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We report the implementation of a perceptron quantum gate in an ion-trap quantum computer. In
this scheme, a perceptron’s target qubit changes its state depending on the interactions with several
qubits. The target qubit displays a tunable sigmoid switching behaviour becoming a universal
approximator when nested with other percetrons. The procedure consists on the adiabatic ramp-
down of a dressing-field applied to the target qubit. We also use two successive perceptron quantum
gates to implement a XNOR-gate, where the perceptron qubit changes its state only when the parity
of two input qubits is even. The applicability can be generalized to higher-dimensional gates as well
as the reconstruction of arbitrary bounded continuous functions of the perceptron observables.

Introduction.– Both machine learning [1] and quan-
tum computing [2] are alternative paradigms to fight
against the vertiginous growth in the amount and com-
plexity of information processing tasks [3, 4]. Machine
learning becomes ubiquitous thanks to its versatility ex-
panding a broad range of applications (patterns recogni-
tion [5, 6], vehicle control [7], spam filters [8], etc.) in
the last decades. This was possible with the aid of neu-
ral networks [9] thanks to the blooming of deep learning
[5, 10]. On the contrary, quantum computing exploits
the exponential complexity of quantum systems to per-
form highly parallel-computations more efficiently than
any other classical counterpart [11], showing its perfor-
mance in factorization problems [12], combinatorial op-
timizers [13], or molecule simulators [14] among others.

Recently, the intersection of these two fields has be-
come an area of active research [15–18]. This concerns
both the use of classical machine learning for the manip-
ulation of quantum systems [19–21], as well as the im-
plementation of artificial quantum neural networks [22–
26], where quantum resources such entanglement may
lead to improvements in the network prediction capa-
bilities [22, 27–30].

In this letter, we implement a fully tunable quantum
perceptron gate, the fundamental unit for the design of
artificial quantum neural networks, in which quantum
interactions between qubits give rise to a sigmoidal be-
haviour. There are various theoretical designs of quan-
tum perceptrons [16, 23, 24, 31, 32], of which we follow
Ref. [24]. We implement a simple neural network consist-
ing of an output qubit, a bias qubit and a control qubit
on a simple ion-based quantum computer. Using machine
learning we also design a two layer neural network (two
successive perceptron gates) that implements an XNOR-
gate. This ability to synthesize relatively complex gates
may prove to be a useful addition to the toolstack of
quantum information processing.

Perceptrons.– Classical neural networks implement
the decision-making process of interconnected neurons
by mathematical models called perceptrons. It simply

consists on an update rule that sets the output signal
generated by the perceptron in terms of the input signal
received from earlier neurons. Mathematically,

s′i = f(xi), with xi =
∑
j 6=i

wijsj − θi. (1)

where wij indicates the inter-connectivity weights among
the perceptron i and the previous layer input neurons de-
noted by j. The input states sj take a value from 0 to 1
depending on the excitation probability of the neuron j.
Thus, if the total feed signal

∑
ωijsj is larger than the

perceptron activation potential or bias θi the neuron gen-
erates the output signal s′i = f(xi) that determines the
probability s′i of the perceptron being active. Together
with the network topology specified by ωij and θi, this
update also involves an activation function f(x). A dis-
crete step activation reproduces the original McCulloch
and Pitts model [33], although monotonously increasing
functions

f(x)→

{
1 x→∞,
0 x→ −∞.

(2)

are more interesting since they fulfill the universal ap-
proximation theorem [34]. A fundamental result in ma-
chine learning is that just a two layer neural network (1)
can approximate any arbitrary bounded continuous func-
tion and its approximation power increases using deep
nested architectures containing hidden layers.
Quantum perceptrons.– Translating this into a quan-

tum framework, a perceptron quantum gate emulates
the neuron activation mechanism through the excitation
probability of a qubit generating a gate that turns a tar-
get qubit |0〉 into the state U(x; f) |0〉 =

√
1− f(x) |0〉+√

f(x) |1〉. This perceptron gate is conditioned on
the field generated by neurons in earlier layers, xj =∑

k<j wjkσ
z
k − θj , with similar weights wjk and biases

θj as its classical counterpart. When nested with other
perceptrons the resulting neural network becomes a uni-
versal approximator [24].
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We implement this transformation dynamically as an
adiabatic passage governed by an Ising-like spin Hamil-
tonian corresponding to a linear ion chain.

H =
h̄

2

−Ω(t)σx
i −Θiσ

z
i σ

z
b − σz

i

∑
j 6=b
j 6=i

Jijσ
z
j

 . (3)

Here Ω(t) is a time-dependent driving field of the percep-
tron target qubit labeled with i. Jij denotes the Ising-
like interaction between the target qubit and the control
qubits labeled by j. Θi is the perceptron bias generated
by qubit b; while it has conceptually a different role in
the gate than the control qubits, it is implemented and
switched just the same. For this system (3), the per-
ceptron input xi =

∑
j Jijσ

z
j + σz

bΘi involves operators
which return eigenvalues of ±1, and may hence change
the signs of the individual terms, reducing or enhancing
the total field. Note that the instantaneous ground state
of the previous Hamiltonian

|Φ〉 =
√

1− f(x/Ω) |0〉+
√
f(x/Ω) |1〉 (4)

has a sigmoid excitation probability

f(x/Ω) =
1

2
(1 +

x

Ω

√
1 + x2/Ω2). (5)

For the case Ω(t) � |Jij |, the dressed ground state of
the target perceptron is 1√

2
(|0〉+ |1〉). This state is pre-

pared applying a Hadamard gate to the |0〉 initial state of
the perceptron independently of the states of the control
qubits.

Then Ω(t = 0) is ramped up instantaneously to a high
value, such that initially the system becomes the ground
state (4) of the Hamiltonian. The adiabatic theorem
states that if the interaction Ω(t) is switched off slowly
enough |Ω̇| �

√
Ω2 + x2

i , the system will remain in the
instantaneous ground state (4) of the Hamiltonian. In
particular, once the driving field achieves the desirable
final value Ω(tf ) = Ωf at the end of the process, the per-
ceptron excitation probability (5) has a sigmoid profile
f(x/Ωf ), see Fig. 1(a). The procedure outlined above
implements a perceptron-like quantum gate on a set of
qubits. Enlarging or reducing Θ results in a shift of the
sigmoid function, as shown in the inset of Fig. 1.

Experiment.– We implement this on a simple ion-
trap quantum computer [35] with three ions: one
representing the weighted control qubit (ion 1), one
the target qubit (ion 2), and one the bias qubit
(ion 3). These three qubits are manipulated with
the aid of the MAGIC (MAgnetic-Gradient Induced
Coupling) scheme [36]. Each qubit is encoded in
the transition between the |2S1/2, F = 0,mF = 0〉 (|0〉)
and |2S1/2, F = 1,mF = +1〉 (|1〉) hyperfine states of a
171Yb+ ion. The transition frequency is 12.65 GHz but
subjecting the ions to a magnetic field gradient of 19 T/m

FIG. 1. The excitation probability of state |1〉 of the target
ion as a function of ratio of cumulated weights divided by the
final dressing field intensity, plotted for different bias values.
The inset shows the excitation probability for excited and
ground state of the target ion, again as a function of the
ratio of the sum of the weighted couplings strengths to control
ions to the final intensity of the dressing field. If the sum is
negative (i.e. smaller than the zero bias, |0〉 is the final state;
otherwise it is |1〉.

results in different Zeeman-shifts for each transition, al-
lowing individual adressability by microwaves. Further-
more, MAGIC results in coupling between ions: an ion
that is in an excited state has a slightly different optimal
spatial position in the ion chain to minimize its energy
than an ion in |0〉. If the state is changed due to a mi-
crowave pulse, the ion will move, and thereby interact via
the normal modes of the ion chain with the other ions.
The Hamiltonian of the ion chain system is:

H =
h̄

2

3∑
i

νiσ
(i)
z −

h̄

2

∑
i,j i>j

Jijσ
(i)
z σ(j)

z (6)

where Jij is the interaction between two ions, and νi is
the energy of a single ion. By applying the dressing field

Ω(t)σ
(2)
x , and performing the rotating wave approxima-

tion, we get the Hamiltonian from Eq. (3). We omit the
energies of the control and bias qubits, as these merely
add offsets to the eigenenergies. Note that there is an
extra interaction between the bias qubit and the control
qubit. This changes the phases of the quantum states
of these two qubits, but their interaction with the tar-
get qubit is not changed thereby. We ignore it therefore

in what follows. In our case x = −Θσ
(3)
z − J12σ

(1)
z (J12

being the interaction between the control and the tar-
get qubit and Θ = J23 - the interaction between target
and bias qubits). Both of these have a strength of about
2π× 37.5 Hz. The coupling Jij is determined by a Ram-
sey type experiment. After preparation of the ground
state |0〉 a π/2 pulse is applied to prepare the target ion
in an equal superposition state. To protect the qubits
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coherence, the same DD-sequence is applied to both the
control and target qubits. The qubits couplings are pre-
served while they are decoupled from noise sources in
the experiment. After a fixed evolution time T , a phase
scan of the probe π/2 pulse is used to extract the relative
phase of the superposition state. Repeating the experi-
ment with a different state of the control from |0〉 to |1〉
changes the phase of the target qubit and can be used to
calculate J12 = ∆φ/(2T ). Here ∆φ is the phase differ-
ence of the two Ramsey phase scans. The Rabi-frequency
of the individual transitions is approximately Ω = 2π×28
kHz, leading to a π-pulse time of about 17µs. We set the
initial value of Ωi ≈ 2π × 28 kHz, which is the Rabi fre-
quency, and adiabatically ramp-down the driving field in
a tf time to an adjustable final Ωf value that controls
the steepness of the perceptron activation potential (5).
The time dependency of the field is designed according
to the FAQUAD (fast quasi-adiabatic passage) procedure
outlined in [37, 38]

Ω(s) = Ωi

4Ω4
f

1+
√

5
2 s+ (Ω2

f + (1− s)4 1+
√

5
2 Ω2

f )

(1− s)Ω2
f + s+ 4 1+

√
5

2 Ω2
f

(7)

where 0 < s < 1 is the dimensionless time t/tf . Ω(s) is
generated using a DDS frequency synthesizer and there-
fore is discretized in a sequence of square pulses of vari-
able length limiting the gradual change ∆Ω = Ωn+1−Ωn.
The relatively long timespan of some miliseconds nec-
essary to perform the FAQUAD creates some difficul-
ties, notably the dephasing of the superposition |+〉 state
due to magnetic field fluctuations. It is well known
that the coherence time can be lengthened by introduc-
ing a series of dynamical decoupling pulses. By judi-
cious choice of delays and phases, they can also be used
to switch off or fine-tune the interactions between the
qubits. More specifically, we can continually adjust the
interaction strength between any two ions between the
values −J12 ≤ Jeff

12 ≤ J12. This can be used to tune the
bias as well, whose physical implementation corresponds
to just another two-qubit interaction [39].

For the experiment, we use the universal robust (UR)
DD-sequence [40], which differs from the CPMG [41] by
a phase; i.e. the quantum state is rotated around a su-
perposition of the x- and y-axis of the Bloch-sphere. The
time between two DD-pulses is 100 µs. Applying 150
pulses for each qubit leads to a total evolution time of
15 ms. Moreover, we set the perceptron bias Θ = 0 so
that the input field x is directly Jeff

12 and tune the mag-
nitudes of the interaction terms via the DD sequences
allowing to scan Jeff

12 from 0 to J12. If we flip the initial
state of the control qubit, negative values of the interac-
tion are scanned. The measured function nicely traces a
sigmoid function necessary to implement a quantum per-
ceptron as shown in Fig. 2. The fidelity F of the percep-
tron quantum gate is approximately F = 0.85. The diffi-
culty lies mainly in the dephasing that takes place during

the very long evolution time, since the DD-sequence func-
tions as a high-pass filter [42] of the noise spectral density,
and still admits dephasing due to higher frequencies.

In a second experiment, we bias the perceptron. We
set the perceptron interaction Θ to Θmax, and tune Jeff

12

across a range of resonances. Again, we switch the initial
state of the control ion to change the sign of the interac-
tion. Additionally, we perform the experiment with the
bias ion in both possible initial states, which is equivalent
to use both positive and negative bias interactions. We
plot the results in Fig. 2. The shift is clearly visible and
freely programmable (within of course the absolute value
of the target-bias interaction). However, the bias can in
principle be enhanced by adding additional bias qubits.

Application.– So far, the result of the experiment
demonstrates the possibility of using qubits to implement
perceptron-like operations. According to the universal
approximation theorem [34], these perceptrons can be
nested to generate artificial neural networks which can
be used to approximate arbitrary functions. Usually,
this involves the target qubits (perceptrons) of one layer
being the input qubits of the next or further perceptron
layers. The simplest possible variation however is the
successive application of two perceptron quantum gates
on the same qubit, with different coupling strengths
during each gate. In this sort of neural network, the
output qubit can be in a superposition after the first
perceptron gate, if for instance x ∼ 0. This superposition
should not dephase too much during the application of
the second perceptron gate (i.e. Hadamard gate and

P

FIG. 2. Probability to find the state of the target qubit in |1〉
as x is scanned (by scanning the value of Jeff

12 ). The yellow
and green traces show the same but with different values for
Θ. In the central, black trace we scan both control and bias
qubit interactions concurrently - this is effectively the same as
having two control qubits. This accounts for the larger range
of x.



4

FIG. 3. a) Sketch of a simple neural network implemented
by successive application of two quantum perceptron gates
on the same target ion with different weights for two control
ions. This is equivalent to having an intermediate layer whose
qubits are coupled to only one qubit in the input layer each
- equivalent to using the same ions, as indicated by the col-
ors. Both layers are coupled to the output/target qubit with
different weights, as indicatd by differing colors. The interac-
tion strengths are marked to the corresponding connections.
In b), we show the corresponding truth table.

adiabatic ramp-down of dressing field). Since our gates
are relatively long owing to the small coupling constant,
this may pose a problem, as the superposition might
decohere before the second perceptron gate leaving
the output qubit in the undesired |1〉 or |0〉 state.
We perform a Ramsey-type experiment to assess the
possibility of this. The coherence time is about 20 ms.
Since our intended experiment takes 30 ms (twice the
ramp-down time for two gates) we expect a reduced, but
still observable contrast for the experiment to follow.

The simple neural network we implement is equivalent
to a neural network whose input layer is coupled both to
the output perceptron and an intermediate layer, which
in turn is coupled to the output perceptron. The inter-
mediate layer is just a faithful copy of the input layer,
meaning this kind of neural network can be implemented
with N+1 qubits, where N is the number of input qubits.
A simple sketch is shown in Fig. 3 (a). As an example,
we implement a XNOR-gate, where the output or target
qubit takes the state |1〉 if the two input qubits have the
same state - be it |00〉 or |11〉, and stays |0〉 otherwise - a
truth table is shown in Fig. 3 (b) We roughly calculate the
weights necessary by a straightforward optimization pro-
cedure, and then refine by trial-and-error to account for

technical imperfections. The results are J
(1)
1t = 2π× 20.5

Hz, J
(1)
2t = −2π × 26.5 Hz, and J

(2)
1t = 2π × 18.9 Hz,

J
(2)
2t = −2π × 32.1 Hz, where J

(m)
nt is the interaction

|00 |01 |10 |11

  Initial state of control qubits

0.05

0.2

0.4

0.6

0.8

0.95

P(
|1

) 

Control Qubit 1
Target Qubit
Control Qubit 2

FIG. 4. Probability of finding the control qubits and the
target qubit in state |1〉 as a function of the input state after
two applications of a perceptron quantum gate with different
interaction strengths/weights. Error bars are smaller than
the symbol sizes. For details see main text.

between the n-th control ion and the target ion in the
m-th gate. Since the maximal coupling in the setup is
Jmax
nt = 2π × 37.5 Hz (between two neighboring ions),

this can be implemented. Again the complete procedure
consists of applying the Hadamard gate on the target ion,
switching on and ramping down the dressing field in 15
ms and repeating all of the above with different coupling
strengths. We show the results of this procedure in Fig.
4. While the fidelity for the target qubit is markedly re-
duced, there is a clear contrast between the cases where
the two input/control ions are either |00〉 or |11〉, and the
|10〉 / |01〉 cases. In the former case, the target ion has a
probability of about P = 0.65 of being found in |1〉, in
the latter that probability is about P = 0.3.
Conclusions.– To summarize our findings, we have

demonstrated the possibility of implementing percep-
tronic behaviour on trapped ion chains. This bodes well
for future efforts to implement machine learning and deep
learning algorithms on trapped-ion quantum computers,
which have been demonstrated to yield significant speed-
ups for them[43]. We also have demonstrated that quan-
tum perceptrons can be used to implement tailor-made
quantum gates, which would otherwise require a large
single and two-qubit gate decomposition. Hence, this
method could be used to reduce gate-count overhead in
quantum algorithms. The currently long gate time will
be reduced in the future, when the interactions between
the ions, currently the limiting factor, are strengthened in
updated experimental setups. Finally let us mention that
the perceptron gates can in principle also be extended to
other qubit architectures.
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