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Robust control using GRAPE algorithm: single qubit examples 
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Robust control of a single spin

Control fields

Skinner, Reiss, Khaneja, Luy, Glaser (2003)



Robust control of a single qubit

Control fields
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Previous excitation pulses with the same performance
are significantly longer than optimized pulses (BEBOP)

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)
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amplitude and phase 
   of pulse sequence

components of
rotation vector 

 orientation of
rotation vector

From excitation to refocussing pulse



Construction of a band-selective180  rotationz
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sphere y2=1−x2−z2!. The solid curve in Fig. 1 depicts the
shortest path connecting the north pole "1,0 ,0! to a point
"0,cos ! , sin !!, under the metric g. The dashed curve is the
geodesic under the standard metric and represents a segment
of a great circle. For != "

4 , the length L of the geodesic under
g is 0.627" "as opposed to "

2 under the standard metric!. We
call this metric g, the quantum gate design metric. If w rep-
resents the complex number w=x+ iz, then the quantum gate
design metric can be written as

g =
#dw#2

1 − #w#2
. "1!

It has marked similarity to the Poincaré metric #dw#2
"1−#w#2!2 in

Hyperbolic geometry $22%, defined on the unit disk.
We show how problems of efficiently steering quantum

dynamics of coupled qubits can be mapped to the study of
shortest paths under the metric g. Computing geodesics un-
der g helps us to develop techniques for efficient synthesis of
transformations in the 63-dimensional space of "special! uni-
tary operators on three coupled qubits.

We consider a linear Ising chain, consisting of three
coupled qubits "spins 1/2! with coupling constants J12=J23
=J and J13=0 $see Fig. 2"A!%. The coupling Hamiltonian
between the qubits is given by $18%

Hc = 2"J"I1zI2z + I2zI3z! , "2!

where, e.g., I1z= 1
2#z ! 12$2 ! 12$2, #z is a Pauli spin opera-

tor, and 12$2 is the 2$2 unit matrix $18%.
The spin system is controlled by local unitary operations

on individual qubits, which we assume take negligible time
compared to the evolution of couplings "strong pulse limit!
$5%. The strength of couplings limits the time it takes to syn-
thesize quantum logical gates between coupled qubits. We
seek to find the optimal way to perform local control on
qubits in the presence of evolution of couplings to perform

fastest possible synthesis of quantum logic gates. For directly
coupled qubits, this problem has been solved. For example, a
CNOT"1,2! gate which inverts spin 2 conditioned on the state
of spin 1 requires a minimum of 0.5J−1 $5%. Here, we focus
on the problem of synthesizing the CNOT"1,3! gate between
indirectly coupled spins. Figure 2"B! shows the energy-level
diagram for the CNOT"1,3! operation, where the state of qubit
3 is inverted if qubit 1 is in a lower energy state, i.e., in state
1. In the literature, various constructions of CNOT"1,3! gates
have been considered with durations ranging from 3.5J−1 to
2.5J−1 $23%. The main result of this paper is that the
CNOT"1,3! gate can be realized in only 2l

"J units of time,
where l is the length of the geodesic under the metric g for
!= "

4 as depicted in Fig. 1. This is significantly faster than
the best known conventional approach. The new pulse se-
quence for the CNOT"1,3! gate is based on the sequence ele-
ment shown in Fig. 3"A!.

The main ideas for discovering the new efficient pulse
sequence are as follows. The unitary propagator for a CNOT
gate is

CNOT"1,3! = exp&− i
"

2
'2I1zI3x − I1z − I3x +

1
2

1() , "3!

where 1 is the identity operator and Ik% is 1 /2 times the
Pauli-spin operator on qubit k with %! *x ,y ,z+ $18%. Since
we assume that local operations take negligible time, we
consider the synthesis of the unitary operator

FIG. 1. The solid curve in Fig. 1 depicts the shortest path con-
necting the north pole "1,0 ,0! to a point "0,cos ! , sin !! under the
metric g. The dashed curve is the geodesic under the standard met-
ric and represents a segment of a great circle.

FIG. 2. "A! Coupling topology where the first qubit "I1! and
third qubit "I3! are coupled only indirectly via the second qubit "I2!
with coupling constants J12=J23=J. "B! Schematic energy-level
diagram for the spin system in a static magnetic field in the z di-
rection, which determines the quantization axis. The Zeeman en-
ergy of a state #b1b2b3, is -k=1

3 " 1
2 −bk!&i, where &k is the Larmor

frequency of spin Ik; bk=1 and 0 correspond to the low- and high-
energy eigenstates of the angular momentum operator along the z
direction. The schematic representation in "B!, corresponds to the
case &1.&3. The coupling term $Eq. "2!% results in an additional
shift of the states #000, and #111, by "J and of the states #010, and
#101, by −"J "not visible in the figure because #J # ! #&k#. The effect
of the CNOT"1, 3! unitary transformation is indicated by arrows.
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
desics for the implementation of U13=exp%−i !

2 2I1zI3z& "A#, -U13

=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
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Since evolution of xA and xB is equivalent, it motivates the
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to
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no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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sphere y2=1−x2−z2!. The solid curve in Fig. 1 depicts the
shortest path connecting the north pole "1,0 ,0! to a point
"0,cos ! , sin !!, under the metric g. The dashed curve is the
geodesic under the standard metric and represents a segment
of a great circle. For != "

4 , the length L of the geodesic under
g is 0.627" "as opposed to "

2 under the standard metric!. We
call this metric g, the quantum gate design metric. If w rep-
resents the complex number w=x+ iz, then the quantum gate
design metric can be written as

g =
#dw#2

1 − #w#2
. "1!

It has marked similarity to the Poincaré metric #dw#2
"1−#w#2!2 in

Hyperbolic geometry $22%, defined on the unit disk.
We show how problems of efficiently steering quantum

dynamics of coupled qubits can be mapped to the study of
shortest paths under the metric g. Computing geodesics un-
der g helps us to develop techniques for efficient synthesis of
transformations in the 63-dimensional space of "special! uni-
tary operators on three coupled qubits.

We consider a linear Ising chain, consisting of three
coupled qubits "spins 1/2! with coupling constants J12=J23
=J and J13=0 $see Fig. 2"A!%. The coupling Hamiltonian
between the qubits is given by $18%

Hc = 2"J"I1zI2z + I2zI3z! , "2!

where, e.g., I1z= 1
2#z ! 12$2 ! 12$2, #z is a Pauli spin opera-

tor, and 12$2 is the 2$2 unit matrix $18%.
The spin system is controlled by local unitary operations

on individual qubits, which we assume take negligible time
compared to the evolution of couplings "strong pulse limit!
$5%. The strength of couplings limits the time it takes to syn-
thesize quantum logical gates between coupled qubits. We
seek to find the optimal way to perform local control on
qubits in the presence of evolution of couplings to perform

fastest possible synthesis of quantum logic gates. For directly
coupled qubits, this problem has been solved. For example, a
CNOT"1,2! gate which inverts spin 2 conditioned on the state
of spin 1 requires a minimum of 0.5J−1 $5%. Here, we focus
on the problem of synthesizing the CNOT"1,3! gate between
indirectly coupled spins. Figure 2"B! shows the energy-level
diagram for the CNOT"1,3! operation, where the state of qubit
3 is inverted if qubit 1 is in a lower energy state, i.e., in state
1. In the literature, various constructions of CNOT"1,3! gates
have been considered with durations ranging from 3.5J−1 to
2.5J−1 $23%. The main result of this paper is that the
CNOT"1,3! gate can be realized in only 2l

"J units of time,
where l is the length of the geodesic under the metric g for
!= "

4 as depicted in Fig. 1. This is significantly faster than
the best known conventional approach. The new pulse se-
quence for the CNOT"1,3! gate is based on the sequence ele-
ment shown in Fig. 3"A!.

The main ideas for discovering the new efficient pulse
sequence are as follows. The unitary propagator for a CNOT
gate is

CNOT"1,3! = exp&− i
"

2
'2I1zI3x − I1z − I3x +

1
2

1() , "3!

where 1 is the identity operator and Ik% is 1 /2 times the
Pauli-spin operator on qubit k with %! *x ,y ,z+ $18%. Since
we assume that local operations take negligible time, we
consider the synthesis of the unitary operator

FIG. 1. The solid curve in Fig. 1 depicts the shortest path con-
necting the north pole "1,0 ,0! to a point "0,cos ! , sin !! under the
metric g. The dashed curve is the geodesic under the standard met-
ric and represents a segment of a great circle.

FIG. 2. "A! Coupling topology where the first qubit "I1! and
third qubit "I3! are coupled only indirectly via the second qubit "I2!
with coupling constants J12=J23=J. "B! Schematic energy-level
diagram for the spin system in a static magnetic field in the z di-
rection, which determines the quantization axis. The Zeeman en-
ergy of a state #b1b2b3, is -k=1

3 " 1
2 −bk!&i, where &k is the Larmor

frequency of spin Ik; bk=1 and 0 correspond to the low- and high-
energy eigenstates of the angular momentum operator along the z
direction. The schematic representation in "B!, corresponds to the
case &1.&3. The coupling term $Eq. "2!% results in an additional
shift of the states #000, and #111, by "J and of the states #010, and
#101, by −"J "not visible in the figure because #J # ! #&k#. The effect
of the CNOT"1, 3! unitary transformation is indicated by arrows.
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
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gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.

SHORTEST PATHS FOR EFFICIENT CONTROL OF… PHYSICAL REVIEW A 75, 012322 "2007#

012322-3

U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
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s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
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transforms the operators I1" and I3" "with the indices "
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treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
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coupled by Hc and the single qubit operations on the second
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"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.
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of the 63-dimensional operator space is represented by the
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the same way as U13
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transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13
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treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B
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= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1
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# in sub-
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"A# in a total time TC
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"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.

SHORTEST PATHS FOR EFFICIENT CONTROL OF… PHYSICAL REVIEW A 75, 012322 "2007#

012322-3

U13
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!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying
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the same way as U13

s does. The unitary transformation U13
s
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s
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0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#
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-2
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system A with -x2!
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2= 1
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-2

# to "0,0 , 1
-2 , 1

-2
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FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
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=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua
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2 I3y,, Ub
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
desics for the implementation of U13=exp%−i !

2 2I1zI3z& "A#, -U13

=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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transfer time:

! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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! 1
"2 , 1

"2 ,0 ,0# in subsystem B$; !iii# transformation from
! 1

"2 , 1
"2 ,0 ,0# to ! 1

"2 ,x3! ,x2! ,0# in subsystem B; !iv# transforma-
tion from ! 1

"2 ,x3! ,x2! ,0# to !0,0 ,0 ,1# in subsystem B.
Transformations !ii# and !iii# represent local y and x rota-

tions of the second spin, respectively, and take a negligible
amount of time in the strong pulse limit: Transformation !ii#
is accomplished by a local !y rotation of the second qubit,
i.e., a strong pulse with flip angle ! !where tan !=x2! /x3!# and
phase y. Similarly, transformation !iii# can be accomplished
by a local !x rotation applied to the second qubit. Because of
the symmetry of the two subsystems A and B, the transfor-
mations !i# and !iv# are equivalent and take the same amount
of time with !iv# being the time-reversed transformation of
!i# and x5 and x6 replacing x2 and x1, respectively. Hence the
problem of finding the fastest transformations !i#–!iv#, re-
duces to a time optimal control problem in the four-
dimensional subspace A, asking for the choice of uA!t# that
achieves transfer !i# in the minimum time %step !II#$.

In step !III#, this optimal control problem is reduced to the
shortest path problem on a sphere !under metric g# described
in the beginning of the section !see Fig. 1#. The key ideas are
as follows. Let x!t#=x1!t#, y!t#="x2

2!t#+x3
2!t# and z!t#=x4!t#.

Since uA!t# can be made large, we can control the angle

tan !!t#=
x2!t#
x3!t# arbitrarily fast in the strong pulse limit. With

the new variables (x!t# ,y!t# ,z!t#), Eq. !5# reduces to

d

dt&x

y

z
' = "J& 0 − sin !!t# 0

sin !!t# 0 − cos !!t#
0 cos !!t# 0

'&x

y

z
' .

!6#

In this system, the goal of achieving the fastest transfor-
mation !a# corresponds to finding the optimal angle !!t# such
that !1,0 ,0# is steered to !0, 1

"2 , 1
"2

# in minimum time. The
time of transfer # can be written as (0

#"sin2 !!t#+cos2 !!t#dt.
Substituting for sin !!t# and cos !!t# from Eq. !6#, this re-
duces to

!7#

Thus minimizing # amounts to computing the geodesic under
the metric g given in Eq. !1#. We first characterize these
geodesics connecting !1,0 ,0# to !0,cos $ , sin $#, for general
$ and then evaluate the geodesic length for the specific $
= "

4 of interest. With the Lagrange function L defined in Eq.
!7# and using y2=1−x2−z2, to constrain the trajectory to the
sphere, the Euler-Lagrange equations for the geodesic take
the form

d

dt
) !L

! ẋ
* =

!L

!x
;

d

dt
) !L

! ż
* =

!L

!z
. !8#

Note, by definition, L is constant along the trajectories and
takes the value 1. This gives

d

dt
) ẋ

y2* = L2 x

y2 ;
d

dt
) ż

y2* = L2 z

y2 , !9#

which implies that

d

dt
) ẋz − żx

y2 * = 0. !10#

The Euler-Lagrange equations imply that along geodesic
curves, ẋz−żx

y2 = f is a constant. Substituting back in Eq. !9#
gives

d

dt
) ẋ

y
* = − f

ż

y
;

d

dt
) ż

y
* = f

ẋ

y
, !11#

which implies that ẋ
y =A0 cos!ft+%# and ż

y =A0 sin!ft+%#. For
geodesics originating from !1,0 ,0#, at time t=0, we have
ż
y =0 !for f to be finite# and hence %=0. This implies from
Eq. !6# that A0="J and !!t#= ft− "

2 . Now differentiating the
expression

x2

x3
!t#=tan!ft− "

2
# gives uA!t#= 1

"J
!−f + żx−ẋz

y2 #. Along
geodesic curves, żx−ẋz

y2 is constant, implying that in Eq. !5#,
time optimal uA!t#=u is constant. We now simply search
numerically for this constant u and the corresponding # that
will perform transformation !i# in system !5#. From all fea-
sible !u ,## pairs, we choose the one with smallest #. This
gives #=0.627J−1 and uA!t#=uB!t#=u=1.04. Evolving Eq.

!5# for time # with u=1.04 results in !!##=tan−1 x2!
x3!

=0.5476.
The optimal flip angle for the transformations !i# and !iv# is
therefore !!##=0.5476. We drop the argument # in the sub-
sequent text and use ! to denote !!##. With this, the total
unitary operator U13

g , corresponding to the transformations
!i#–!iv# can be written in the form

U13
g = &x exp+− i!I2x,exp+− i!I2y,&y !12#

with &x,y =exp+−i"J#%2I1zI2z+2I2zI3z+uI2x,2y$,. The pulse
sequence for the implementation of U13

g is evident from Eq.
!12# and consists of a constant y pulse on spin 2 of amplitude
'a=uJ /2=0.52J for a duration of #=0.627J−1 followed by a
y pulse and then a x pulse each of flip angle !=0.5476 !cor-
responding to 31.4°# on spin 2, both of negligible duration.
Finally, we apply a constant x pulse on spin 2 of duration
#=0.627J−1 and amplitude 0.52J. The overall duration for
the implementation of U13

g is T=2#=1.253J−1.
We now show that U13

g is locally equivalent to U13
s %and

hence to the CNOT!1,3# gate$. Therefore the CNOT!1,3# gate
can also be implemented in a time T=2#=1.253J−1. Let I1,3
denote the subspace spanned by the operators
+I1( , I3) , I1(I3), with independent (, )! +x ,y ,z, and I2 de-
note the space spanned by operators +I2(,. It can be explicitly
verified that by construction U13

g maps I1,3 to itself and acts
identically as U13

s . This constrains U13
g up to a local transfor-

mation on the space I1,3 ! I2. We can therefore find local
transformations Ua

loc, Ub
loc, and Uc

loc such that

CNOT!1,3# = Uc
locUb

locU13
g Ua

loc. !13#

These local transformations are readily computed to
equal Ua

loc=exp+−i "
2 I3y,, Ub

loc=exp+i!"−!#I2y,exp+i!"
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(C1, C2)

(C3, C4, C5)

gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
tested numerically and we also performed a large number of
experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
4"A#.

Application of the propagator U13=exp(−i "
2 2I1zI3z) to !A

results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.

The propagator *U13=exp(−i "
4 2I1zI3z) transforms the pre-

pared state !A into !C= 1
*2 "I1x+2I1yI3z#, resulting in a super-

position of absorptive in-phase and dispersive antiphase sig-
nals of spin I1, see Fig. 4"C#.

The Toffoli gate applied to !A yields

!D =
1
*2

"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.

FIG. 7. "A# Broadband version
of the ideal *U13 sequence shown
in Fig. 3"B#, which is robust
with respect to frequency offsets
of the spins. Positive coupling
constants J12=J23=J#0 "with
J13=0# and hard spin-selective
pulses are assumed. The delay $
is *7/ "16mJ#=0.1654/ "mJ# and
the flip angle % is 3" / "8m# "cor-
responding to 67.5° /m#. "B# Ex-
perimentally implemented pulse
sequence synthesizing *U13 for
the spin system of 15N aceta-
mide with J"1H, 15N#!−88 Hz,
exp(−i"" /2#I1zI3z) for J"1H, 15N#
!−88 Hz with m=2, %=33.75°,
$=*7/ &16m $J"1H, 15N# $ '=939.5
&s, $1=1/ "4$'13#=806.5 &s,
and $2=1/ &2 $J"1H, 15N# $ '=5.68
ms.
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
desics for the implementation of U13=exp%−i !

2 2I1zI3z& "A#, -U13

=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
tested numerically and we also performed a large number of
experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
4"A#.

Application of the propagator U13=exp(−i "
2 2I1zI3z) to !A

results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.

The propagator *U13=exp(−i "
4 2I1zI3z) transforms the pre-

pared state !A into !C= 1
*2 "I1x+2I1yI3z#, resulting in a super-

position of absorptive in-phase and dispersive antiphase sig-
nals of spin I1, see Fig. 4"C#.

The Toffoli gate applied to !A yields

!D =
1
*2

"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.

FIG. 7. "A# Broadband version
of the ideal *U13 sequence shown
in Fig. 3"B#, which is robust
with respect to frequency offsets
of the spins. Positive coupling
constants J12=J23=J#0 "with
J13=0# and hard spin-selective
pulses are assumed. The delay $
is *7/ "16mJ#=0.1654/ "mJ# and
the flip angle % is 3" / "8m# "cor-
responding to 67.5° /m#. "B# Ex-
perimentally implemented pulse
sequence synthesizing *U13 for
the spin system of 15N aceta-
mide with J"1H, 15N#!−88 Hz,
exp(−i"" /2#I1zI3z) for J"1H, 15N#
!−88 Hz with m=2, %=33.75°,
$=*7/ &16m $J"1H, 15N# $ '=939.5
&s, $1=1/ "4$'13#=806.5 &s,
and $2=1/ &2 $J"1H, 15N# $ '=5.68
ms.
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The methods presented are expected to have applications
to recent proposals of making nuclear spins act as client qu-
bits !17" share information efficiently via distributed hyper-
fine coupling to an electron spin 1

2 acting as the bus qubit.
Efficient synthesis of couplings between indirectly coupled
spins will also be very useful in multidimensional NMR ap-
plications to correlate the frequencies of spins 1 and 3
coupled indirectly through spin 2 !18". Recent numerical op-
timization studies !27,28" indicate that the gap between con-
ventional and time optimal methods for the synthesis of typi-
cal quantum circuits #for, e.g., quantum Fourier transform$,
on practical architectures, increases rapidly with the number
of qubits. This motivates further mathematical developments
along the lines of the present work in searching for time
optimal techniques of manipulating coupled spin systems. In
practical quantum computing, this might prove to be very
important as minimizing decoherence losses by efficient gate
synthesis improves the fidelity of gates. Since fault tolerant
quantum computing protocols require gates to have a fidelity
above a certain threshold, optimal gate synthesis methods as
presented here could prove critical in practical quantum
computing. The problem of constrained optimization that
arises in time optimal synthesis of unitary transformations in
spin networks is also expected to instigate new ideas and
method development in the fields of optimal control and
geometry.

VI. SUPPORTING INFORMATION

The 1H and 15N transmitter frequencies were set on reso-
nance for spins I1 and I2, respectively. The frequency differ-
ence between spins I1 and I3 was !"13=310 Hz. Selective

rotations of the 15N nuclear spin I2 were implemented using
hard pulses. Spin-selective proton pulses were realized by
combinations of hard pulses and delays in our experiments.
For example, a selective 90° rotation of spin I3 with phase y,
denoted 90y

°#I3$, is realized by the sequence element
90x

°#I1 , I3$− #!1 /2$−180x
°#I2$− #!1 /2$−180x

°#I2$90−x
° #I1 , I3$,

where !1=1/ #4!"13$ and 90±x
° #I1 , I3$ correspond to nonse-

lective #hard$ proton pulses, acting simultaneously on I1 and
I3. Figures 6#A$, 7#A$, and 8#A$ show broadband versions of
the ideal sequence shown in Fig. 3, which are robust with
respect to frequency offsets of the spins. Positive coupling
constants J12=J23=J#0 #with J13=0$ and hard spin-
selective pulses are assumed. Figures 6#B$, 7#B$, and 8#B$
show the actual pulse sequences used in the experiments
with the 15N acetamide model system. In the experimental
pulse sequences, selective 1H pulses were implemented us-
ing hard pulses and delays, where !1=1/ #4!"13$. Further-
more, the sequences were adjusted to take into account that
in the experimental model system the couplings J12 and J23
are negative. Broadband implementations of weak irradiation
periods !25" are enclosed in brackets and the number m of
repetitions was two in all experiments.
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FIG. 8. #A$ Broadband version
of the ideal Toffoli sequence
shown in Fig. 3#C$, which is ro-
bust with respect to frequency off-
sets of the spins. Positive coupling
constants J12=J23=J#0 #with
J13=0$ and hard spin-selective
pulses are assumed. #B$ Experi-
mentally implemented pulse se-
quence synthesizing a Toffoli gate
for the spin system of 15N aceta-
mide. Delays !, !1, !2, and the
small flip angle $ are defined in
Fig. 7.
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Toffoli gate

U13
s = exp!− i

!

2
"I1z + I3z + 2I1zI3z#$ , "4#

which is locally equivalent to the CNOT"1,3# operator but
symmetric in qubits 1 and 3.

For synthesizing U13
s , we seek to engineer a time varying

Hamiltonian that transforms the various quantum states in
the same way as U13

s does. The unitary transformation U13
s

transforms the operators I1" and I3" "with the indices "
! %x ,y&# to −2I1"I3z and −2I1zI3", respectively. Since U13

s

treats the operators I1x,1y and I3x,3y symmetrically, we seek to
construct the propagator U13

s by a time varying Hamiltonian
that only involves the evolution of Hamiltonian Hc and
single qubit operations on the second spin. The advantage of
restricting to only these two control actions is that it is then
sufficient to engineer a pulse sequence for steering just the
initial state I1x to its target operator −2I1xI3z. Other operators
in the space %I1" , I3# ,2I1"I3#& are then constrained to evolve
to their respective targets "as determined by the action of
U13

s #. Our approach can be broken down into the following
steps:

"I# In a first step, the problem of efficient transfer of I1x to
−2I1xI3z in the 63-dimensional operator space of three qubits
is reduced to a problem in the six-dimensional operator space
S, spanned by the set of operators I1x, 2I1yI2z, 2I1yI2x,
4I1yI2yI3z, 4I1yI2zI3z, and 2I1xI3z. "The numerical factors of 2
and 4 simplify the commutation relations among the opera-
tors.# The subspace S is the lowest dimensional subspace in
which the initial state I1x and the target state −2I1xI3z are
coupled by Hc and the single qubit operations on the second
spin.

"II# In a second step, the six-dimensional problem is de-
composed into two independent "but equivalent# four-
dimensional time optimal control problems.

"III# Finally, it is shown that the solution of these time
optimal control problems reduces to computing shortest
paths on a sphere under the modified metric g.

In step "I#, any operator in the six-dimensional subspace S
of the 63-dimensional operator space is represented by the
coordinates x= "x1 ,x2 ,x3 ,x4 ,x5 ,x6#, where the coordinates
are given by the following six expectation values: x1= 'I1x(,
x2= '2I1yI2z(, x3= '2I1yI2x(, x4= '4I1yI2yI3z(, x5= '4I1yI2zI3z(,
and x6=−'2I1xI3z(. In the presence of the coupling Hc, a
rotation of the second qubit around the y axes )affected by a
rf Hamiltonian HA=uA"t#!JI2y* couples the first four com-
ponents xA= "x1 ,x2 ,x3 ,x4#t of the vector x. In the presence of
Hc, a rotation around the x axes )affected by a rf Hamil-
tonian HB=uB"t#!JI2x* mixes the last four components xB
= "x3 ,x4 ,x5 ,x6#t of the vector x. Under x or y pulses applied
to the second qubit in the presence of Hc, the equations of
motion for the column vectors xA and xB have the same form:

dxA,B

dt
= !J+0 − 1 0 0

1 0 − uA,B 0

0 uA,B 0 − 1

0 0 1 0
,xA,B. "5#

Since evolution of xA and xB is equivalent, it motivates the
following sequence of transformations that treats the two

systems symmetrically and steers I1x )corresponding to xA
= "1,0 ,0 ,0#t* to −2I1xI3z )corresponding to xB= "0,0 ,0 ,1#t*:
"i# transformation from "1,0 ,0 ,0# to "0,x2! ,x3! , 1

-2
# in sub-

system A with -x2!
2+x3!

2= 1
-2 ; "ii# transformation from

"0,x2! ,x3! , 1
-2

# to "0,0 , 1
-2 , 1

-2
# in subsystem A )corresponding to

FIG. 3. Efficient pulse sequences based on sub-Riemannian geo-
desics for the implementation of U13=exp%−i !

2 2I1zI3z& "A#, -U13

=exp%−i !
4 2I1zI3z& "B#, simulating coupling evolution by angles !

2
"A# and !

4 "B# between indirectly coupled qubits, and of a Toffoli
gate "C#. Qubits I1, I2, and I3 are assumed to be on-resonance in
their respective rotating frames. Narrow and wide vertical bars cor-
respond to hard pulses with flip angles ! /2 and !, respectively, if
no other flip angle is indicated. Rotations around the z axis are
represented by dashed bars. The unitary operator U13, which is lo-
cally equivalent to the CNOT"1,3# gate, is synthesized by sequence
"A# in a total time TC

* =2$=1.253J−1. The amplitude of the weak
pulses "represented by gray boxes# with a duration of $=0.627J−1 is
%a=uJ /2=0.52J. The hard-pulse flip angles &=31.4° and "=180°
−&=148.6°. Sequence "B# of total duration "4+-7# /4J−1=1.66J−1

synthesizes the propagator -U13. The amplitude of the weak pulse
"gray box# with a duration of -7/4J−1=0.661J−1 is %w=3J /-7
=1.134J. Pulse sequence "C# realizes the Toffoli gate in a total time
"6+-7# /4J−1=2.16J−1. The sequence is based on the sequence for
-U13 and a weak pulse with the same amplitude and duration as in
sequence "B#.
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ideal sequence experimental sequence

gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
tested numerically and we also performed a large number of
experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
4"A#.

Application of the propagator U13=exp(−i "
2 2I1zI3z) to !A

results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.

The propagator *U13=exp(−i "
4 2I1zI3z) transforms the pre-

pared state !A into !C= 1
*2 "I1x+2I1yI3z#, resulting in a super-

position of absorptive in-phase and dispersive antiphase sig-
nals of spin I1, see Fig. 4"C#.

The Toffoli gate applied to !A yields

!D =
1
*2

"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.

FIG. 7. "A# Broadband version
of the ideal *U13 sequence shown
in Fig. 3"B#, which is robust
with respect to frequency offsets
of the spins. Positive coupling
constants J12=J23=J#0 "with
J13=0# and hard spin-selective
pulses are assumed. The delay $
is *7/ "16mJ#=0.1654/ "mJ# and
the flip angle % is 3" / "8m# "cor-
responding to 67.5° /m#. "B# Ex-
perimentally implemented pulse
sequence synthesizing *U13 for
the spin system of 15N aceta-
mide with J"1H, 15N#!−88 Hz,
exp(−i"" /2#I1zI3z) for J"1H, 15N#
!−88 Hz with m=2, %=33.75°,
$=*7/ &16m $J"1H, 15N# $ '=939.5
&s, $1=1/ "4$'13#=806.5 &s,
and $2=1/ &2 $J"1H, 15N# $ '=5.68
ms.
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interest are J12=−87.3 Hz!J23=−88.8 Hz!J13=2.9 Hz.
The actual pulse sequences implemented on the spectrometer
and further experimental details are given in the supplemen-
tary material.

The propagators of the constructed pulse sequences were
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experimental tests. For example, Fig. 4 shows a series of
simulated and experimental 1H spectra of the amino moiety
of 15N acetamide. In the simulations, the experimentally de-
termined coupling constants and resonance offsets of the
spins were taken into account. The various propagators were
calculated for the actually implemented pulse sequences
"given in the supplementary material# neglecting relaxation
effects. In the simulated spectra, a line broadening of 3.2 Hz
was applied in order to facilitate the comparison with the
experimental spectra. Starting at thermal equilibrium "in the
high-temperature limit#, the state !A= I1x can be conveniently
prepared by saturating spins I2 and I3 "i.e., by creating equal
populations of the states $000%, $001%, $010%, $001% and equal
populations of the states $100%, $101%, $110%, $101%, see Fig. 2#
and applying a 90y

° pulse to spin I1, where !A is the traceless
part of the density operator &18'. The resulting spectrum with
an absorptive in-phase signal of spin I1 is shown in Fig.
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results in the state !B=2I1yI3z. The corresponding spectrum
&18' shows dispersive signal of spin I1 in antiphase with
respect to spin I3, see Fig. 4"B#.
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position of absorptive in-phase and dispersive antiphase sig-
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"I1x + 2I1xI2z + 2I1xI3x − 4I1xI2zI3x# . "20#

Only the first two terms in !D give rise to detectable signals.
The corresponding spectrum is a superposition of an absorp-
tive in-phase signal of spin I1 and an absorptive antiphase
signal of spin I1 with respect to spin I2, resulting in the
spectrum shown in Fig. 4"D#.

The effect of the CNOT"1,3# gate can be conveniently
demonstrated by using a two-dimensional experiment &26'.
Figure 5 shows the resulting two-dimensional spectrum of
the 15N multiplet "corresponding to spin I2# which reflects
the expected transformations of the spin states of I1 and I3
under the CNOT"1,3# operation.

V. CONCLUSION

In this paper, we have shown that problems of efficient
synthesis of couplings between indirectly coupled qubits can
be solved by reducing them to problems in geometry. We
have constructed efficient ways of synthesizing quantum
gates on a linear spin chain with Ising couplings including
CNOT and Toffoli operations. We showed significant savings
in time in implementing these quantum gates over state-of-
the-art methods. The mathematical methods presented here
are expected to have applications to broad areas of quantum
information technology. The quantum gate design metric
$dw$2

1−$w$2 defined on a open unit disk in a complex plane
could play an interesting role in the subject of quantum
information.
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gate. The implementation, pulse sequence C5, proposed here
is still significantly shorter than this. The implementation
times under various strategies are summarized in Table I.

We now show how efficient implementation of trilinear
propagators can also be used for efficient construction of
other quantum gates like a controlled NOT !Toffoli" gate on
spin 3 conditioned on the state of spin 1 and 2 for the linear
spin chain architecture, cf. Table II. The decomposition given
in #21$ is based on four CNOT gates !requiring 0.5J−1 each"
between directly coupled qubits and two CNOT gates between
indirectly coupled qubits. Hence using a SWAP-based imple-
mentation of the CNOT!1,3" gates !pulse sequence C1", each
of which requires 3.5J−1, the total duration of the Toffoli gate
would be 9J−1 !Toffoli gate pulse sequence T1". With the
most efficient implementation of the CNOT!1,3" !gate pulse
sequence C5", each of which requires 1.253J−1, the decom-
position #21$ has a total duration of about 4.5J−1 !gate pulse
sequence T2". The Sleator-Weinfurter construction #20$ of
the Toffoli gate is based on two CNOT operations between
directly coupled qubits, two unitary operations which are lo-
cally equivalent to the evolution of the coupling between
directly coupled qubits, each of duration 0.25J−1 and one
unitary operator which is locally equivalent to %U13

=exp!−i !
4 2I1zI3z". A naive approach for synthesizing %U13 us-

ing SWAP operations has a duration of 3.25J−1, resulting in a
total duration of the Toffili gate of 4.75J−1 !gate pulse se-
quence T3". Based on the optimal synthesis of trilinear
propagators #9$ %U13 can be implemented in 4+%7

4J =1.66J−1

units of time #see Fig. 3!B"$. The main identity used is
%U13=exp!−i !

2 2I2zI3y"exp!−i !
4 4I1zI2zI3z"exp!i !

2 2I2zI3y". This
reduces the overall duration of the Sleator-Weinfurter con-
struction to 3.16J−1 !gate pulse sequence T4".

Here, we present even shorter implementations of the
Toffoli gate, the propagator of which is given by Utof f

=exp&−i!! 1
21− I1z"! 1

21− I2z"! 1
21+ I3x"'. Neglecting terms in

the Hamiltonian corresponding to multiples of the unit op-
erator 1 and to single spin operations !as these take negli-
gible time to synthesize", the effective Hamiltonian for the
Toffoli gate is locally equivalent to Htof f =

!
4 &2I1zI2z+2I2zI3x

+2I1zI3x+4I1zI2zI3x'. The synthesis of !
4 &2I1zI2z+2I2zI3x' is

achieved by evolution under the direct couplings for !4J"−1

units of time. In #9$, we showed that the time optimal syn-
thesis of the trilinear Hamiltonian !

4 4I1zI2zI3x takes
%7
4J units

of time #also see Eq. !16"$. The term exp!−i !
4 2I1zI3x" is lo-

cally equivalent to %U13=exp!−i !
4 2I1zI3z" which can be syn-

thesized in 4+%7
4J =1.66J−1 units of time, as discussed above

#see Fig. 3!B"$. This decomposition results in an overall time
for a Toffoli gate of 5+2%7

4J =2.573J−1 !gate pulse sequence
T5".

FIG. 4. Simulated !left" and experimental !right" 1H spectra
of the amino moiety of 15N acetamide with J12=−87.3 Hz, J23
=−88.8 Hz, and J13=2.9 Hz. Starting from thermal equilibrium, in
all experiments the state "A= I1x was prepared by saturating spins I2
and I3 and applying a 90y

° pulse to spin I1, where "A is the traceless
part of the density operator #18$. !A" Spectrum corresponding to
"A= I1x, !B" spectrum obtained after applying the propagator U13

=exp&−i !
2 2I1zI3z' to "A, !C" resulting spectrum after applying the

propagator %U13=exp&−i !
4 2I1zI3z' to "A, !D" spectrum after apply-

ing the Toffoli gate to "A.

TABLE I. Duration #C of various implementations of the
CNOT!1,3" gate.

Pulse sequence #C !units of J−1" Relative duration !%"

Sequence 1 !C1" 3.5 100
Sequence 2 !C2" 2.5 71.4
Sequence 3 !C3" 2.0 57.1
Sequence 4 !C4" 1.866 53.3
Sequence 5 !C5" 1.253 38.8

TABLE II. Duration #T of various implementations of the Tof-
foli gate.

Pulse sequence #T !units of J−1" Relative duration !%"

Sequence 1 !T1" 9.0 100
Sequence 2 !T2" 4.5 50
Sequence 3 !T3" 4.75 52.8
Sequence 4 !T4" 3.16 35.1
Sequence 5 !T5" 2.57 28.6
Sequence 6 !T6" 2.16 24.0
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