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The center-of-mass position of a single trapped atomic ion is measured and tracked in time with high preci-
sion. Employing a near-resonant radio frequency field of wavelength 2.37 cm and a static magnetic field gradient
of 19 T/m, the spatial location of the ion is determined with an unprecedented wavelength-relative resolution
of 5 × 10−9, corresponding to an absolute precision of 0.12 nm. Measurements of an electrostatic force on a
single ion demonstrate a sensitivity of 2.2 × 10−23 N/

√
Hz. The real-time measurement of an atom’s position

complements the well-established technique of scanning near-field radio frequency transmission microscopy
and opens up a novel route to using this method with path breaking spatial and force resolution.

Experimental techniques enabling high spatial resolution
of atoms, molecules, and larger particles are indispensible
tools for investigating microscopic and nanoscopic details of
matter, and, therefore are of fundamental interest in different
branches of science. Scanning near-field optical microscopy
[1] has been exploited extensively at wavelengths in the vis-
ible regime [2] and has been extended to the radiofrequency
(RF) regime [3, 4], to spatially resolve sub-micron features of
matter. The highest wavelength-relative resolution attained to
date was reported by Keilmann et al. [3] as ∆x/λ < 5×10−7

using wavelengths up to 20 cm (2π × 1.5 GHz). Recently,
electron spins in single nitrogen vacancy defect centers in dia-
mond were addressed selectively [5], and were used for mea-
suring magnetic fields, with a wavelength-relative resolution
of 2.8 × 10−6 using a wavelength of 10.4 cm (corresponding
to λ/c = 2.88 GHz, with velocity of light c) [6]. Combining
scanning force microscopy and magnetic resonance imaging
was proposed in 1991 [7] and demonstrated shortly after [8].
Todays implementations of this technique achieve a resolution
better than 10 nm [9]. Trapped atomic ions have been suc-
cesfully employed as ultrasensitive probes for magnetic fields
[10–12], electric fields, and forces in the yoctonewton regime
[13–17].

Here, using a single trapped atomic ion exposed to a static
magnetic field gradient and an RF field, we demonstrate a
wavelength-relative spatial resolution that is two orders of
magnitude higher compared to the best reported result to date
[3]. A transition between hyperfine states of the ion’s elec-
tronic ground state is (near-)resonantly driven by RF radia-
tion. The final state is then determined by detecting state-
selectively scattered resonance fluorescence. Thus, the ion’s
hyperfine splitting can be measured accurately using RF-
optical double resonance spectroscopy and the magnetic field
strength at its location is deduced from this measurement.
Since the ion is exposed to a spatially varying magnetic field
with known gradient, its position can be inferred from the
measured magnetic field strength. By applying an efficient
two-point measurement of the ion’s RF resonance, we demon-
strate how the ion’s position can be tracked in real time with
a wavelength-relative resolution of 5 × 10−9. This Letter is
organized as follows: First, the experimental apparatus and

the measurement method are described. Then the precise de-
termination of the spatial location of a single ion is reported.
Finally, the results are summarized.

Experimental Method. A single 171Yb+ ion is spatially
confined in a macroscopic linear Paul trap (Fig.1) . The effec-
tive harmonic trapping potential is characterized by axial and
radial secular trap frequencies of ωz = 2π × 108.104(8) kHz
and ωr = 2π×534.4(1) kHz, respectively. The ion is exposed
to an offset magnetic field of |B⃗| = 442.09(1) µT and a static
magnetic field gradient of |∂zB| = 19.07(2) T/m applied along
the axial direction [18]. The offset field lifts the degeneracy of
the hyperfine manifold, while the gradient, in addition, gives
rise to a position dependent energy splitting.

The spatial location of the ion is deduced from a measure-
ment of the hyperfine resonance frequency, ν near 12.6 GHz
corresponding to the magnetic dipole transition
|2S1/2 , F = 0 ⟩ ≡ |g⟩ ↔ |2S1/2 , F = 1,mF = +1 ⟩ ≡ |e⟩
in the elctronic ground state. Here, F is the quantum number
characterizing the total angular momentum and mF indicates
the magnetic quantum number (Fig. 1). The resonance fre-
quency, ν is determined by the magnetic field at the location
of the ion’s center of mass.

In order to implement RF-optical double-resonance spec-
troscopy [19], the ion is first Doppler cooled reaching a mean
phonon number n ≈ 80 in the axial trapping potential. The
ion is then initialized in state |g⟩ by applying laser radiation
near 369 nm tuned to the |2S1/2 , F = 1 ⟩ ↔ |2P1/2 , F = 1⟩
resonance. Then, a single RF pulse of fixed duration τ and
with variable frequency νRF around the resonance ν of the tran-
sition |g⟩ ↔ |e⟩ is applied, generating a superposition state
α |g⟩ + β |e⟩ (α, β ∈ C). To measure the RF resonance fre-
quency, the excitation probability |β|2 of state |e⟩ has to be
determined after the RF pulse is applied. This is achieved by
applying a laser field near 369 nm now resonant with the tran-
sition between states |e⟩ and |2P1/2, F = 0⟩. An ion in state
|e⟩ scatters resonance fluorescence, an ion in state |g⟩ does
not. The ion’s resonance fluorescence is collected and imaged
onto an electron-multiplying charge coupled (EMCCD) cam-
era. The ion’s internal state is projected on |e⟩ or |g⟩ depend-
ing on the outcome of this measurement [20]. This projective
measurement is repeated typically 50 times to estimate |β|2.
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FIG. 1. (a) A single 171Yb+ ion is confined in a linear Paul trap formed by two pairs of RF electrodes (in light grey, radial direction) and a
pair of DC electrodes (in light grey, z-direction). A pair of cylindrical permanent magnets mounted on the DC electrodes generates a static
magnetic field gradient ∂zB = 19.07(2) T/m along the z-axis. The ion is irradiated by an additional RF field with wavelength 2.37 cm (12.6
GHz) and by laser light. The inset shows a single ion’s resonance fluorescence near 369 nm imaged onto an EMCCD camera. (b) Partial
energy level scheme of 171Yb+(not to scale), showing the ground state hyperfine splitting. The hyperfine manifold of the ground state F=1
level is Zeeman split by an offset magnetic field. The RF resonance |g⟩ ↔ |e⟩ at angular frequency ν near of 2π× 12.6 GHz is magnetic field
sensitive to first order. The optical resonances near 369 nm used for initialization of the ion in state |g⟩ (1), and for Doppler cooling and state
selective detection of state |e⟩ (2) are also shown. (c) The magnetic field gradient results in a position dependent frequency ν of the |g⟩ ↔ |e⟩
resonance.

The excitation probability |β|2 after an RF pulse with dura-
tion τ and frequency νRF depends on the detuning δ = ν − νRF

from the resonance frequency. The duration τ of the RF pulse
is chosen such that it corresponds to a π pulse inverting the
population of the states |g⟩ and |e⟩ when δ = 0, that is,
τ = τπ = π/Ω0 where Ω0 is the Rabi frequency on reso-
nance. An exemplary measurement of the hyperfine resonance
|g⟩ ↔ |e⟩ is shown in Fig. 2(a). A fit of the experimental data
allows for extracting the center frequency ν of the resonance
line and thus the ion’s position in the magnetic gradient field.

A laser beam with beam waist of 140 µm is used to drive
the optical resonance |2S1/2 , F = 1⟩ ↔ |2P1/2 , F = 1⟩ with
a natural line width of 2π × 19.6 MHz (Fig. 1). Imaging an
ion’s resonance fluorescence onto the EMCCD camera allows
for the reconstruction of the ion’s center-of-mass position with
a spatial resolution of about 35 nm [16, 17]. Here we demon-
strate position measurements with a spatial resolution that is
better by more than two orders of magnitude.

Lowering the Rabi frequency, by reducing the amplitude of
the applied RF field, narrows down the resonance, thus en-
hancing the precision of determining ν and consequently of
the position measurement.

Excitation of the ion motion in the trapping potential will
change the shape and width of the resonance, since the Rabi

frequency depends on the ion’s vibrational excitation quanti-
fied by quantum number n. This is taken account when fit-
ting the resonance line in Fig. 2(a). Varying the mean phonon
number n of a thermal distribution in the range from 20 to
100 phonons yields a variation of the FWHM of the RF reso-
nance by about 1 % making Doppler cooling sufficient for the
precision of the position measurement desired in this work.

When tracking an ion’s position in real time, we determine
its current resonance frequency ν from the measurement of
the excitation probability |β|2 for only two values of the de-
tuning δ. Such a two-point frequency measurement reduces
decisively the total measurement time required for determin-
ing the center frequency ν and is therefore more efficient as
compared to the routinely employed technique of RF-optical
double resonance spectroscopy [21] where the full resonance
line is mapped out (Fig. 2(a)).

These two measurements are carried out with the applied
RF field symmetrically detuned such that ν±RF = ν0 ± κΩ.
Here, ν0 is the estimated value for the current actual resonance
frequency ν (except for the first measurement, ν0 is the result
of the preceding determination of ν). κ = 0.8 is chosen such
as to separate the two measurement points by the FWHM ≈
1.6× Ω of the hyperfine resonance as shown in Fig. 2(b).

We define ∆ = ν − ν0 to be the initially unknown offset of
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(a)

(b)

FIG. 2. (a) Exemplary spectrum measured by RF-optical double res-
onance spectroscopy showing the |g⟩ ↔ |e⟩ resonance in the hyper-
fine manifold of 171Yb+(ν = νRF −2π×12648759.8(3) kHz). The
Rabi frequency is Ω = 2π× 25 kHz. The measurement is carried out
in 80 frequency steps of size 2π × 1.5 kHz and 100 repetitions for
each frequency step. The solid red line represents a fit to the exper-
imental data (Eq. 2 in Supplemental Material (SM)). The error bars
represent one standard deviation due to quantum projection noise.
(b) Shape of the simulated atomic resonance (Eq. 2 in SM). Here, ν0
is the initial estimate of the resonance frequency, while ν is the actual
resonance frequency. Two points of the resonance curve at frequen-
cies ν± = ν0 ± κΩ are measured. ∆ = ν − ν0 is the frequency
offset to be determined. 2κΩ, corresponding to the FWHM of the
resonance line, is the frequency separation between the two measur-
ing points, symmetrically chosen around ν0.

ν0 from the actual resonance frequency ν. The probabilities
for detecting the ion in state |e⟩ when driving the |g⟩ ↔ |e⟩
resonance at frequency ν±RF are P± = P (n, ν±RF ). The function

g(∆) =
P+ − P−
P+ + P−

(1)

maps the measured probabilities to the frequency offset ∆,
but is only injective as long as ν±RF does not cross an ex-

FIG. 3. (a) The calculated resonance curve of the transition |e⟩ ↔
|g⟩ as a function of the detuning δ for mean phonon numbers n = 0
and n = 100. (b) FWHM of the ion’s resonance as a function of
the motional thermal excitation n in the harmonic trapping poten-
tial. The small broadening of the resonance when the ion is mo-
tionally excited dispenses with the need for ground state cooling and
makes Doppler cooling sufficient, thus allowing for short measure-
ment times.

tremal point of the resonance curve. Therefore, ∆ must fulfill
−(1−κ)Ω ≤ ∆ ≤ (1−κ)Ω. In this range, g is monotonously
increasing with ∆. The calculation of g(∆) therefore allows
for extracting ∆ by searching for the closest match of the
measured values of gmeas and gcalc(∆). The standard devia-
tion of determining ∆ (equal to the standard deviation of the
ion’s resonance frequency) in the measurements reported here
is σν/Ω ≈ 0.05 (SM).

With a spatially constant magnetic field gradient ∂zB [22],
a shift in position can be deduced from a change in resonance
frequency as

∆z =
∆B(∆)

∂zB
. (2)

In the present setup, ∆z = 1 nm corresponds to a change in
resonance frequency ∆ν ≈ 2π × 266 Hz. Repeated mea-
surements of the resonance frequency, employing the method
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FIG. 4. The ion’s resonance frequency as a function of time without
applying a voltage difference, ∆U along the z-direction. This drift
is induced by a varying ambient magnetic field and/or uncontrolled
movement of the ion in the magnetic field gradient. The inset shows
a fit of the Allan variance during the experiment indicating a drift rate
of 2π × 8.2 Hz/s. This uncontrolled drift limits the minimal spatial
resolution.

described above, enable the experimenter to follow changes
of an ion’s position by using the last measured frequency as a
reference for the succeeding measurement.

First, we measure the drift of an ion’s resonance frequency
as a function of time (Fig. 4), without applying an additional
static electric field that would deterministically shift the ion’s
position. The observed drift could be caused by changes of an
(uncontrolled) ambient electric field by shifting the ion’s posi-
tion in the magnetic gradient field, and/or by an (uncontrolled)
change of the ambient magnetic field at the ion’s position. The
drift rate of 2π×8.2 Hz/s during this experiment is calculated
using a fit to the Allan variance (Inset of Fig. 4) based on the
measured frequencies shown in Fig. 4. The drift during the
total time of 2 s needed to measure ion’s resonance frequency
then amounts to 2π × 16.4 Hz which translates into an uncer-
tainty in determining the ion’s position of 0.12 nm. This limits
the spatial resolution of the current setup. Applying shielding
for electric and magnetic fields [23], which is not present in
the current experimental setup, will further increase the preci-
sion in determining an ion’s position.

To demonstrate the capability of tracking an ion’s position,
an imbalanced voltage, ∆U of varying magnitude is applied
to the DC trapping electrodes shifting the ion’s equilibrium
position along the z-axis (Fig. 1). Measurements of the ion’s
resonance frequency, ν while applying ∆U ̸= 0 V are al-
ternated with measurements where ∆U = 0 V to correct the
electric field-induced change in position for an unwanted drift.
Fig. 5(a) shows the change of the ion’s resonance as a func-
tion of time. The measurements with ∆U = 0 in Fig. 5(a)
indicate the unintended drift due to magnetic field drifts and
possible voltage drifts during the experiment (the data points
shown here are the same as in Fig. 4, corresponding to the
time between t = 235 s and t = 433 s.) The change of the

FIG. 5. (a) Resonance frequency of a single ion. Circles indicate
measurements tracking the frequency of a drifting single ion (Fig.
4). For the measurements indicated by squares (triangles), an in-
creasing (decreasing) voltage ∆U ̸= 0 is applied to the DC elec-
trodes purposely shifting the ion’s position along the z-direction. (b)
Change in position of a single ion as a function of the applied voltage
∆U after subtracting the drift. The dashed line shows the calculated
displacement of the ion along the z-direction in agreement with the
measured data. The errorbars represent one standard deviation. The
mean position uncertainty of σz = 0.12 nm is calculated as the arith-
metic mean of the standard errors for these measurements.

resonance frequency during the measurements with applied
voltage, ∆U ̸= 0 is interpolated between consecutive mea-
surements with ∆U = 0 and subtracted from the absolute
change in frequency. The resulting change in the ion’s posi-
tion as a function of ∆U is shown in Fig. 5(b). In addition,
Fig. 5(b) shows the change in the ion’s position calculated as a
function of ∆U (dashed line) that matches well the measure-
ments of the voltage-induced drift.

The standard deviation in determining the center of the res-
onance line in each measurement shown in Fig. 5(a) translates
into a standard deviation σz of the ion’s position (SM, Eq. 1
and error propagation) as shown in Fig. 5(b). The mean
standard deviation of all measurements of the ion’s position is
σz = 0.12 nm, and therefore yields a sub-wavelength resolu-
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tion of σz/λ ≤ 5× 10−9.
From this position measurement, having characterized the

trapping potential independently, a force displacing the ion
can be derived. For the effective harmonic trapping poten-
tial used here, the constant of proportionality between dis-
placement and force, kz is given by kz = mYbω

2
z = 1.3 ×

10−13 N/m. This gives a force resolution of σF = kzσz =
1.5 × 10−23 N. Thus, for a measurement duration of 2 s
we achieve a sensitivity of this static force measurement of
2.2 × 10−23 N/

√
Hz. This force resolution would allow, for

example, to detect a single elementary charge at a distance of
6 mm.

Current limitations in the measurement time and the resolu-
tion of the position measurement can be overcome by contin-
uous sympathetic cooling of the ion to be tracked by a second
ion species. This will remove the necessity for Doppler cool-
ing between measurements. Application of magnetic shield-
ing will remove the necessity for maintaining a fixed phase
relation of the measurement cycles with respect to the power
line, thus further shortening the measurement time. A reduc-
tion of the uncontrolled ion drift by shielding against electric
and magnetic fields will make it possible to carry out measure-
ments at lower Rabi frequencies. We estimate that, using the
method introduced here, the precision of position and force
measurements could be enhanced further by several orders of
magnitude (see SM).

We believe that the technique presented in this Letter can
be adapted to other atomic and molecular ion systems with
modest experimental effort. For example, this technique could
be applied in the context of precision frequency metrology in
order to detect, characterize and compensate for small shifts in
the spatial position of single atomic [24] and molecular [25–
27] ions. One may speculate about applying this technique to
the detection of charges in particle physics. [28, 29].

While direct application of the demonstrated method in mi-
croscopy is beyond the capability of our current trap design,
possible future devices can employ novel trap designs, for ex-
ample a stylus trap [30], as a scanning probe with wavelength-
relative spatial resolution orders of magnitude better than any
state-of-the-art device known to us.
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METHODS

The dependence of the ion’s hyperfine resonance frequency
on the magnetic field is described by the Breit-Rabi formula
[1]

hν = gkµKB +
A

2

√
1 +XB +X2B2 +

A

2

√
1 +X2B2, (1)

where gk = 0.9837 is the Landé g-factor of the nucleus, µK is
the nuclear magneton, A = 2π × 12642812118.471(9) Hz
is the hyperfine constant of 171Yb+[2], gj is the Landé g-
factor of the electron, µB is the Bohr magneton, and X =
(gjµB − gkµk)/A. Thus, the absolute value of the magnetic
field B at the ion’s position can be deduced from measur-
ing the atomic resonance frequency ν. Utilizing the mag-
netic field gradient ∂zB, a measurement of the resonance fre-
quency can be mapped to a position in space. The magni-
tude of the magnetic field gradient has been determined to be
∂zB = 19.07(2)T/m by measuring the resonance frequencies
of a string of eight trapped ions calculating the magnetic field
from the measured frequencies and their calculated positions
by numerically minimizing the total energy.

Doppler cooling is achieved by applying laser light
near 369 nm, driving the resonance between the
states |2S1/2 , F = 1⟩ and |2P1/2 , F = 0⟩, and RF
radiation driving the resonance |2S1/2 , F = 0 ⟩ ↔
|2S1/2 , F = 0 ,mF = +1⟩, thus avoiding optical pump-
ing into the state |2S1/2 , F = 0⟩ [3]. Optical pumping into
the long-lived meta-stable state |2D3/2⟩ is prevented using
laser light near 935 nm and pumping into the state |2F7/2⟩ is
prevented using laser light near 638 nm, respectively.

The shape of the atomic resonance |g⟩− |e⟩ depends on the
Rabi frequency Ωn, and we have

Pn(δ/Ωn) =
1

1 +
(

δ
Ωn

)2 sin2



√

1 +

(
δ

Ωn

)2
τπ
2


 (2)

with excitation probability Pn. Ωn is the Rabi frequency of
the transition when the ion populates the nth vibrational state
of the harmonic trapping potential. A thermal distribution of
vibrational states is taken into account when fitting resonance
lines as

P (n, δ) =
10n∑

n=0

1

n+ 1

(
n

n+ 1

)n

Pn(δ). (3)

The width of the observed transition as a function of the ther-
mal excitation n is shown in Fig. 3(a) and 3(b) of the main

FIG. 1. Calculated standard deviation in units of the Rabi frequency
Ω when determining the ion’s resonance frequency as a function of
measurement time T for a given offset ∆. Circles indicate the case
∆ = 0, that is the initial guess of the resonance frequency is exact.
Squares and triangles indicate that the measured resonance frequency
is differing from the expectation by ∆/Ω = 0.3 or 0.7 respectively.
The standard deviation scales with the total measurement time as
T−1/2.

text. Varying the mean phonon number in the range from 20
to 100 phonons yields a variation of the FWHM of the RF
resonance from 1.602Ω to 1.62Ω. The experiments presented
here were obtained using Doppler cooling to mean vibrational
excitation, n ≈ 80 [3, 4].

The standard deviation of the frequency and position mea-
surements reported here is a function of the offset ∆ as well as
of the measurement duration. Fig. 1 shows the simulated un-
certainty of a frequency measurement based on quantum pro-
jection noise and error propagation as a function of the total
measurement time T . Here, T includes idle periods between
repetitions of individual measurements of the ion’s hyperfine
state.

A measurement of the resonance frequency ν as reported in
this work consists of 50 repetitions for each of the two detun-
ings around the assumed frequency ν0 resulting in 100 repe-
titions per measurement in total. The repetition rate of 50 Hz
is fixed by the fact that each individual measurement is car-
ried out with a fixed phase with respect to the 50 Hz power
line to eliminate effects of the magnetic field it generates. For
T = 2 s, the repetition rate allows for measuring the reso-
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nance frequency with a standard deviation σν/Ω ≈ 0.05. The
scaling with time as T−1/2 is the same as the fundamental
limit for optical localization accuracy [5, 6] in microscopy.

Improvements of the current experimental setup will allow
for further decisive improvements in the precision of localiz-
ing a trapped ion and of measuring small forces. First, shield-
ing the measurement volume against uncontrolled variable
electric and magnetic fields should suppress drifts of the mea-
sured resonance frequency ν such that they no longer limit the
precision of these measurements. Second, the effective mea-
surement time can be extended by using a second ion species
as a refrigerator ion, thus eliminating the need to interrupt
measurement cycles for cooling. These measures would al-
low for reducing the Rabi frequency, say to Ω ≈ 2π × 30Hz
giving a frequency resolution, σν ≈ 1.5Hz and a position
resolution of 6 × 10−12 m in 2 s measurement time. Stabi-
lization of the trapping potential would allow to weaken the
axial confinement of the probe ion. Assuming a reduction of

the force constant to kz ≈ 4 × 10−14 N/m a force sensitiv-
ity of 3.2 × 10−25 N/

√
Hz would be achieved improving the

measurement results presented in this paper by about 2 orders
of magnitude. Increasing the magnetic field gradient would
make further improvements possible.
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