified,
remains a valid gauge theory.

Additionally, there are off-resonant transitions that may
break the Gauss law, but these are strongly suppressed by
their large detuning. Figure 8(b) displays a zoom on the time
evolution, where all relevant sideband transitions are taken into
account. In this strong magnification, one can identify fast but
extremely small-amplitude oscillations of the order parameter
〈E〉. These fast oscillations do not affect the slow dynamics
of the false vacuum decay, and they break the Gauss law only
extremely weakly, as seen in Fig. 8(c).

Finally, a realistic quantum simulation has intrinsic sources
of decoherence, in particular phonon heating as well as
dephasing of the pseudospin DOF [55]. Nevertheless, these
detriments are small compared to the excellent energy scale of
the proposed scheme. To be more concrete, we consider L = 6
ions, with �1 = 2π × 150 kHz, η1,1 = 4

√
3η1,2 � 0.15, and �l

arranged accordingly by requiring Jl = J1 = J . The resulting
gauge-field–matter coupling strength is J � 2π × 500 Hz.
This energy scale is by one order of magnitude larger than
the typical dephasing rate of the spins (about a few hundred
Hz [76], since, contrary to Sec. III, the dynamics here is
not restricted to decoherence-free subspaces that conserve
total spin), as well as heating rates of the axial phonons
(which in a linear Paul trap can be as low as a few quanta/s;
see Refs. [77,78]). The energy lattice scheme thus provides
a practical platform for proof-of-principle experiments with
current technology—for small systems the physics of the
ideal U(1) QLM is reliably reproduced, qualitatively and
quantitatively.

V. CONCLUSION

In summary, we have demonstrated that the combination
of internal pseudospins and localized or collective vibrational
modes provides a rich toolbox for implementing lattice gauge
theories in trapped-ion chains, relying on current technology.
To illustrate our ideas, we have proposed two approaches
to quantum-simulate (1 + 1)D QED. By a careful analysis
of the most relevant error sources, as well as numerical
calculations with realistic parameters, we have demonstrated
the experimental feasibility of both schemes. Besides trapped
ions, the introduced models may be of interest also for other
quantum simulation platforms such as superconducting qubits.

With the first scheme, we have introduced a lattice gauge
theory that approximates the U(1) link variables by bosons at

high occupation number, while the fermionic matter is encoded
in pseudospin DOFs. Via a scaling analysis in the ground state
as well as numerical calculations of quench dynamics, we
have demonstrated that this model approaches (1 + 1)D QED
in a well-controlled manner, with good agreement already
at moderate boson occupation numbers. The implementation
of this scheme relies on purpose-engineered local trapping
frequencies and off-resonant sideband couplings with single-
site addressing. Considering realistic parameters, the scheme
works on energy scales of current experiments on effective spin
models, and is scalable to dozens of ions and thus could reach
the interesting regime where real-time dynamics becomes
inaccessible on classical computers.

The second scheme inverts the use of bosons and spins: the
gauge fields are represented by spins 1

2 in a QLM formalism;
this allows us to replace the fermions by bosons, enabling
an efficient implementation in trapped ions. The realization is
rather straightforward in setups with coherent multicolor laser
or microwave radiation, the main ingredient being a set of reso-
nant second-sideband couplings. It displays energy scales even
better than the first scheme. Though the discussed implemen-
tation has gauge-invariant errors that scale unfavorably with
increasing system size, we have demonstrated numerically by
studying the phenomenon related to false-vacuum decay that
it provides quantitatively reliable predictions for systems of
up to about 6 matter sites. This scheme is therefore ideally
suited for small-scale proof-of-principle experiments, where
the most relevant dynamics already becomes visible.

The present proposals open an avenue towards analog
quantum simulation of a simple but relevant lattice gauge
theory in state-of-the-art experiments. In the future, it will
be interesting to analyze how the proposed schemes can
be generalized to more complex lattice gauge theories. For
example, by exploiting two-dimensional ion crystals [79,80]
one could design bosonic lattice gauge theories in higher
dimensions, and it is conceivable that the use of a larger number
of vibrational modes in different spatial directions allows for
the realization of non-Abelian gauge theories.
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APPENDIX A: PERTURBATIVE CALCULATION
OF THE M MATRIX

The calculation of the matrix M
x(y)
lq in Sec. III A 1 is

done to the lowest order, i.e., considering only the hy-
bridization of phonon vibrations within each near-resonant
ion pair. It is straightforward to calculate corrections to M

x(y)
lq
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perturbatively, which helps bound the maximum leakage of
the localized phonon modes out of each ion pair. Thanks to
the frequency hierarchy, Eq. (20) in the main text, we can
choose the small expansion parameters as V

x(y)
ll′ /[�T ωx(y)] and

V
x(y)
ll′ /[�Bωx(y)], where V

x(y)
ll′ is defined in Eq. (11) whereas

�T and �B are the frequency offsets of the segmented trap
array, defined through Eqs. (18) and (19).

We consider a microtrap array consisting of several blocks,
each containing NI microtraps, as described in Sec. III A 1
and shown schematically in Fig. 4(c). For such a segmented
configuration, the lth microtrap can be alternatively specified
by two indices (mx,jx) using the unique decomposition l =
mxNI + jx , where mx � 0 is the block index while 1 � jx �
NI specifies individual traps inside the same block. Similarly,
through the decomposition l = myNI + jy + 1, where my �
0 and 1 � jy � NI , the same trap can be labeled by a set
of two indices (my,jy). Notice (mx,jx) and (my,jy) can be
different for the same l, due to the different segmentation of
the trapping potential along the x and the y direction (see
Fig. 4). The radial confinement strength of the lth trap, ω

x(y)
l ,

can thus be determined using these two sets of indices along
with Eqs. (18) and (19).

For this general setting, we still label the radial phonon
modes so that cx(y)

l connects adiabatically to the local vibration
of the lth ion in the x (y) direction in the d → ∞ limit, where
d is the distance between neighboring trap centers. Under this
convention, the phonon distribution matrix element Mx

lq with
first order corrections can be written as

Mx
ll′ = ± sin θl,l±1

[
δl±1,l′ + 1 − δl±1,l′(

ωx
l′
)2 − (

ωx
l

)2 V x
l±1,l′

]

+ cos θl,l±1

[
δll′ + 1 − δll′(

ωx
l′
)2 − (

ωx
l

)2 V x
ll′

]

+O

[(
V x

ll′
)2

ω2
x�

2
T

,

(
V x

ll′
)2

ω2
x�

2
B

]
, (A1)

where ± is chosen depending on l = odd (even), δll′ is the
Kronecker delta, θl,l+1 is defined in Eq. (17), and we have made
the convention θl,l−1 = θl−1,l . Similarly, along the y direction
we have

M
y

ll′ = ∓ sin θl∓1,l

[
δl∓1,l′ + 1 − δl∓1,l′(

ω
y

l′
)2 − (

ω
y

l

)2 V
y

l∓1,l′

]

+ cos θl∓1,l

[
δll′ + 1 − δll′(

ω
y

l′
)2 − (

ω
y

l

)2 V
y

ll′

]

+O

[(
V

y

ll′
)2

ω2
y�

2
T

,

(
V

y

ll′
)2

ω2
y�

2
B

]
, (A2)

where ∓ is chosen depending on l = odd (even).
With the help of Eqs. (18) and (19), it is then straightforward

to verify that for two ions l and l′ that do not form a near-
resonant pair, the cross talk between their individual vibrations

along the α direction (α = x,y) is bounded by

∣∣Mα
ll′

∣∣ �
max

[
V α

ll′ ,V
α
l±1,l′

]
∣∣(ωα

l′
)2 − (

ωα
l

)2∣∣
� max

[
max

[
V α

l,l+1

]
�T ωα

,
max

[
V α

l,l+1

]
(NI − 1)3�Bωα

]
, (A3)

where max[V α
l,l+1], α = x,y, is the maximum value of the

dipolar coupling strength between adjacent ions in the whole
ion array. The two quantities in the last line of Eq. (A3) have a
clear physical meaning: while the former bounds the leakage of
localized phonons to an off-resonant microtrap within the same
block, the latter quantifies the maximum cross talk between
two microtraps lying in different blocks.

APPENDIX B: AC STARK SHIFTS AND THEIR
COMPENSATIONS IN THE HOBM SCHEME

In the engineering of the spin–gauge-field coupling and
spin-mass terms as discussed in Sec. III A 2, the two applied
laser beams �α

l ,�α
l+1 in each element (l,l + 1) inevitably

induce ac Stark shifts to individual ions. In the present
appendix we make a detailed analysis of all relevant ac Stark
shifts, and present a concrete scheme to compensate them.
Since the laser-matter coupling is essentially independent in
each element, here we shall again make use of the first element
(l,l + 1) = (1,2) as a concrete example to illustrate our ideas.

We first quantify H
1,2
ls,n, the ac Stark shifts from near-

resonant sideband transitions as shown schematically in Fig. 5.
We assume that the radial phonon modes are initially ground-
state cooled, and neglect phonon-heating during the dynamical
evolution (which is a good approximation as long as the
phonon heating is far slower than the system dynamics, as ful-
filled by the cryogenic surface traps discussed in Sec. III B 2),
thus having c

x†
2 cx

2 � 0. H 1,2
ls,n can be written as the sum of the ac

Stark shifts of individual ions, H
1,2
ls,n = H

1,2
ls,n1 + H

1,2
ls,n2, where

H
1,2
ls,n1 = −|f1,2|2

8δ
cos θ2

1,2 sin2 θ1,2
[
c
x†
1 cx

1

(
σ z

1 − 1
) + σ z

1

]
− |f1,2|2 cos4 θ1,2

4
(
δ + εx

2 − εx
1

) [(
cx

1c
x†
1

)2 − c
x†
1 cx

1

(
2σ z

1 + 1
)]

σ z
1

− |f1,2|2 sin4 θ1,2

8
(
δ − εx

2 + εx
1

)σ z
1 (B1)

describes the ac Stark shifts due to the three near-resonant
second-sideband transitions of the first ion, while for ion 2 we
have

H
1,2
ls,n2 = − |g1,2|2 sin2 θ1,2

4
(
δ + εx

2 − εx
1

)(
c
x†
1 cx

1 + 1

2

)
σ z

2

− |g1,2|2
8δ

cos2 θ1,2σ
z
2 . (B2)

The sideband transition strengths are f1,2 = �x
1(ηx

1,2)2 and
g1,2 = i�x

2η
x
1,2, the same as in Sec. III A 2.

Besides these near-resonant sidebands, virtual transitions
to far off-resonant sidebands also give rise to ac Stark
shifts, which we denote as H

1,2
ls,o. Nevertheless, thanks to

the small Lamb-Dicke parameter, the ac Stark shifts from
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higher sideband transitions will decrease exponentially with
increasing the phonon-number difference in such a transition.
For our case, essentially only two far off-resonant transitions
contribute significant ac Stark shifts, namely the carrier
transitions and the (far off-resonant) first sideband transitions.
Similarly to H

1,2
ls,n, we can decompose H

1,2
ls,o into the contribution

from each ion in pair (1,2), H
1,2
ls,o = H

1,2
ls,o1 + H

1,2
ls,o2. For ion 1

we have

H
1,2
ls,o1 = −�x∗

1 f1,2 cos2 θ1,2
(
δ + εx

2 + εx
1

)
4
(
δ + εx

2

)(
δ + εx

2 + 2εx
1

) (
c
x†
1 cx

1 + 1

2

)
σ z

1

− �x∗
1 f1,2 sin2 θ1,2

(
δ + εx

1 + εx
2

)
4
(
δ + εx

1

)(
δ + εx

1 + 2εx
2

) σ z
1

−
∣∣�x

1

∣∣2

4
(
δ + εx

1 + εx
2

)σ z
1 , (B3)

in which the first two (third) lines come from the first-sideband
(carrier) transition, respectively. The contribution from ion 2
reads

H
1,2
ls,o2 = − |g1,2|2 sin2 θ1,2

4
(
δ + εx

2 + εx
1

)(
c
x†
1 cx

1 + 1

2

)
σ z

2

−|g1,2|2 cos2 θ1,2

8
(
δ + 2εx

2

) σ z
2 −

∣∣�x
2

∣∣2

4
(
δ + εx

1

)σ z
2 . (B4)

Other far off-resonant sidebands are detuned with the laser
frequency by at least ωx(y), while containing at least two
powers of ηx

1,2

√
N in their sideband transition strength.

Taking the typical experimental parameters as discussed in
Sec. III B 2, we find that they are below or on the order of
2π × 1 Hz, and thus can be safely neglected.

The relevant ac Stark shifts in the element (1,2) are thus only
the above, H

1,2
ls = H

1,2
ls,n + H

1,2
ls,o. Notice that they are gauge-

invariant, [H 1,2
ls ,Gi] = 0, where the local gauge generator Gi

is given by Eq. (7) in the main text. The ac Stark shifts do
not break the Gauss law, but only induce errors to the system
dynamics within the physical Hilbert space. In the following
we show that with appropriate compensation these errors can
be highly suppressed compared to the working energy scale of
the proposed quantum simulator.

Our compensation scheme consists of two ingredients.
First, we apply an additional laser beam (see Fig. 9) to each ion,
to compensate the most serious ac Stark shift errors, i.e., the
second line in Eq. (B1) and the first line in Eq. (B2). These ac
Stark shifts are dependent on the gauge-field phonon and thus
cannot be eliminated in simple ways, and their energy scale
is comparable to the working energy scale of the quantum
simulator. For ion 1, we assume the additional laser has Rabi
frequency �c

1, Lamb-Dicke parameter ηc1
1,2 � ηx

1,2, while its
frequency ωLc

1 = ωeg + εx
1 + εx

2 + δ′ is far from any sideband
transitions. Moreover, we choose δ′ so that the transition is
off-resonant to any transition driven by the two original lasers
�x

1(2). Thus, all its effects are the ac Stark shifts from virtual

sideband transitions, H
1,2
ls,c1 = H

1,2
ls,nc1 + H

1,2
ls,oc1, which can be

obtained straightforwardly from Eqs. (B1) and (B3) by the
replacement δ → δ′ and �x

1 → �c
1. Importantly, we assume

the condition |�x
1 |2/(δ + εx

2 − εx
1 ) � −|�c

1|2/(δ′ + εx
2 − εx

1 ),

ωeg

ωeg +ε2
x

ωeg +ε2
x +ε1

x

0

e
1

g
1

e
2

g
2

Ω1
c

δ '

ε2
x −ε1

x

ε2
x −ε1

x

ε2
x −ε1

x

δ ''

Ω2
c

FIG. 9. Compensation scheme of the ac Stark shifts, here shown
for the element (1,2) as an example. An additional laser beam, with
parameters (�c

l ,ω
Lc
l ), is applied to the first ion. It is off-resonant to

any transition inside the ion pair (1,2); nevertheless it induces an
appropriate amount of ac Stark shift, which compensates the part of
the light shift quadratic on the gauge-field phonon number induced
by �x

1 . Similarly, a laser beam with parameter (�c
2,ω

Lc
2 ) is applied

to ion 2, to compensate part of the light shift linearly dependent on
the gauge-field phonon number. The residual ac Stark shifts can be
compensated largely by local adjustment of the frequencies of the
two sideband laser beams ωLx

1 and ωLx
2 .

by which we eliminate ac Stark shifts quadratic in phonon
number. Similarly, the other compensation laser, with Rabi
frequency �c

2, Lamb-Dicke parameter ηc2
1,2 = ηx

1,2, and fre-
quency ωLc

2 = ωeg + εx
2 + δ′′ (off-resonant to any sideband

transitions), induces an appropriate amount of ac Stark shift to
ion 2, described by Eqs. (B2) and (B4) with the replacement
δ → δ′′ and �x

2 → �c
2. The requirement |�x

2 |2/(δ + εx
2 −

εx
1 ) � −|�c

2|2/(δ′′ + εx
2 − εx

1 ) then compensates the first term
in Eq. (B2).

Second, the residual ac Stark shifts in the element (1,2),
together with that induced by the additional lasers �c

1(2), can
be compensated to a large extent by local adjustment of
ωLx

1 and ωLx
2 , the detunings of the two sideband lasers (see

Fig. 5). Neglecting the tiny correction to the phonon vibrational
frequency (� 1 Hz) contained in the first line of Eq. (B1),
these ac Stark shifts are independent of or depend linearly
on the occupation number of the gauge-field mode, and can
be summed up to a compact expression as H

1,2
ls + H

1,2
ls,c =∑2

l=1[E1,2
l + F

1,2
l (cx†

1 cx
1 − N )]σ z

l . This can be generalized to
the whole array of ions, of which the total ac Stark shifts can
be written as

L−1∑
l=1

l+1∑
m=l

[
El,l+1

m + F l,l+1
m

(
c
α†
l cα

l − N
)]

σ z
m, (B5)

with α = x for l = odd while α = y for l = even. The phonon-
independent ac Stark shift ∝ El,l+1

m can be compensated
by adjustment of the frequencies of the local laser beams,
δLx
l → δLx

l + 2E
l−1,l
l + 2E

l,l+1
l and δ

Ly

l → δ
Ly

l + 2E
l−1,l
l +

2E
l,l+1
l . The residual terms mainly come from far off-

resonant first sideband transitions, as exemplified by the first
line in Eqs. (B3) and (B4). Their energy scale F l,l+1

m is
far smaller than the energy scale of the system dynamics
and thus has a tiny impact. This is clearly illustrated in
Fig. 6, where we compare the imperfect dynamics with these
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residual ac Stark shifts ∝ F l,l+1
m to the behavior of the ideal

HOBM.
As a concrete example, we consider the experimental

parameters for a surface-trap realization as presented in
Sec. III B 2. For the compensation beams in element (1,2),
we can chose δ′ � 2π × 80 kHz and |�c

1| � 2π × 270 kHz,
while δ′′ � 2π × 120 kHz and |�c

2| � 2π × 380 kHz. Without
the requirement of fine tuning, compensation of 90% of

such ac Stark shifts will suffice to suppress the error to be
smaller than the working energy of the quantum simulator by
one order of magnitude. The residual ac Stark shifts are on
the order of E

1,2
1(2) ∼ 2π × 1 kHz while F

1,2
1(2) ∼ 2π × 10 Hz.

Since the former can be compensated by adjustment of the
laser frequency, while the latter is far smaller than J , these
imperfections bring in only tiny detriment to the performance
of the proposed quantum simulator.
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