Quantum process tomography from incomplete data

Mário Ziman

Research Center for Quantum Information, Institute of Physics SAS, Bratislava http://www.quniverse.sk/

- process tomography
- "unphysical" results and maximum likelihood
- possible sources of "unphysicality" (speculations)
- incomplete data and MaxEnt principle
- MaxEnt for process tomography

Simplified experimental setup

Process identification – inverse problem

- quantum theory $Q[(\mathcal{E}, \rho_j, F_k)] = p_{jk}$
- preparator identification ρ
- application of the channel $\rho' = \mathbf{E} \otimes \mathbf{f}[\rho]$
- measurement POVM $\{F_k\}$ $p_k(\rho) = \operatorname{Tr} \rho' F_k$
- processing of exp. data to learn
 - inverse process reconstruction $\mathcal{R}_{inv}[(\rho_j, F_k, p_{jk}] = \mathcal{E}$
 - statistical process estimation $\Re[(\rho_j, F_k, data)] = \mathcal{E}$

Process identification difficulties

- inverse process reconstruction $\mathcal{R}_{inv}[(\rho_j, F_k, p_{jk}] = \mathcal{E}$
 - system of linear equations
 - easy to implement
 - "unphysical" results
 - statistical process estimation $\Re\left[(\rho_j, F_k, \text{data})\right] = \mathcal{E}$
 - maximum likelihood methods
 - physical result is guaranteed
 - difficult optimization problem (exp)

Unphysical results

- problems with probabilities (small statistics)
- problems with experimental setup
 - preparator (tomography, uncorrelated)
 - measurement device (calibration)
 - noise can be included in description
 - memory effects
- imperfect preparators vs "artificial" unphysicality

Model of open system dynamics

- completely positive tracepreserving linear maps
 - addition of fixed uncorrelated ancilla
 - unitary system dynamics of system+ancilla
 - discarding the ancilla
- composition of three maps $\mathcal{E} = \mathcal{T}_{anc} \circ \mathcal{U} \circ \mathcal{P}$
- preparation map $\mathcal{P}:\mathcal{H}\to\mathcal{H}\otimes\mathcal{H}_{anc}$
 - potential source of "unphysicality"
 - CP maps $\Leftrightarrow \mathcal{P}[\rho] = \rho \otimes \xi_{\text{fixed}}$
 - ?verification? of preparators

Accessible transformations

- all those for which the ancilliary model exists
- characterization:
 - arbitrary mapping, $f:\mathcal{S}(\mathcal{H})\to\mathcal{S}(\mathcal{H})$, i.e.

$$\rho \rightarrow \rho' = f(\rho)$$

- implementation $P[\rho] = \rho \otimes f(\rho)$
- SWAP gate $\rho' = \operatorname{Tr}_{\operatorname{anc}}[U_{\operatorname{SWAP}} \rho \otimes f(\rho) U_{\operatorname{SWAP}}] = f(\rho)$
- very artificial construction
- is it a bad news?
- linear accessible transformations

Universal NOT in a lab

- experimental situation:
 - black box and qubits (let's say spins)
 - preparation: SG measurement
 - observation: outputs orthogonal to inputs
- is it unphysical?
 - given qubits are entangled to qubits in the black box (singlet)
 - interaction via SWAP gate

Preparator devices

- independence of preparators and channels
- insight into physics behind the preparation
- **E1:**
 - preparator of ground state
 - all pure states prepared via unitary processing
- **E2:** intermediate dynamical map $\mathcal{E}_{t_1,t_2} = \mathcal{E}_{t_2} \circ \mathcal{E}_{t_1}^{-1}$
 - linear trace and hermiticity preserving + ???
 - NOT cannot be realized within this model

Complete process tomography

- for experiments only the linearity is important
- number of parameters = $d^2(d^2-1)$
 - exponential in number of qubits
- based on (incomplete) state tomography
- test states = lin. independent states $\{\rho_1, \dots, \rho_{d^2}\}$
 - dxd state reconstructions $\rho_j \rightarrow \rho'_j = \mathcal{E}[\rho_j]$
- ancilla-assisted tomography
 - ancilla reduces the number of test states
 - single test state $\Omega_{\mathcal{E}} = \mathcal{E} \otimes I[\Psi_{ME}] = \frac{1}{d} \sum_{jk} \mathcal{E}[e_{jk}] \otimes e_{jk}$

Ancilla-assisted tomography

ancilla-assisted test state

$$\Omega_{\mathcal{E}} = \mathcal{E} \otimes I[\Psi_{ME}] = \frac{1}{d} \sum_{jk} \mathcal{E}[e_{jk}] \otimes e_{jk}$$
 $e_{jk} = |j\rangle\langle k|$

• state reconstruction of $\Omega_{\mathcal{E}}$ \rightarrow process

$$\mathcal{E}[\rho] = \operatorname{Tr}_2[(I \otimes \rho^T)\Omega_{\mathcal{E}}]$$

ullet faithful (admissible) states $\Omega = \sum \omega_{\mu \nu} S_{\mu} \otimes S_{
u}$

$$\Omega_{\mathcal{E}} = \sum \omega_{\mu\nu} \mathcal{E}[S_{\mu}] \otimes S_{\nu} = \sum \omega'_{\mu\nu} S_{\mu} \otimes \overline{S_{\nu}}$$

process tomography

$$[\omega'] = [\mathcal{E}].[\omega] \Rightarrow [\mathcal{E}] = [\omega'].[\omega]^{-1}$$

$$\{S_0, \dots, S_{d^2-1}\}$$

$$\mathcal{E}[S_{\mu}] = \sum_{\mu} \mathcal{E}_{\mu\nu} S_{\nu}$$

$$\mathcal{E}_{\mu\nu} = \text{Tr} S_{\mu}^{\dagger} \mathcal{E}[S_{\nu}]$$

Qubit process tomography

• phase damping $\mathcal{E}_{ph.damp}^{(\lambda)}$: $\vec{r}
ightarrow \vec{r}' = (\lambda x, \lambda y, z)$

qubit=ion ₁₇₁Yb⁺
(Ch.Wunderlich)

Incomplete knowledge on outcome states

- exp.data do not determine all parameters
- observation level $\mathcal{O} = \{\Lambda_1, \dots, \Lambda_K\}$ $(K < d^2 1)$
 - probabilities/mean values $r_k = \operatorname{Tr} \rho \Lambda_k = \langle \Lambda_k \rangle_{\rho}$
- unknown mean values
- what is the state? $\rho = \frac{1}{d}(I + \vec{r} \cdot \vec{\Lambda})$
 - no unique answer
 - needs some extra assumption/postulate
- zero observation level
 - each state equally probable \Rightarrow av. state $\Rightarrow \overline{p} = \frac{1}{d}I$
- naïve strategy ... set unknown parameters to 0

Maximum entropy principle

E.T.Jaynes

Instead of asking what is the state we should ask what state <u>best</u> describes the <u>state of our knowledge</u> about the physical situation.

- average \Leftrightarrow entropy $S(\rho) = -\text{Trplog}\,\rho$
- MaxEnt = choose the state with maximal entropy given the observation level constraints

$$\rho = \arg \max_{\rho} \{ S(\rho) | \langle \Lambda_j \rangle_{\rho} = r_j, \forall j = 1, \dots, K \}$$

Incomplete PT: 0 knowledge

- What is the channel?
- ullet average channel ${\mathcal A}$
 - problem with measure
 - unital, because $\mathcal{E}_{\pm}: \vec{r} \to \vec{r}' = T\vec{r} \pm \vec{t}$ are CP maps
 - *U* symmetry $\Rightarrow \mathcal{A}_{\mu} = \mu I + (1 \mu) \mathcal{A}$ with $\mathcal{A}[\rho] = \frac{1}{d}I \quad \forall \rho$
 - contraction to total mixture
- no concept of channel entropy
 - capacity, minimal output entropy, distance,
 - Jamiolkowski isomorphism (ancilla-assisted PT)

Incomplete PT: naïve approach

- transform states into total mixture
- analysis done for single qubit channels
 - no problem for single test state (no ancilla)
 - two/three test states numerically
- MaxEnt for states cannot be used directly
- problem: incompatible state transformations
- state MaxEnt for ancilla-assisted tomography

Incomplete PT: MaxEnt

- concept of state entropy for ancilla-assisted PT
- extension to nonancilliary approach

$$(\rho_{k}, A) \leftrightarrow A \otimes X_{k}$$

$$\langle A \rangle_{\mathcal{E}[\rho_{k}]} = \langle A \otimes X_{k} \rangle_{\mathcal{E} \otimes I[\Omega]}$$

$$\langle \mathcal{E}^{*}[A] \rangle_{\rho_{k}} = \langle \mathcal{E}^{*}[A] \otimes X_{k} \rangle_{\Omega}$$

$$\sum (\rho_{k})_{ab} (\mathcal{E}^{*}[A])_{ba} = \sum \omega_{ab,cd} (X_{k})_{dc} (\mathcal{E}^{*}[A])_{ba}$$

$$\vec{X}_{k} = [\Omega]^{-1} \vec{\rho_{k}}$$

- for max. entangled state $X_k = \frac{1}{d} \rho_k^T$
- problem which Ω to use

Incomplete PT: qubit channel MaxEnt

- 0 knowledge ... contraction to total mixture
- ullet single measurement, i.e. $\mathcal{O}_{\mathrm{proc}} = \{(\varrho, F)\}$
 - data $\varrho = \frac{1}{2}I, \ F = \vec{f} \cdot \vec{\sigma}, m = \mathrm{Tr} F \varrho'$
 - estimated channel $\mathcal{E}_{\mathrm{est}}[\varrho] = \frac{1}{2}(I + m\vec{f} \cdot \vec{\sigma})$
- analytically difficult

Hypothesis testing

- problem: find unique property (a priori info)
- small number of measurements
- quantify validity of the hypothesis
- H1: pure state preparator ψ
 - test = single projective measurement
- H2: unitary transformation U
 - AAPT with single projective measurement
- H3: extremal channels
- H4: entanglement?

Conclusion

- complete tomography is expensive
- incomplete MaxEnt is questionable
- hypothesis testing
 - pure state verification
 - contraction to pure state
 - testing for unitaries
- "golden standards" for state and process est
- standards for calibration

Literature

- Quantum State Estimations, Eds. J.Řeháček and M.Paris (Springer 2004)
- Asyptotic quantum statistics, Eds. M.Hayashi (2005)
- R.A.Fisher, On the mathematical foundations of theoretical statistics, Phil.Trans. of Royal Soc. of London, Vol 222, pages 309-368 (1922)
- M.A.Paris, G.M.D'Ariano, M.F.Sacchi, Maximum likelihood methods in quantum estimations, quant-ph/000101071
- L.Vandenberghe, S.Boyd, Applications od semidefinite programming, (1998)
- R.L.Kosut, I.Walmsley, H.Rabitz, Optimal experiment design for quantum tomography, quant-ph/0411093
- A.Gillchrist, N.K.Langford, M.A.Nielsen, Distance measures to compare real and ideal processes, quant-ph/0408063
- and many others ...