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We propose, and realise experimentally, Toffoli and Half-Adder circuits suitable for classical com-
putation, using radiofrequency-controlled 171Yb+ ions in a macroscopic linear Paul-trap as qubits.
We analyse comprehensively the energy required to operate the logic gates, both theoretically
and experimentally. We identify bottlenecks and possible improvements in future platforms for
energetically-efficient computation, e.g., trap chips with integrated antennas and cavity qed. Based
on our analysis, a novel planar ion trap is expected to be 105 times more efficient. Our experimentally
verified energetic model fills a gap in the literature of the energetics of quantum information, and
outlines the path for its detailed study, as well as its potential applications to classical computing.

Introduction.— Computational tasks are responsi-
ble for a non-negligible part of the world’s energy
consumption. It is estimated that computationally-
intensive data-centres represent 1% of the global en-
ergy budget [1]. So far, increases in energy efficiency
have been able to offset the growing demand for com-
putation: peak-usage energy efficiency has doubled
every 1.5 years during the 1960–2000 period, while
since the 2000s this figure is closer to 2.6 years [1, 2].

However, processor efficiency gains cannot continue
to grow forever. There is a fundamental limitation of
the current paradigm of non-reversible computation,
known as Landauer’s principle [3], where each irre-
versible bit operation dissipates kBT ln 2 of heat.

Reversible computation may thus become an impor-
tant computation paradigm in the future. Reversible
systems may also avoid the heat costs of contemporary
cmos processors, such as capacitor charging, switch-
ing and current leakage [4, 5], which are ultimately
responsible for the typical 40% energy cost for cool-
ing in data centres [6]; they may also protect against
external attacks such as power usage analysis. It is,
then, worthwhile to investigate how energy-efficient
reversible platforms can become.

Some proposals for reversible computing platforms
have been billiard-ball models [7, 8], adiabatic cir-
cuits [9–13], nano-machines [14–18], superconducting
devices [19–21], quantum-dot cellular automata [22],
and others (see [23] for a review of reversible compu-
tation).

Quantum mechanical systems, which evolve unitar-
ily, are also reversible by nature, and are thus an at-
tractive candidate for energetically efficient computa-
tion [24, 25]. Although quantum platforms are limited
by coherence time, we can reset the coherence for clas-
sical computations by measuring in the computational
basis in-between logical operations. We may also ex-

ploit super-selection rules to protect classical informa-
tion, as was proposed recently in a quantum dot plat-
form [26]. Can we then build energy efficient circuits
for universal reversible computation using quantum
computing platforms?

In this work, we propose, and experimentally re-
alise, a trapped-ion classical Half-Adder circuit, an
important building block for arithmetic operations
in computer processors [27]. To do so, we imple-
ment a Toffoli gate, itself a universal gate for clas-
sical computation. We determine the energy to oper-
ate these gates, both theoretically and experimentally,
and point out possible improvements towards energy
efficient computation.

Some works, such as [28], require realistic esti-
mates for the energy consumed by quantum comput-
ers. Thus, our energetic analysis, supported by experi-
mental measurements, also fills a gap in the literature,
and is a first step towards understanding the energetic
impact of quantum technologies [29].

Gate proposals.— A Half-Adder circuit is a funda-
mental component of arithmetic circuits. It computes
the logical and (multiplication modulo 2) and xor
(addition modulo 2) of two input bits. It is a building
block for the Full-Adder circuit, addition circuits in
their ripple-carry and carry-lookahead variants, mul-
tiplier circuits and other tasks in contemporary com-
puter processors. The core operation behind our Half-
Adder circuit is a quantum Toffoli gate, followed by
the application of a cnot to the two control qubits of
the Toffoli (FIG. 1).

A Toffoli gate, or a controlled-controlled-not gate,
is a universal three-bit operation, i.e., it is sufficient to
construct any classical reversible circuit. Antonio et
al. proposed a Toffoli gate suitable for classical com-
putation [30], which can be realised on any three-qubit
physical system with constant nearest-neighbour Ising
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FIG. 1. A Half-adder circuit using a Toffoli followed by a cnot gate. We choose the central qubit as the target of the
Toffoli gate to fullfil the condition J12 = J23 from Equation (1). The Toffoli gate decomposes into a unitary Utof(δn, φn)
(generated from Hamiltonian (3) for 14.9 ms/400) and single qubit π-pulses with some phase φ (πφ, implementing
Dynamical Decoupling). The block is repeated NTOF = 200 times with updated values of δn, ϕn and DD phases φn
and φ′

n. The latter are chosen to implement a universal robust DD sequence on qubits 1 and 3 and a cpmgxy on qubit
2. The values (δ2n, δ2n+1) alternate between (δ,−δ) and (−δ, δ) for each π-pulse, while (ϕ2n, ϕ2n+1) alternates between

(0, π) and (π, 0) for each ππ/2-pulse. The CNOT gate decomposes into a Uzz gate (implementing the zz coupling) and
single qubit π-pulses. The block is repeated NCNOT = 120 times. The phases φn implement a UR DD sequence on the
control and target qubits.

couplings, via the Hamiltonian

HTOF =
~J
2

(σz1σ
z
2 + σz2σ

z
3) +

~δ
2
σz2 +

~Ω

2
σx2 . (1)

Here, σij is the σi Pauli operator acting on the j-th
qubit, appropriately tensored with the identity opera-
tors on the other qubits. The real constants J , δ and
Ω define interaction strengths. We simulated numeri-
cally the time evolution under the Hamiltonian (1) for
a time of π/Ω and δ = 2J . We found that Ω ≈ 1.1J
allows for a ≈ 99% classical Toffoli gate fidelity while
minimising the gate time (see Supplemental Material).

Experimental implementation.— Ions confined in a
linear Paul trap are natural candidates to implement
the Hamiltonian (1) [30, 31]. We use 171Yb+ ions
confined in a linear Paul trap, with a superimposed
static magnetic field gradient [32]. The qubit states
|0〉 and |1〉 are the two hyperfine states of the elec-
tronic ground state 2S1/2 with total angular momen-
tum quantum number and magnetic quantum number
|F,mF 〉 = |0, 0〉 and |1, 1〉, connected by a magnetic
dipole resonance near 2π × 12.6 GHz. The |1〉 state
is sensitive to the magnetic field, which is position
dependent, shifting individually the ions’ resonances
and, thus, allowing for individual addressing by tun-
ing the microwave field driving the qubit resonance
[33].

When irradiating the ions with a microwave field
with phase φ and frequency ωx, nearly resonant with
the frequency ω2 of qubit 2, the ionic qubits are sub-
ject to the Hamiltonian

H(i) =
∑
i 6=j

~Jij
2
σzi σ

z
j︸ ︷︷ ︸

Hzz

+
∑
j

~ωjσzj
2

+~Ω cos(ωxt+ φ)σx2 .

(2)
Here, ωi is the resonance frequency of the ith ion.
The two-qubit couplings Jij in a magnetic field gradi-
ent are mediated by the Coulomb interaction [31, 32].
In the setup used here, the magnetic field gradient is
19.1 T/m at a secular axial trap frequency of ωT =
2π × 128.4(1)kHz, and J12 = J23 = J ≈ 2π × 31 Hz,

which implies a gate time of π/1.1J ≈ 14.9 ms. The
additional J13σ

z
1σ

z
3 coupling contributes with a com-

plex phase in the computational basis, which is irrel-
evant for classical computation, so we choose to omit
it. Finally, Ω is determined by the amplitude of the
incident microwave radiation. Hzz is the Hamiltonian
generating the required spin-spin interaction via mag-
netic gradient induced coupling (MAGIC). Cross-talk
between qubits was neglected; its main source is the
non-resonant excitation of neighbouring qubits which
has been measured to be on the order 10−5 [33].

Choosing a detuning δ, such that ωx = ω2 − δ, and
in an appropriate rotating frame, HI reads as

H
(i)
I ≈ Hzz +

~δ
2
σz2 +

~Ω

2
(cos(φ)σx2 + sin(φ)σy2 ) , (3)

with an error of O(Ω/(2ω2−2δ)) [30]. Choosing φ = 0
recovers the Hamiltonian (1).

Dynamical Decoupling (DD). Fluctuations in the
magnetic field dephase the qubits, which are are first-
order sensitive to them. Not using passive magnetic
shielding and active compensation, the coherence time
in this setup is ≈ 200 µs [34] – two orders of magnitude
lower than our gate times. We thus employ Dynamical
Decoupling (DD) to protect the qubits.

For DD we intersperse single-qubit π rotations in-
between the Hamiltonian evolution, by periodically
irradiating the qubits with a top hat-shaped pulse of
Rabi frequency 2π × 33 kHz. The Jij couplings are
negligible during this time, since they are three orders
of magnitude smaller than the Rabi frequency. We
use the notation θφ for a Rabi rotation of angle θ
with phase φ: π0 and ππ/2 are thus σx and σy gates,
respectively (see Eq. (3)).

Applying a π-pulse amounts to a change of basis, so
we need to change the Hamiltonian evolution accord-
ingly. The σz2 term acquires a relative minus sign,
since σzi σ

x,y
i = −σx,yi σzi , which we compensate by

changing the microwave detuning as δ → −δ. On
the other hand, the σzi σ

z
j terms are left unchanged

when both qubits are flipped simultaneously. The σx2
term acquires a minus sign when a σy2 pulse is applied,
which we compensate by adding a phase of φ = π to
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FIG. 2. Measurement probabilities for the cnot, Toffoli and Half-Adder gates, reconstructed from Maximum-Likelihood
Estimate tomography. The cnot gate is controlled by qubit 1 and acts on qubit 3, while the Toffoli gate has qubit 2 as
a target. The cnot, Toffoli and Half-adder gates have classical fidelities of 86.9%, 58.8% and 60.6%, respectively.

the driving field’s phase. This limits the applicable
DD-sequences to either σx or σy pulses.

For the Toffoli gate, we choose the Carr-Purcell-
Meiboom-Gill pulse sequence [34, 35] cpmgxy applied
to the target qubit and a Universal Robust (ur) se-
quence [36] applied to the control qubits (see FIG. 1).
cnot gate. The cnot gate implementation using

the MAGIC scheme is realised by a (π/2)0-pulse on
the target qubit, and a unitary evolution generated
by Hzz inducing a relative phase change of π condi-
tioned on the logical state of the control qubit. Fi-
nally, a (π/2)3π/2-pulse is applied to the target [32].
In a register exceeding size 2, it is necessary to decou-
ple the spectator qubits from the qubits carrying out
the cnot [32]. This is achieved using a DD-sequence
on the qubits participating in the cnot gate and ex-
cluding spectator qubits [34]. The conditional evolu-
tion time used in this work is Tcnot ≈ 8.75 ms. We
applied a ur sequence of 120 DD pulses, with a pulse
duration of 15 µs each to protect the qubits coherence
[37]. The circuit diagram is shown in FIG. 1.
Gate realisations.— We implemented the cnot,

Toffoli and Half-Adder gates with classical fidelities
of 86.9%, 58.8% and 60.6%, respectively (see Fig-
ure 2). The 90% Confidence Levels (CLs) are respec-
tively [0.665, 0.937], [0.221, 0.683] and [0.409, 0.662],
following the approach by Kiktento et al. [38]. The
fidelities were calculated using Maximum-Likelihood
process tomography [39]. The classical fidelity is the
probability that the gate produces the correct output
given a uniformly random computational state. We
note that the CLs are overly conservative (see Fig-
ure 2 in [38] and related discussion). It is clear that
the shorter cnot time protects it against decoherence.
A similar protection will be available for the Toffoli
and Half-Adder in a next-generation trap, discussed
at the end of this letter.
Gate energetics.— Theoretical estimate. Only Rabi

oscillations are actively controlled, so the energy to
perform the gates comes from the microwave pulses
that drive the hyperfine transition |0〉 ↔ |1〉 via a
magnetic dipole interaction.

The microwave pulses are generated by a cylindri-
cal copper cavity coupled to a signal generator. The
cavity diameter 2a ≡ 16.3 mm was chosen as to only
allow the propagation of the dominant te11 mode, and
to suppress higher-order modes. In the Supplemental
Material we derive the power delivered by the cavity
to achieve a qubit Rabi frequency of Ω,

P =
1

2

Arad

Adip

~Ω2

cos2 θ
, (4)

where Arad ≈ 1.9 cm2 and Adip ≈ 0.0034 pm2 can be
respectively thought of as effective areas for the mi-
crowave pulse wavefront and the ions’ magnetic dipole
transition cross-section, and θ is the angle between
the ions’ magnetic moments and the incident mag-
netic field. We take cos θ ≈ 1 to get a lower bound on
the energy estimate.

In Table I, we summarise the energy estimates for
all the implemented gates. The pulse energy is ob-
tained by integrating the power in Equation (4) over
the duration of each square pulse. The table also in-
cludes the number of π-pulses, or not gates, used in
the DD scheme. The energy cost of a typical not gate
in this implementation follows from Equation (4). For
a Rabi frequency of 2π × 33 kHz, we estimate a cost
of 1.8 µJ.
Measured power usage. For a 2π× 33 kHz Rabi fre-

quency, a microwave signal requires 0.58 W in the cur-
rent setup. This figure corresponds to the power de-
livered by the signal amplifier at the terminal of the
vacuum recipient, measured with a spectrum analyser.
Additional losses may occur during the transport of
the signal to the antenna. The Toffoli was generated
using a Rabi frequency of 34 Hz, 103 less than the
Rabi frequency used to implement single qubit π and
π/2 rotations. Due to the low power, its cost was es-
timated assuming the law P ∝ Ω2 (see Equation (4))
as 9.2 nJ. In addition to the field generating the gate,
there is the additional cost of the DD π-pulses. The
power consumption of 3× 200 π-pulses dominate the
energetic costs of the Toffoli gate. These results are
summarised in Table I.
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Gate
MW
Pulse

Dyn. decoupling
Total

# π-pulses Cost

NOT
Estimated 1.8 µJ

—
— 1.8 µJ

Measured 8.8 µJ — 8.8 µJ

CNOT
Estimated 1.8 µJ

2 × 120
0.44 mJ 0.44 mJ

Measured 8.8 µJ 2.1 mJ 2.1 mJ

Toffoli
Estimated 2.0 nJ

3 × 200
1.1 mJ 1.1 mJ

Measured 9.2 nJ 5.3 mJ 5.3 mJ

Half-
Adder

Estimated 1.8 µJ
840

1.5 mJ 1.5 mJ
Measured 8.8 µJ 7.4 mJ 7.4 mJ

TABLE I. Estimated and measured power consumption of
the experimentally realised gates. “MW Pulse” refers to
the microwave energy required to implement the Hamilto-
nian. “Total” includes the cost of dynamical decoupling
π-pulses. For details, see Section Measured Power Usage.

Besides the pulse cost, there are other operational
costs for carrying out computations which we divide
into one-time costs and continuous costs. One-time
costs include the energy dissipated for laser Doppler
cooling, microwave-optical sideband cooling, and ini-
tial state preparation- and readout pulses. These
tasks have to be carried out just once for a sequence
of computational gates. They are achieved with a
combination of two lasers, one near 369 nm and the
other near 935 nm, and microwave pulses. Table II
summarises the power consumed by these steps. The
power figures were obtained by measuring the optical
power of the laser beams, using a commercial optical
power meter.

The most significant continuous cost is the power
required to maintain the Paul trap, which is of the
order of 10 W.

Discussion and outlook.— We implemented Toffoli
and Half-Adder circuits which, together, open the
door for new implementations of the logical operations
present in contemporary processors, with the poten-
tial energy savings of reversible computation.

Based on our energetic analysis, we identify two en-
ergy bottlenecks. First, the microwave cavity pro-
duces a wavefront (Arad in Eq. (4)) that is orders
of magnitude larger than the ions’ interaction cross-
section. For the not gate, ≈ 1017 photons are irre-
versibly lost. Second, the conditional gate times are
much longer than the qubits’ coherence times, making
it necessary to use 103 DD pulses, where most of the
energy is spent (see Table I).

A new planar ion trap setup [40] can address both of
these issues. First, it integrates microwave antennae
and resonators closer to the ions into a planar setup
[41], which can greatly reduce the irreversible loss of
microwave photons. For example, a not gate is per-
formed in 0.4 µs at an applied power of 10 mW, con-
suming 4 nJ of energy per gate, as opposed to 8.8 µJ.

In addition, the J-coupling, necessary for condi-
tional gates, will be increased by about two orders of
magnitude, thus reducing the time needed for cnot,
Toffoli and Half-Adder by the same factor. Further-

Laser
369 nm

Laser
935 nm

MW/ion Duration Energy

Doppler
cooling

48.0 µW 1.35 mW 0.58 W 8.0 ms 14 mJ

Sideband
cooling

0.16 µW 1.35 mW 0.58 W 60 ms 100 mJ

Ground
state prep.

35.0 µW 1.35 mW — 0.20 ms 0.28 µJ

Readout 48.0 µW 1.35 mW — 3.0 ms 4.2 µJ

Total 120 mJ

TABLE II. Power and energy costs of “one-time” opera-
tions that contribute to the baseline energy expenditure.
MW: Microwave.

more, the coherence time is prolonged by about two
orders of magnitude, mainly due to the use of mag-
netic field shielding. Although faster gates imply
higher energy consumption (for a given geometry),
the energy consumption decreases when using fewer
DD pulses, or completely omitting them. We expect
a Toffoli gate to require 4 pJ and a gate time of 125 µs,
which eliminates the need for DD. Implementing the
cnot gate still requires two π/2 pulses on the tar-
get qubit as well as two π-pulses on the target and
control to decouple them from qubit 2, resulting in
5π-pulses. In total, 20 nJ are required for the Half-
Adder. This is approximately 105 times more efficient
than the current setup (Table I), due to 1000× more
efficient pulses and 100× fewer DD pulses. And still,
this trap was not built with the specific goal of energy
efficiency.

In the future, it is possible that radically different
ion traps may increase the energy efficiency further.
The radiation area (Arad) could be decreased to the
order of magnitude of the ions’ effective dipole area
(Adip) by using a cavity QED setup [42].

Efficient control protocols will become necessary in
the “one-photon limit” [43]. To the best of our knowl-
edge, this is still an open problem [44, 45]. Neverthe-
less, Stevens et al. [46] have recently observed that, in-
deed, typically one quanta of energy is used from con-
trol fields. Other strategies to reduce energetic costs
may be reusing control energy, manipulating several
qubits at once and/or recycling unused energy.

The energy efficiency of conventional processors is
decelerating. Our work presents a path towards en-
ergy efficiency beyond cmos, and offers a reversible
platform to which future ones can be compared. We
believe our detailed measurements of the cost of quan-
tum operations will also be useful for groups interested
in the energetics of quantum computation.
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Supplemental material

Choosing Ω coupling and gate time for the Toffoli
evolution

We simulated the Hamiltonian evolution of Equa-
tion (1) numerically, for different values of Ω and a
total evolution time of π/Ω. Given our limited coher-
ence time, we focused on finding the fastest possible
Toffoli gate.

We calculated the classical fidelity of each gate as
the probability of obtaining the correct classical out-
put state when given a uniformly random input com-
putational state, when compared to a Toffoli gate.
Our findings are summarised in FIG. 3.

We chose the fastest possible gate time, with ≈
14.9 ms, corresponding to the right-most peak in
FIG. 3. It is possible to find gate times with bet-
ter fidelities. Although we are currently limited by
coherence time, stronger J couplings might allow the
other peaks of FIG. 3 to be experimentally realisable
in the future.
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FIG. 3. Classical Toffoli gate fidelity as a function
of the Ω coupling’s strength in Eq. (3), measured in units
of J = J12 = J23. We simulated the Hamiltonian for a
time of π/Ω (bottom axis). The right-most peak, with
Ω = 1.1J , allows for a 14.9 ms gate with approximately
99% fidelity.

Theoretical energy estimate

The Rabi frequency ΩR of a magnetic dipolar tran-
sition, like that between the two states |0〉 and |1〉, is
a function of the magnetic field surrounding the ion,

~ΩR = µ ·Bamp, (5)

where Bamp is the magnetic field amplitude and µ =
〈1|M |0〉 is the magnetic dipole moment of the tran-
sition. The Rabi frequency ΩR is experimentally ac-
cessible. We estimate µ = µB , where µB is the Bohr
magneton. Having these two quantities, we can esti-
mate the value of Bamp which, in turn, will allow us
to calculate the energy carried by the electromagnetic
field of the microwave pulse. To do so, we need to
know the profile of the microwave field’s wave front.
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To generate the microwave field, we use an OFHC
copper cylindrical cavity resonator of diameter 2a ≈
16.3 mm, placed inside the vacuum chamber [37]. The
dimensions of the cavity were chosen specifically to
allow the propagation of the dominant transverse-
electric mode, te11, at the qubit frequency 12.6 GHz,
while suppressing higher-order modes.

To estimate the energy carried by the microwave’s
field, we assume that the ions are placed near the open
end of the microwave cavity, close to its cylindrical
axis, and that the magnetic field at that point may be
approximated by the te11 mode of an infinite circular
wave guide of the same diameter. Let us use a cylindri-
cal coordinate system ρ, φ, z, where z is aligned with
the cylinder axis. Let us calculate the intensity of
the fields of the te11 mode by assuming a time and z
dependence like

E,B ∝ ei(ωt−βz). (6)

From Maxwell’s equations for the vacuum inside the
waveguide we can obtain expressions for the EM fields
as a function of the Ez and Bz components[

Eρ
Bφ

]
=
−i
k2
c

[
β ω
k/c β

] [
∂ρEz
∂φBz/ρ

]
[
Bρ
Eφ

]
=
−i
k2
c

[
β −k/c
−ω β

] [
∂ρBz
∂φEz/ρ

]
, (7)

where k2
c = k2 − β2 and k = ω/c.

The resonator was designed to allow only trans-
verse electric fields, that is, Ez = 0. Applying
∇ · B = 0, and assuming a separation of variables
Bz = B0R(ρ)Φ(φ), we arrive at

∂2
φΦ + α2 = 0 (8)

(ρ∂ρ)
2
R+ (ρ2k2

c − α2)R = 0, (9)

for some constant α.
Equation (8) has the general solution Φ(φ) =

A cos (α(φ− φ0)). Imposing Φ(φ + 2π) = Φ(φ) re-
stricts α to integer values. Equation (9) is the Bessel
functional equation. The only solutions that do not
diverge are the Bessel functions of the first kind,
Jα(kcρ). Since J−α and Jα are equal up to a ±1
factor, we will take α to be a non-negative integer
and rename it to α = n ∈ N. We thus arrive at the
solution

Bz = B0 Jn(kcρ) cos(n(φ− φ0)) ei(ωt−βz). (10)

The remaining field components can be calculated
from Equations (7),

Eρ =
iωB0n

kc

Jn(kcρ)

kcρ
sin(n(φ− φ0)) ei(ωt−βz)

Eφ =
iωB0

kc
J ′n(kcρ) cos(n(φ− φ0)) ei(ωt−βz)

Bρ = − iβB0

kc
J ′n(kcρ) cos(n(φ− φ0)) ei(ωt−βz)

Bφ =
iβB0n

kc

Jn(kcρ)

kcρ
sin(n(φ− φ0)) ei(ωt−βz),

where J ′n is the derivative of the n-th Bessel function.
Finally, there is the added restriction thatE be per-

pendicular to the conductor’s surface, that is, Eφ(ρ =
a) = 0, which means that

kca = p′nm, (11)

where p′nm is the m-th root of J ′n. For each n,m there
is a different solution – the so-called TEnm modes.

We will now focus on the TE11 mode, for n = 1,
which is the first non-zero solution to Equations (8)
and (9), also called the dominant mode, and also the
only allowed mode of propagation by our cavity. In
this case, we have kca = p′11 ≈ 1.8412.

To calculate the energy carried by the microwave
pulse, we calculate the Poynting vector and average it
over a period T = 2π/ω,

Savg =
1

T

∫ T

0

E ×B
µ0

dt. (12)

The only non-zero component of this vector is in the
z direction,

Savg
z =

1

2

B2
0

µ0

ωβ

k2
c

[(
J1(kcρ)

kcρ
sin(ωt− βz)

)2

+
(
J ′1(kcρ) cos(ωt− βz)

)2
]
.

(13)

We now integrate over the entire cross-section of the
cylinder to obtain the power delivered by the cavity,

P =
1

2

B2
0

µ0

ωβ

k2
c

I11

(p′11)2
πa2, (14)

where I11 is an integral of Bessel functions,

I11 =

∫ p′11

0

[(
J1(r)

r

)2

+
(
J ′1(r)

)2
]
r dr ≈ 0.405.

(15)
Finally, to estimate the power, we need only find

the value of B0 that makes the qubit states flop at
the observed Rabi frequency ΩR. The magnetic field
amplitude at the center of the waveguide is

Bamp = ‖B(ρ = 0)‖max =
β

kc

B0

2
=

~ΩR
µ cos θ

. (16)

The last equality comes from Equation (5). The angle
θ is that between the ions’ magnetic dipole moment
and the cavity’s magnetic field.

We then arrive at the expression for the power car-
ried by the microwave pulse,

P =
1

2

Arad

Adip

~Ω2
R

cos2 θ
, (17)

where we defined the areas

Arad =
4I11

(p′11)2

πa2

√
1− x2

and Adip =
µ0

~c
µ2, (18)

with x = cp′11/ωa. The area Adip can be thought of
as an effective dipole cross-section for the ion.
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