Theoretical and Phenomenological Interest in Rare B Decays

Ahmed Ali
DESY, Hamburg
Kolloquium, Theoretische Physik, Universität Siegen January 21, 2013

- Rare B Decays $\left(b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, \ldots\right)$ are Flavour-Changing-Neutral-Current (FCNC) processes $(|\Delta B|=1,|\Delta Q|=0)$; not allowed at the Tree level in the SM
- FCNC processes are governed by the GIM mechanism, which imparts them sensitivity to higher scales $\left(m_{t}, m_{W}\right)$ and the CKM matrix elements, in particular, $V_{t i} ; i=d, s, b$
- FCNC processes are sensitive to physics beyond the SM, such as supersymmetry, and the BSM amplitudes can be comparable to the $(t \boldsymbol{W})$-part of the GIM amplitudes
- Last, but not least, Rare \boldsymbol{B}-decays enjoy great interest in the ongoing and planned experimental programme in heavy quark physics (CLEO, BABAR, BELLE, CDF, D0, LHC, Super-B factory)

Content

- Standard Model, Quark Flavour Mixing \& the CKM Matrix
- The Standard Candle in Rare B-Decays: $\mathbf{B} \rightarrow X_{s} \gamma$
- Exclusive Radiative Decays $\mathbf{B} \rightarrow K^{*} \gamma \& \mathbf{B} \rightarrow(\rho, \omega) \gamma$
- Electroweak Penguins: $\mathbf{B} \rightarrow X_{s} \ell^{+} \ell^{-}$
- Exclusive Decays $\mathbf{B} \rightarrow\left(K, K^{*}, \pi\right) \ell^{+} \ell^{-}$
- Current Frontier of Rare B Decays: $\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-} \& \mathbf{B}_{d} \rightarrow \mu^{+} \mu^{-}$
- Outlook \& Summary

Standard Model Lagrangian

$\underline{\text { QCD [SU(3)] }}$

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\mathrm{GSW}}+\mathcal{L}_{\mathrm{QCD}}
$$

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \boldsymbol{F}_{\mu \nu}^{(a)} \boldsymbol{F}^{(a) \mu \nu}+i \sum_{q} \bar{\psi}_{q}^{\alpha} \gamma^{\mu}\left(\boldsymbol{D}_{\mu}\right)_{\alpha \beta} \psi_{q}^{\beta}
$$

with $F_{\mu \nu}^{(a)}=\partial_{\mu} A_{\nu}^{(a)}-\partial_{\nu} A_{\mu}^{(a)}-g_{s} f_{a b c} A_{\mu}^{(b)} A_{\nu}^{(c)} ; a, b, c=1, \ldots, 8$
and $\left(D_{\mu}\right)_{\alpha \beta}=\delta_{\alpha \beta} \partial_{\mu}+i g_{s} \sum_{a} \frac{1}{2} \lambda_{\alpha \beta}^{(a)} A_{\mu}^{(a)}$
Electroweak $\left[S U(2)_{I} \times U(1)_{Y}\right]$

$$
\mathcal{L}_{\mathrm{GSW}}=\mathcal{L}_{\text {gauge }}\left(\boldsymbol{W}_{i}, B, \psi_{j}\right)+\mathcal{L}_{\mathrm{Higgs}}\left(\phi_{k}, W_{i}, B, \psi_{j}\right)
$$

$\mathcal{L}_{\text {gauge }}\left(\boldsymbol{W}_{i}, \boldsymbol{B}, \psi_{j}\right)=-\frac{1}{4} \boldsymbol{F}_{\mu \nu}^{i} \boldsymbol{F}_{i}^{\mu \nu}-\frac{1}{4} \boldsymbol{B}_{\mu \nu} \boldsymbol{B}^{\mu \nu}+\sum_{\psi_{L}} \overline{\psi_{L}} \boldsymbol{i} \boldsymbol{D}_{\mu} \gamma^{\mu} \psi_{\boldsymbol{L}}+\sum_{\psi_{R}} \overline{\psi_{R}} i \boldsymbol{D}_{\mu} \gamma^{\mu} \psi_{\boldsymbol{R}}$

$$
\mathcal{L}_{\text {Higgs }}\left(\phi_{k}, W_{i}, B, \psi_{j}\right)=\mathcal{L}_{\text {Higgs }}(\text { gauge })+\mathcal{L}_{\text {Higgs }}(\text { fermions })
$$

$$
\mathcal{L}_{\text {Higgs }}(\text { gauge })=\left(D_{\mu} \Phi\right)^{*}\left(D^{\mu} \Phi\right)-V(\Phi)
$$

$$
\begin{aligned}
D_{\mu} \Phi= & \left(\mathrm{I}\left(\partial_{\mu}+i \frac{g_{1}}{2} B_{\mu}\right)+i g_{2} \frac{\tau}{2} \cdot \mathrm{~W}_{\mu}\right) \Phi ; V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
& \mathcal{L}_{\mathrm{Higgs}}(\text { fermions })=Y_{u}^{i j} \bar{Q}_{L, i} \tilde{\Phi} u_{R, j}+Y_{d}^{i j} \bar{Q}_{L, i} \Phi d_{R, j}+\text { h.c. }+\ldots
\end{aligned}
$$

- 3 Quark families: $Q_{L_{j}}=\left(u_{L}, d_{L}\right) ;\left(c_{L}, s_{L}\right) ;\left(t_{L} ; b_{L}\right) ; \bar{u}_{R}, \bar{d}_{R} ; \ldots$
- Flavour mixings in the SM reside in the Higgs-Yukawa sector of the theory
- Flavour symmetry broken by Yukawa interactions

$$
\begin{aligned}
& Q_{i} Y_{d}^{i j} d_{j} \phi \longrightarrow Q_{i} M_{d}^{i j} d_{j} \\
& Q_{i} Y_{u}^{i j} u_{j} \phi^{c} \longrightarrow Q_{i} M_{u}^{i j} u_{j} \\
& M_{d}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) ; \quad M_{u}^{\dagger}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \times V_{\mathrm{CKM}}
\end{aligned}
$$

- $\underline{V_{\mathrm{CKM}}}$ a (3×3) unitary matrix is the only source of Flavour Violation, as all gauge interactions (involving $\gamma, Z^{0}, \boldsymbol{g}$) are Flavour diagonal
- All observed phenomena involving flavour changes in the hadrons are consistently described by the CKM framework; i.e., in terms of 10 fundamental parameters: 6 quark masses, 3 mixing angles and 1 phase

The Cabibbo-Kobayashi-Maskawa Matrix

$$
\boldsymbol{V}_{\mathrm{CKM}} \equiv\left(\begin{array}{lll}
\boldsymbol{V}_{u d} & \boldsymbol{V}_{u s} & \boldsymbol{V}_{u b} \\
\boldsymbol{V}_{c d} & \boldsymbol{V}_{c s} & \boldsymbol{V}_{c b} \\
\boldsymbol{V}_{t d} & \boldsymbol{V}_{t s} & \boldsymbol{V}_{t b}
\end{array}\right)
$$

- Customary to use the handy Wolfenstein parametrization

$$
V_{\mathrm{CKM}} \simeq\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda\left(1+i A^{2} \lambda^{4} \eta\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2}\left(1+i \lambda^{2} \eta\right) & 1
\end{array}\right)
$$

- Four parameters: A, λ, ρ, η
- Perturbatively improved version of this parametrization

$$
\bar{\rho}=\rho\left(1-\lambda^{2} / 2\right), \quad \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)
$$

- The CKM-Unitarity triangle $\left[\phi_{1}=\beta ; \quad \phi_{2}=\alpha ; \quad \phi_{3}=\gamma\right]$

Phases and sides of the UT

$\alpha \equiv \arg \left(-\frac{\boldsymbol{V}_{t b}^{*} \boldsymbol{V}_{t d}}{\boldsymbol{V}_{u b}^{*} \boldsymbol{V}_{u d}}\right), \quad \beta \equiv \arg \left(-\frac{\boldsymbol{V}_{c b}^{*} \boldsymbol{V}_{c d}}{\boldsymbol{V}_{t b}^{*} \boldsymbol{V}_{t d}}\right), \quad \gamma \equiv \arg \left(-\frac{\boldsymbol{V}_{u b}^{*} \boldsymbol{V}_{u d}}{\boldsymbol{V}_{c b}^{*} \boldsymbol{V}_{c d}}\right)$

- $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ have simple interpretation

$$
V_{t d}=\left|V_{t d}\right| e^{-i \beta}, \quad V_{u b}=\left|V_{u b}\right| e^{-i \gamma}
$$

- α defined by the relation: $\alpha=\pi-\beta-\gamma$
- The Unitarity Triangle (UT) is defined by:

$$
\begin{gathered}
R_{b} \mathrm{e}^{i \gamma}+R_{t} \mathrm{e}^{-i \beta}=1 \\
R_{b} \equiv \frac{\left|V_{u b}^{*} V_{u d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \\
R_{t} \equiv \frac{\left|V_{t b}^{*} V_{t d}\right|}{\left|V_{c b}^{*} V_{c d}\right|}=\sqrt{(1-\bar{\rho})^{2}+\bar{\eta}^{2}}=\frac{1}{\lambda}\left|\frac{V_{t d}}{V_{c b}}\right|
\end{gathered}
$$

Current Status of the CKM-Unitarity Triangle [CKMfitter]

- $\sin 2 \beta=0.820_{-0.028}^{+0.024}$ [Fit-value]
$(=0.691 \pm 0.020$ [Direct Measurement]
- $\alpha=\left[95.9_{-5.6}^{+2.2}\right]^{\circ}[$ Fit-value]
$\boldsymbol{\alpha}=\left[88.7_{-4.2}^{+4.6}\right]^{\circ}$ [Direct Measurement]
- $\gamma=[67.1 \pm 4.3]^{\circ}[$ Fit-value $]$
$\gamma=[66 \pm 12]^{\circ}[$ Direct Measurement $]$
- Direct and indirect measurements of angles agree well; largest Pull is on $\sin 2 \beta(=2.6 \sigma)$

Current Status of the Squashed $U T_{s}$ Triangle [CKMfitter]

- $\bar{\rho}_{B_{s}}=-0.0078 \pm 0.0015$ [Fit-value]
- $\bar{\eta}_{B_{s}}=-0.01837_{-0.00082}^{+0.00080}$ [Fit-value]
- $\sin 2 \beta_{s}=0.0364 \pm 0.0016[$ Fit-value] where $\left.\beta_{s}=-\arg \left(-V_{c s} V_{c b}^{*} / V_{t s} V_{t b}^{*}\right)\right]$

The Standard Candle: $B \rightarrow X_{s} \gamma$
Interest in the rare decay $B \rightarrow X_{s} \gamma$ transcends B Physics!

- First measurements by CLEO (1995); well measured at the B-factories by Belle and BaBar; more precise measurements anticipated at SuperB-factories

Theoretical Interest:

- A monumental theoretical effort has gone in improving the perturbative precision; $\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \boldsymbol{\gamma}$ in NNLO completed in 2006
- First estimate of $\boldsymbol{\mathcal { B }}\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \boldsymbol{\gamma}\right)$: M. Misiak et al., Phys. Rev. Lett. 98:022002 (2007)
- Analysis of $\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ at NNLO with a cut on the Photon energy, T. Becher and M. Neubert, Phys. Rev. Lett. 98:022003 (2007)
- Non-perturbative effects under control thanks to HQET
- Sensitivity to new physics; hence constrains parameters of the BSM models such as the 2HDMs and Supersymmetry
- A crucial input in a large number of precision tests of the SM in $b \rightarrow s$ processes, such as $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Examples of the leading electroweak diagrams for $B \rightarrow X_{s} \gamma$

$$
\left|\frac{V_{u b} V_{u s}}{V_{c b}}\right| \simeq\left|\frac{V_{u b} V_{u s}}{V_{t s}}\right| \simeq 2 \%
$$

In the amplitude, after including LO QCD effects.

- QCD logarithms $\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}$ enhance $\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)$ more than twice
- Effective field theory (obtained by integrating out heavy fields) used for resummation of such large logarithms

The effective Lagrangian for $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\mathcal{L}=\underset{(q=u, d, s, c, b, l=e, \mu, \tau)}{\mathcal{L}_{Q C D \times Q E D}(q, l)}+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i} \\
O_{i}=\left\{\begin{array}{lll}
\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), & i=1,2, & \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), & i=3,4,5,6, & \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, & i=7, & C_{7}\left(m_{b}\right) \sim-0.3 \\
\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, & i=8, & C_{8}\left(m_{b}\right) \sim-0.15 \\
\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right), & i=9,10 & \left|C_{i}\left(m_{b}\right)\right| \sim 4
\end{array}\right.
\end{gathered}
$$

Three steps of the calculation:
Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and the effective theory Green functions
Mixing: Deriving the effective theory RGE and evolving $C_{i}(\mu)$ from μ_{0} to $\mu_{b} \sim m_{b}$
Matrix elements: Evaluating the on-shell amplitudes at $\mu_{b} \sim m_{b}$

Structure of the SM calculations for $\bar{B} \rightarrow X_{s} \gamma$

$$
\mathcal{H}_{\mathrm{eff}} \sim \sum_{i=1}^{10} C_{i}(\mu) O_{i}
$$

- $\mathcal{H}_{\text {eff }}$ independent of the scale $\boldsymbol{\mu}$, while $\boldsymbol{C}_{i}(\boldsymbol{\mu})$ and $\boldsymbol{O}_{i}(\boldsymbol{\mu})$ depend on $\boldsymbol{\mu}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{i j}^{\mathrm{T}} C_{j}(\mu)
$$

- $\gamma_{i j}$: anomalous dimension matrix
- Matching usually done at high scale ($\mu_{0} \sim M_{W}, m_{t}$)
- Full theory and the matrix elements of the effective operators have the same large logarithms
$\mu_{0} \sim O\left(M_{W}\right)$
\downarrow RGE
$\boldsymbol{\mu}_{b} \sim \boldsymbol{O}\left(\boldsymbol{m}_{b}\right): \quad$ matrix elements of the operators at this scale don't have large logs; they are contained in the $\boldsymbol{C}_{\boldsymbol{i}}\left(\boldsymbol{\mu}_{\boldsymbol{b}}\right)$
- Evaluation of the on-shell amplitudes at $\boldsymbol{\mu}_{\boldsymbol{b}} \sim \boldsymbol{m}_{\boldsymbol{b}}$

Wilson Coefficients in the SM
Wilson Coefficients of Four-Quark Operators

	$C_{1}\left(\mu_{b}\right)$	$C_{2}\left(\mu_{b}\right)$	$C_{3}\left(\mu_{b}\right)$	$C_{4}\left(\mu_{b}\right)$	$C_{5}\left(\mu_{b}\right)$	$C_{6}\left(\mu_{b}\right)$
LL	-0.257	1.112	0.012	-0.026	0.008	-0.033
NLL	-0.151	1.059	0.012	-0.034	0.010	-0.040

Wilson Coefficients of Other Operators

	$C_{7}^{\text {eff }}\left(\mu_{b}\right)$	$C_{8}^{\text {eff }}\left(\mu_{b}\right)$	$C_{9}\left(\mu_{b}\right)$	$C_{10}\left(\mu_{b}\right)$
LL	-0.314	-0.149	2.007	0
NLL	-0.308	-0.169	4.154	-4.261
NNLL	-0.290		4.214	-4.312

- Obtained for the following input:

$$
\begin{gathered}
\mu_{b}=4.6 \mathrm{GeV} \quad \bar{m}_{t}\left(\bar{m}_{t}\right)=167 \mathrm{GeV} \\
M_{W}=80.4 \mathrm{GeV} \quad \sin ^{2} \theta_{W}=0.23
\end{gathered}
$$

- Three-loop running is used for α_{s} coupling with $\Lambda \frac{(5)}{\mathrm{MS}}=220 \mathrm{MeV}$

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right):$ Experiment vs. SM \& 2HDM

- Expt. [ICHEP 2012]: $\left(\boldsymbol{E}_{\gamma}>1.6 \mathrm{GeV}\right): \mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)=(3.37 \pm 0.23) \times 10^{-4}$
- NNLO SM: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}$
- Ratio=Expt. $/ \mathrm{SM}=1.07 \pm 0.10$, Limits most NP models
- In $2 \mathrm{HDM}, \mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$ bounds $M_{H^{+}}$

$B \rightarrow X_{s} \gamma$ in 2HDM

- NNLO in 2HDM calculated recently [Hermann, Misiak, Steinhauser; arxiv:1208.2788]

$$
\mathcal{L}_{H^{+}}=\left(2 \sqrt{2} G_{F}\right)^{1 / 2} \Sigma_{i, j=1}^{3} \bar{u}_{i}\left(A_{u} m_{u_{i}} V_{i j} P_{L}-A_{d} m_{d_{j}} V_{i j} P_{R}\right) d_{j} H^{*}+\text { h.c. }
$$

with $P_{L / R}=\left(1 \mp \gamma_{5}\right) / 2$

- 2 HDM contributions to the Wilson coefficients are proportional to $\boldsymbol{A}_{i} \boldsymbol{A}_{j}^{*}$
- 2 HDM of type-I: $\boldsymbol{A}_{u}=\boldsymbol{A}_{d}=\frac{1}{\tan \beta}$
- 2 HDM of type-II: $\boldsymbol{A}_{u}=-1 / \boldsymbol{A}_{\boldsymbol{d}}=\frac{1}{\tan \beta}$
(a)

(b)

(c)

(d)

(e)

(f)

Branching ratios (in units of 10^{-6}) [HFAG, Summer 2012]				
Mode	BABAR	BELLE	CLEO	Average [HFAG]
$B \rightarrow X_{s} \gamma$	$331 \pm 35 \pm 34$	$347 \pm 15 \pm 40$	$327 \pm 44 \pm 28$	$337 \pm 23 \ddagger$
$B^{+} \rightarrow K^{*}(892)^{+} \gamma$	$42.1 \pm 1.4 \pm 1.6$	$42.5 \pm 3.1 \pm 2.4$	$37.6_{-8.3}^{+8.9} \pm 2.8$	42.1 ± 1.8
$B^{0} \rightarrow K^{*}(892)^{0} \gamma$	$44.7 \pm 1.0 \pm 1.6$	$40.1 \pm 2.1 \pm 1.7$	$45.5_{-6.8}^{+7.2} \pm 3.4$	43.3 ± 1.5
$B^{+} \rightarrow K_{1}(1270)^{+} \gamma$		$43 \pm 9 \pm 9$		43 ± 12
$B^{+} \rightarrow K_{2}^{*}(1430)^{+} \gamma$	$14.5 \pm 4.0 \pm 1.5$			14.5 ± 4.3
$B^{0} \rightarrow K_{2}^{*}(1430)^{0} \gamma$	$12.2 \pm 2.5 \pm 1.0$	$13.0 \pm 5.0 \pm 1.0$		12.4 ± 2.4
$B^{+} \rightarrow \rho^{+} \gamma$	$1.20_{-0.37}^{+0.42} \pm 0.20$	$0.87_{-0.27-0.11}^{+0.29+0.09}$	<13.0	$0.98{ }_{-0.24}^{+0.25}$
$B^{0} \rightarrow \rho^{0} \gamma$	$0.97_{-0.22}^{+0.24} \pm 0.06$	$0.78 \pm 0.17 \pm 0.09$	<17.0	0.86 ± 0.14
$B^{0} \rightarrow \omega \gamma$	$0.50_{-0.23}^{+0.27} \pm 0.09$	$0.40_{-0.17}^{+0.19} \pm 0.11$	<9.2	$0.44_{-0.16}^{+0.18}$
$B \rightarrow(\rho, \omega) \gamma$	$1.63 \pm 0.29 \pm 0.16$	$1.14 \pm 0.20 \pm 0.11$	< 14.0	1.30 ± 0.18
$B^{0} \rightarrow \phi \gamma$	<0.85		<3.3	<0.85
$B^{0} \rightarrow J / \psi \gamma$	< 1.6			<1.6
\ddagger Calculated for the photon energy range $E_{\gamma}>1.6 \mathrm{GeV}$				

$B \rightarrow K^{*} \gamma$ Decays

$B \rightarrow K^{*} \gamma$ Branching Fraction in LO

- In LO, only the electromagnetic penguin operator $\mathcal{O}_{7 \gamma}$ contributes to the $B \rightarrow$ $K^{*} \gamma$ amplitude; involves the form factor $T_{1}^{\left(K^{*}\right)}(0)$

$$
\mathcal{M}^{\mathrm{LO}}=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} C_{7}^{(0) \mathrm{eff}} \frac{e \bar{m}_{b}}{4 \pi^{2}} T_{1}^{\left(K^{*}\right)}(0)\left[(P q)\left(e^{*} \varepsilon^{*}\right)-\left(e^{*} P\right)\left(\varepsilon^{*} q\right)+i \operatorname{eps}\left(e^{*}, \varepsilon^{*}, P, q\right)\right]
$$

Here, $P^{\mu}=p_{B}^{\mu}+p_{K}^{\mu} ; q^{\mu}=p_{B}^{\mu}-p_{K}^{\mu}$ is the photon four-momentum; e^{μ} is its polarization vector; ε^{μ} is the K^{*}-meson polarization vector

- Branching ratio:

$$
\mathcal{B}^{\mathrm{LO}}\left(B \rightarrow K^{*} \gamma\right)=\tau_{B} \frac{G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2} \alpha M^{3}}{32 \pi^{4}} \bar{m}_{b}^{2}\left(\mu_{b}\right)\left|C_{7}^{(0) \mathrm{eff}}\left(\mu_{b}\right)\right|^{2}\left|T_{1}^{\left(K^{*}\right)}\left(0, \mu_{b}\right)\right|^{2}
$$

Hard spectator contributions in $B \rightarrow\left(K^{*}, \rho\right) \gamma$
Spectator corrections due to \mathcal{O}_{7}

Spectator corrections due to \mathcal{O}_{8}

$\underline{\text { Spectator corrections due to } \mathcal{O}_{2}}$

$B \rightarrow K^{*} \gamma$ decay rates in NLO

- Perturbative improvements undertaken in three approaches (QCD-F; PQCD; SCET)

Factorization Ansatz (QCDF):

$$
\begin{aligned}
& \text { [Beneke, Buchalla, Neubert, Sachrajda; Beneke \& Feldmann] } \\
& \langle\boldsymbol{V} \gamma| Q_{i}|\bar{B}\rangle=t_{i}^{I} \zeta_{V_{\perp}}+t_{i}^{I I} \otimes \phi_{+}^{B} \otimes \phi_{\perp}^{V}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

- $\zeta_{V_{\perp}}$ (form factor) and $\phi^{B, V}$ (LCDAs) are non-perturbative functions
- t^{I} and $t^{I I}$ are perturbative hard-scattering kernels

$$
t^{I}=\mathcal{O}(1)+\mathcal{O}\left(\alpha_{s}\right)+\ldots, \quad t^{I I}=\mathcal{O}\left(\alpha_{s}\right)+\ldots
$$

- The kernels t^{I} and $t^{I I}$ are known at $\mathcal{O}\left(\alpha_{s}\right)$ for some time; include Hard-scattering and Vertex corrections [Parkhomenko, AA; Bosch, Buchalla; Beneke, Feldmann, Seidel 2001]

$\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \gamma$ Decays

Nonfactorizable α_{s} Corrections

(c)

(d)

(e)

- First line: hard-spectator corrections
- Second line: $b \rightarrow s \gamma$ vertex corrections

SCET factorization formula for $B \rightarrow \boldsymbol{K}^{*} \gamma$

[Chay, Kim '03; Grinstein, Grossman, Ligeti '04; Becher, Hill, Neubert '05]

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{V_{\perp}}+\left(\Delta_{i} C^{B 1} \otimes j_{\perp}\right) \otimes \phi_{\perp}^{V} \otimes \phi_{+}^{B}
$$

- $\zeta_{V_{\perp}}, \phi_{\perp}^{V}, \phi_{+}^{B}$ are matrix elements of SCET operators
- Hard-scattering kernels $\boldsymbol{t}^{I}, t^{I I}=$ SCET matching coefficients

$$
t_{i}^{I}=\Delta_{i} C^{A}\left(m_{b}\right) ; \quad t_{i}^{I I}=\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes j_{\perp}\left(\sqrt{m_{b} \Lambda}\right) \quad \text { (subfactorization) }
$$

- Derivation of factorization in SCET

1) QCD $\rightarrow \mathrm{SCET}_{I}$: Integrate out \boldsymbol{m}_{b}; Defines vertex corrections $\Delta_{i} C^{A}=t_{i}^{I}$

$$
Q_{i} \rightarrow \Delta_{i} C^{A}\left(m_{b}\right) J^{A}+\Delta_{i} C^{B 1}\left(m_{b}\right) \otimes J^{B 1}+\ldots
$$

2) SCET $_{I} \rightarrow$ SCET $_{I I}$: Integrate out $\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$; Defines spectator corrections

$$
J^{B 1} \rightarrow j_{\perp}\left(\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right) \otimes O^{B 1, \mathrm{SCET}_{I I}}\left(\Lambda_{\mathrm{QCD}}\right)
$$

3) Large logs in $t_{\dot{L}_{1}}^{I I}$ resummed by solving RG equations

$$
\left[\Delta_{i} C^{B 1} \otimes j_{\perp}\right] \rightarrow\left[\Delta_{i} C^{B 1}\left(\mu_{h}\right) \otimes U\left(\mu_{h}, \mu_{h c}\right) \otimes j_{\perp}\left(\mu_{h c}\right)\right]
$$

$B \rightarrow K^{*} \gamma$ in SCET at NNLO

[Pecjak, Greub, AA '07]

Vertex Corrections

$$
\Delta_{i} C^{A}=\Delta_{7} C^{A(0)}\left[\Delta_{i 7}+\frac{\alpha_{s}(\mu)}{4 \pi} \Delta_{i} C^{A(1)}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \Delta_{i} C^{A(2)}\right]
$$

- Contributions from O_{7} and O_{8} exact to NNLO $O\left(\alpha_{s}^{2}\right)$
- Contribution from O_{2} exact at NLO $O\left(\alpha_{s}\right)$ but only large- $\boldsymbol{\beta}_{0}$ limit at $O\left(\alpha_{s}^{2}\right)$ Spectator Corrections at $O\left(\alpha_{s}^{2}\right)$

$$
t_{i}^{I I(1)}(u, \omega)=\Delta_{i} C^{B 1(1)} \otimes j_{\perp}^{(0)}+\Delta_{i} C^{B 1(0)} \otimes j_{\perp}^{(1)}
$$

- Status of $O\left(\alpha_{s}^{2}\right)$ Calculations
- The one-loop jet-function $j_{\perp}^{(1)}$ known
[Becher and Hill '04; Beneke and Yang '05]
- The one-loop hard coefficient $\Delta_{7} C^{B 1(1)}$ known [Beneke, Kiyo, Yang '04; Becher and Hill '04]
- The one-loop hard coefficient $\Delta_{8} C^{B 1(1)}$ known [Pecjak, Greub, AA '07]
- $\Delta_{i} C^{B 1(1)}(i=1, \ldots, 6)$ remain unknown (require two loops)

Estimates of $\operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)$ in SCET at NNLO

[Pecjak, Greub, AA; EPJ C55: 577 (2008)]
Estimates at NNLO in units of 10^{-5}

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)= & 4.6 \pm 1.2\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt. } 4.2 \pm 0.18 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {[\text { Expt.: } 4.33 \pm 0.15 \text { (HFAG 2012)]; }} \\
\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \phi \gamma\right)= & 4.3 \pm 1.1\left[\zeta_{\phi}\right] \pm 0.3\left[m_{c}\right] \pm 0.3\left[\lambda_{B}\right] \pm 0.1[\mu] \\
& {\left[\text { Expt.: } 5.7_{-1.8}^{+2.1}(\text { BELLE }) ; 3.9 \pm 0.5(\text { LHCb })\right] }
\end{aligned}
$$

Comparison with current experiments

- $\frac{\mathcal{B}\left(B^{+} \rightarrow K^{*+}\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)_{\mathrm{exp}}}=1.10 \pm 0.35[$ theory $] \pm 0.04[\exp]$
- $\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{* 0} \gamma\right)_{\text {exp }}}=1.00 \pm 0.32[$ theory $] \pm 0.04[\exp]$
- $\frac{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\mathrm{NNLO}}}{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\text {exp }}}=1.1 \pm 0.3[$ theory $] \pm 0.1[\exp]$
- Theory error is about 30%; dominantly from $\boldsymbol{\zeta}_{V_{\perp}}, \boldsymbol{m}_{\boldsymbol{c}}$ and $\boldsymbol{\lambda}_{B}$; SM decay rates in good agreement with the data

$B \rightarrow \rho \gamma$ decay

Penguin amplitude $\mathcal{M}_{\mathrm{P}}(B \rightarrow \rho \gamma)$

$$
-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t d}^{*} C_{7} \frac{e m_{b}}{4 \pi^{2}} \epsilon^{(\gamma) \mu} \epsilon^{(\rho) \nu}\left(\epsilon_{\mu \nu \alpha \beta} p^{\alpha} q^{\beta}-i\left[g^{\mu \nu}(q \cdot p)-p^{\mu} q^{\nu}\right]\right) T_{1}^{(\rho)}(0)
$$

Annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)$
$e \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u d}^{*} a_{1} m_{\rho} \epsilon^{(\gamma) \mu} \epsilon^{(\rho) \nu}\left(\epsilon_{\mu \nu \alpha \beta} p^{\alpha} q^{\beta} F_{A}^{(\rho) ; \text { p.v. }}-i\left[g^{\mu \nu}(q . p)-p^{\mu} q^{\nu}\right] F_{A}^{(\rho) ; \text { p.c. }}\right)$

- $\boldsymbol{F}_{A}^{(\rho) \text { p.v. }}(0) \simeq \boldsymbol{F}_{A}^{(\rho) ; \text { p.c. }}(0)=\boldsymbol{F}_{A}^{(\rho)}(0) \quad$ [e.g., Byer, Melikhov, Stech]

$$
\epsilon_{\mathrm{A}}\left(\rho^{ \pm} \gamma\right)=\frac{4 \pi^{2} m_{\rho} a_{1}}{m_{b} C_{7}^{e f f}} \frac{F_{A}^{(\rho)}(0)}{T_{1}^{(\rho)}}=0.30 \pm 0.07
$$

- Holds in factorization approximation
- $O\left(\alpha_{s}\right)$ corrections to annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)$: Leading-twist contribution vanishes in the chiral limit [Grinstein, Pirjol]; non-factorizing annihilation contribution likely small; testable in $B^{ \pm} \rightarrow \ell^{ \pm} \boldsymbol{\nu}_{\ell} \gamma$
Annihilation amplitude $\mathcal{M}_{\mathrm{A}}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$
- Suppressed due to the electric charges $\left(Q_{d} / Q_{u}=-1 / 2\right)$ and colour factors
(BSW Parameters: $a_{2} / a_{1} \simeq \mathbf{0 . 2 5}$)

$$
\Longrightarrow \epsilon_{\mathrm{A}}\left(\rho^{0} \gamma\right) \simeq 0.05
$$

$B \rightarrow(\rho, \omega) \gamma$ decay rates

[Parkhomenko, A.A.; Bosch, Buchalla; Lunghi, Parkhomenko, AA; Beneke, Feldmann, Seidel]

$$
\begin{gathered}
R(\rho \gamma) \equiv \frac{\overline{\mathcal{B}}(B \rightarrow \rho \gamma)}{\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)}=S_{\rho}\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{\left(1-m_{\rho}^{2} / M^{2}\right)^{3}}{\left(1-m_{K^{*}}^{2} / M^{2}\right)^{3}} \zeta^{2}\left[1+\Delta R\left(\rho / K^{*}\right)\right] \\
R(\omega \gamma) \equiv \frac{\overline{\mathcal{B}}(B \rightarrow \omega \gamma)}{\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)}=1 / 2\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{\left(1-m_{\omega}^{2} / M^{2}\right)^{3}}{\left(1-m_{K^{*}} / M^{2}\right)^{3}} \zeta^{2}\left[1+\Delta R\left(\omega / K^{*}\right)\right]
\end{gathered}
$$

- $S_{\rho}=1$ for $B^{ \pm} \rightarrow \rho^{ \pm} \gamma ;=1 / 2$ for $B^{0} \rightarrow \rho^{0} \gamma$
- $\zeta=\frac{T_{1}^{(\rho)}(0)}{T_{1}^{\left(K^{*}\right)}(0)} \simeq 0.85 \pm 0.10 ; T_{1}^{\omega}(0) \simeq T_{1}^{(\rho)}(0) \quad$ [SRs, Lattice Average] $\zeta=\simeq 0.85 \pm 0.06 ; T_{1}^{\omega}(0) \simeq T_{1}^{(\rho)}(0) \quad$ [Ball, Zwicky, 2006]
- $\Delta R\left(\rho^{ \pm} / K^{* \pm}\right)=0.12 \pm 0.10$
- $\Delta R\left(\rho^{0} / K^{* 0}\right) \simeq \Delta R\left(\omega / K^{* 0}\right)=0.1 \pm 0.07$

Branching Ratios (SM) vs. Expt.

$\mathrm{BR}\left(\mathrm{B}^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)=(1.35 \pm 0.4) \times 10^{-6}(\mathrm{SM})=(0.98 \pm 0.24) \times 10^{-6}$ (Expt.)
$\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \rho^{0} \gamma\right) \simeq \mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \omega \gamma\right)=(0.65 \pm 0.2) \times 10^{-6}$
$\operatorname{BR}\left(\mathrm{B}^{0} \rightarrow \rho^{0} \gamma\right)($ Expt. $)=(0.86 \pm 0.14) \times 10^{-6}$
$\operatorname{BR}\left(B^{0} \rightarrow \omega \gamma\right)($ Expt. $)=(1.30 \pm 0.18) \times 10^{-6}$

Experiment vs. SM $(b \rightarrow d \gamma)$

SM Estimates [Lunghi, Parkhomenko, AA; PLB 595 (2004) 323]

$$
\begin{aligned}
& \overline{\mathcal{B}}[B \rightarrow(\rho, \omega) \gamma] \equiv \frac{1}{2}\left\{\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)+\frac{\tau_{B^{+}}}{\tau_{B^{0}}}\left[\mathcal{B}\left(B_{d}^{0} \rightarrow \rho^{0} \gamma\right)+\mathcal{B}\left(B_{d}^{0} \rightarrow \omega \gamma\right)\right]\right\} \\
&=(1.38 \pm 0.42) \times 10^{-6} \\
& R\left[(\rho, \omega) / K^{*}\right] \equiv \frac{\overline{\mathcal{B}}[B \rightarrow(\rho, \omega) \gamma]}{\overline{\mathcal{B}}\left[B \rightarrow K^{*} \gamma\right]}=0.033 \pm 0.010
\end{aligned}
$$

Expt. HFAG-2012

$$
\begin{gathered}
\overline{\mathcal{B}}_{\exp }[B \rightarrow(\rho, \omega) \gamma]=\left(1.30_{-0.19}^{+0.18}\right) \times 10^{-6} \\
R\left[(\rho, \omega) / K^{*}\right]=0.030 \pm 0.005(\text { stat })_{-0.002}^{+0.003}(\text { syst }) \\
\left|V_{t d} / V_{t s}\right|=0.20 \pm 0.02(\exp) \pm 0.04(\text { theo })
\end{gathered}
$$

- In good agreement with the determination from the ratio $\Delta M_{s} / \Delta M_{d} \Longrightarrow$ $\left|V_{t d}\right| /\left|V_{t s}\right|=0.211 \pm 0.001(\exp) \pm 0.006$ (theo) in the SM, but less precise
- A correlated study of $R\left[(\rho, \omega) / K^{*}\right]$ and $\Delta M_{s} / \Delta M_{d}$ provides valuable constraints on the parameters of the underlying theory

D. Mohapatra (BELLE)[EPS 2005)

Extraction of $\left|V_{\mathrm{td}} / V_{\mathrm{ts}}\right|$
$\frac{B(\bar{B} \rightarrow(\rho, \omega) \gamma)}{B\left(B \rightarrow K^{*} \gamma\right)}=\left|\frac{V_{\mathrm{td}}}{V_{\mathrm{ts}}}\right|^{2}\left|\frac{1-M_{\rho}^{2} / M_{B}^{2}}{1-M_{K^{*}}^{2} / M_{B}^{2}}\right| \zeta^{2}[1+\Delta R]$
Form factor ratio $\zeta=0.85 \pm 0.10$ $\mathrm{SU}(3)$-breaking effect $\Delta R=0.1 \pm 0.1$

$$
\frac{B(B \rightarrow(\rho, \omega) \gamma)}{B\left(B \rightarrow K^{*} \gamma\right)}=0.032 \pm 0.008_{-0.002}^{+0.003}
$$

$$
\begin{aligned}
& 0.143<\left|\frac{V_{\text {to }}}{V_{\text {ts }}}\right|<0.260 \\
& (95 \% \% \text { C.L. interval }) \\
& \frac{V_{\text {td }}}{V_{0}}=0.200_{-0.025}^{+0.026}(\text { expt. })_{-0.029}^{+0.038}(\text { theo. })
\end{aligned}
$$

17

Isospin violation in $B \rightarrow \rho \gamma$ decays

$$
\begin{gathered}
\Delta=\frac{1}{2}\left[\Delta^{+0}+\Delta^{-0}\right], \quad \Delta^{ \pm 0} \equiv \frac{\Gamma\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)}{2 \Gamma\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{0} \gamma\right)}-1 \\
\Delta_{\mathrm{LO}}=2 \epsilon_{A}\left[F_{1}+\frac{\epsilon_{A}}{2}\left(F_{1}^{2}+F_{2}^{2}\right)\right]=2 \epsilon_{A} F \cos \alpha+O\left(\epsilon_{A}^{2}\right) \\
\Delta_{\mathrm{NLO}} \simeq \Delta_{\mathrm{LO}}-\frac{2 \epsilon_{A}}{C_{7}^{(0) \mathrm{eff}} F \cos \alpha\left[A_{R}^{(1) t}+A_{R}^{u} F \cos 2 \alpha\right]+O\left(\epsilon_{A}^{2}\right)} \\
F_{1}=F \cos \alpha ; \quad F_{2}=F \sin \alpha ; \quad F=\frac{R_{b}}{R_{t}} \simeq 0.5 \\
\Delta^{\mathrm{SM}}(\rho \gamma)=(1.1 \pm 3.9) \% \text { for } \alpha=(92 \pm 11)^{\circ} ; \quad \Delta^{\operatorname{expt}}(\rho \gamma)=-0.46_{-0.16}^{+0.17} \\
\Delta_{B}^{(\rho / \omega)} \equiv \frac{\left(M_{B}^{2}-m_{\omega}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \rho \gamma\right)-\left(M_{B}^{2}-m_{\rho}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)}{\left(M_{B}^{2}-m_{\omega}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \rho \gamma\right)+\left(M_{B}^{2}-m_{\rho}^{2}\right)^{3} \mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)} \\
\text { with } \Delta_{\bar{B}}^{(\rho / \omega)}=\Delta_{B}^{(\rho / \omega)}\left(B^{0} \rightarrow \bar{B}^{0}\right) \\
\Delta_{B}^{(\rho / \omega)}=(0.3 \pm 3.9) \times 10^{-3} \text { for } \alpha=(92 \pm 11)^{\circ}
\end{gathered}
$$

Isospin-violating ratio Δ in $B \rightarrow \rho \gamma$ decays
[AA, Lunghi, Parkhomenko; PLB 595 (2004) 323]

$\bar{B} \rightarrow X_{s} l^{+} l^{-}$

- The NNLO calculation of $\bar{B} \rightarrow \boldsymbol{X}_{s} l^{+} l^{-}$corresponds to the NLO calculation of $\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma$, as far as the number of loops in the diagrams is concerned.
- Wilson Coefficients of the two additional operators

$$
O_{i}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right), \quad i=9,10
$$

have the following perturbative expansion:

$$
\begin{aligned}
& C_{9}(\mu)=\frac{4 \pi}{\alpha_{s}(\mu)} C_{9}^{(-1)}(\mu)+C_{9}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{9}^{(1)}(\mu)+\ldots \\
& C_{10}= \\
& C_{10}^{(0)}+\frac{\alpha_{s}\left(M_{W}\right)}{4 \pi} C_{10}^{(1)}+\ldots
\end{aligned}
$$

- After an expansion in α_{s}, the term $C_{9}^{(-1)}(\mu)$ reproduces (the dominant part of) the electroweak logarithm that originates from photonic penguins with charm quark loops:

$$
\begin{aligned}
& \quad \frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right)=\frac{4}{9} \ln \frac{M_{W}^{2}}{m_{b}^{2}}+\mathcal{O}\left(\alpha_{s}\right) \\
& C_{9}^{(-1)}\left(m_{b}\right) \simeq 0.033 \ll 1 \Rightarrow \frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right) \simeq 2 \\
& \text { On the other hand: } \quad C_{9}^{(0)}\left(m_{b}\right) \simeq 2.2 \text {; need to calculate NNLO }
\end{aligned}
$$

NNLO Calculations of $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)$

- Two-loop matching, three-loop mixing and two-loop matrix elements have been completed
- Matching: [Bobeth, Misiak, Urban]
- Mixing: [Gambino, Gorbahn, Haisch]
- Matrix elements:
[Asatryan, Asatrian, Greub, Walker;
Asatrian, Bieri, Greub, Hovhannissyan;
Ghinculov, Hurth, Isidori, Yao;
Bobeth, Gambino, Gorbahn, Haisch]
- Power corrections in $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$decays
- $1 / m_{b}$ corrections [A. Falk et al.; AA, Handoko, Morozumi,Hiller; Buchalla, Isidori]
- $1 / m_{c}$ corrections [Buchalla, Isidori, Rey]
- NNLO Phenomenological analysis of $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$decays

> [AA, Greub, Hiller, Lunghi]
$-\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; q^{2}>4 m_{\mu}^{2}=(4.2 \pm 1.0) \times 10^{-6}$

- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right)=(6.9 \pm 0.7) \times 10^{-6}$

Inclusive $B \rightarrow X_{s} \ell^{+} \ell^{-}$in NNLO in SM

Dilepton Invariant Mass

$$
\begin{aligned}
& \begin{aligned}
d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) \\
d \hat{s}
\end{aligned}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, p o l e}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
& \times\left((1+2 \hat{s})\left(\left|\tilde{C}_{9}^{\mathrm{eff}}\right|^{2}+\left|\tilde{C}_{10}^{\mathrm{eff}}\right|^{2}\right)+4(1+2 / \hat{s})\left|\tilde{C}_{7}^{\mathrm{eff}}\right|^{2}+12 \operatorname{Re}\left(\widetilde{C}_{7}^{\mathrm{eff}} \tilde{C}_{9}^{\mathrm{eff}} \mathrm{~F}_{*}\right)\right) \\
& \widetilde{C}_{7}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{7}(\hat{s})\right) A_{7} \\
&-\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(7)}(\hat{s})+C_{2}^{(0)} F_{2}^{(7)}(\hat{s})+A_{8}^{(0)} F_{8}^{(7)}(\hat{s})\right) \\
& \widetilde{C}_{9}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right)\left(A_{9}+T_{9} h\left(\hat{m}_{c}^{2}, \hat{s}\right)+U_{9} h(1, \hat{s})+W_{9} h(0, \hat{s})\right) \\
&-\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(9)}(\hat{s})+C_{2}^{(0)} F_{2}^{(9)}(\hat{s})+A_{8}^{(0)} F_{8}^{(9)}(\hat{s})\right) \\
& \widetilde{C}_{10}^{\mathrm{eff}}=\left(1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right) A_{10}
\end{aligned}
$$

- $\boldsymbol{A}_{\mathbf{7}}, \boldsymbol{A}_{\mathbf{8}}, \boldsymbol{A}_{\mathbf{9}}, \boldsymbol{A}_{\mathbf{1 0}}, \boldsymbol{T}_{\mathbf{9}}, \boldsymbol{U}_{\mathbf{9}}, W_{\mathbf{9}}$ are linear combinations of the Wilson coefficients

Comparison of $B \rightarrow X_{s} \ell^{+} \ell^{-}$with Data

[AA, Greub, Hiller, Lunghi 2001 (AGHL); Ghinculov, Hurth, Isidori, Yao 2004 (GHIY); Huber, Lunghi, Misiak, Wyler 2005 (HLMW); Bobeth, Gambino, Gorbahn, Haisch 2003]

- Inclusive $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$BRs

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(M_{\ell \ell}>0.2 \mathrm{GeV}\right)=\left(3.66_{-0.77}^{+0.76}\right) \times 10^{-6} \quad\left[\mathrm{HFAG}^{\prime} 12\right] \\
S M:(4.2 \pm 0.7) \times 10^{-6} \quad[\mathrm{AGHL}] ;(4.6 \pm 0.8) \times 10^{-6} \quad[\mathrm{GHIY}]
\end{gathered}
$$

- Partial BRs (integrated over lower range of \boldsymbol{q}^{2})
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.20) \times 10^{-6} \quad[\mathrm{GHIY}]$
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.59 \pm 0.11) \times 10^{-6}[\mathrm{HLMW}]$
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.11) \times 10^{-6}[\mathrm{HLMW}]$
- Experiment: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \quad q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.60 \pm 0.51) \times 10^{-6}$
- Partial BRs (integrated over higher range of \boldsymbol{q}^{2})
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; ~ q^{2}>14 \mathrm{GeV}^{2}=(4.04 \pm 0.78) \times 10^{-7}$ [GHIY]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}\right) ; q^{2}>14.4 \mathrm{GeV}^{2}=2.40\left(1_{-0.26}^{+0.29}\right) \times 10^{-7}$ [HLMW]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} e^{+} e^{-}\right) ; q^{2}>14.4 \mathrm{GeV}^{2}=2.09\left(1_{-0.30}^{+0.32}\right) \times 10^{-7}$ [HLMW]
- Experiment: $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) q^{2}>14.4 \mathrm{GeV}^{2}=(4.4 \pm 1.2) \times 10^{-7}$

Dilepton invariant mass distribution in $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$:
[Ghinculov, Hurth, Isidori, Yao 2004]

$$
\begin{gathered}
10^{7} \times \frac{d \mathcal{B}}{d q^{2}} \\
\left(\mathrm{GeV}^{-2}\right)
\end{gathered}
$$

- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; q^{2} \in[1,6] \mathrm{GeV}^{2}=(1.63 \pm 0.20) \times 10^{-6}$
- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; \quad q^{2}>14 \mathrm{GeV}^{2}=(4.04 \pm 0.78) \times 10^{-7}$
- $\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) ; \quad q^{2}>4 m_{\mu}^{2}=(4.6 \pm 0.8) \times 10^{-6}$,

Forward-Backward Asymmetry in $B \rightarrow X_{s} \ell^{+} \ell^{-}$

[Proposed in AA, Mannel, Morozumi, PLB 273, 505 (1991)]
[NNLL: Asatrian, Bieri, Greub, Hovhannisyan; Ghinculov, Hurth, Isidori, Yao]
Normalized FB Asymmetry

$$
\bar{A}_{\mathrm{FB}}(\hat{s})=\frac{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z}{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell+\ell^{-}\right)}{d \hat{s} d z} d z}
$$

Unnormalized FB Asymmetry

$$
\begin{gathered}
A_{\mathrm{FB}}(\hat{s})=\frac{\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z}{\Gamma\left(B \rightarrow X_{c} e \bar{\nu}_{e}\right)} \mathrm{BR}_{\mathrm{sl}} \\
\int_{-1}^{1} \frac{d^{2} \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s} d z} \operatorname{sgn}(z) d z=\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \mathrm{pole}}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
\times\left[-3 \hat{s} \operatorname{Re}\left(\widetilde{C}_{9}^{\mathrm{eff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{910}(\hat{s})\right)-6 \operatorname{Re}\left(\widetilde{C}_{7}^{\mathrm{eff}} \widetilde{C}_{10}^{\mathrm{eff} *}\right)\left(1+\frac{2 \alpha_{s}}{\pi} f_{710}(\hat{s})\right)\right]
\end{gathered}
$$

- NNLL Contributions stabilize the scale $(=\boldsymbol{\mu})$ dependence of the FB Asymmetry

$$
A_{\mathrm{FB}}^{\mathrm{NLL}}(0)=-(2.51 \pm 0.28) \times 10^{-6} ; \quad A_{\mathrm{FB}}^{\mathrm{NNLL}}(0)=-(2.30 \pm 0.10) \times 10^{-6}
$$

- Zero of the FB Asymmetry is a precise test of the SM, correlating $\widetilde{C}_{7}^{\text {eff }}$ and $\widetilde{C}_{9}^{\text {eff }}$

$$
\hat{s}_{0}^{\mathrm{NLL}}=0.144 \pm 0.020 ; \quad \hat{s}_{0}^{\mathrm{NNLL}}=0.162 \pm 0.008
$$

Normalized FB-Asymmetry in $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$:

- Zero of the FB-Asymmetry is a precision test of the SM

$$
\begin{aligned}
& q_{0}^{2}=(3.90 \pm 0.25) \mathrm{GeV}^{2} \\
& q_{0}^{2}=\left(3.76 \pm 0.22_{\text {theory }} \pm 0.24_{m_{b}}\right) \mathrm{GeV}^{2}
\end{aligned}
$$

[Ghinculov, Hurth, Isidori, Yao 2004]
[Bobeth, Gambino, Gorbahn, Haisch 2003]

Exclusive Decays $B \rightarrow\left(K, K^{*}\right) \ell^{+} \ell^{-}$

- $\boldsymbol{B} \rightarrow \boldsymbol{K}$ (pseudoscalar \boldsymbol{P}); $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}$ (Vector \boldsymbol{V}) Transitions involve the currents:

$$
\begin{gathered}
\Gamma_{\mu}^{1}=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b, \quad \Gamma_{\mu}^{2}=\bar{s} \sigma_{\mu \nu} q^{\nu}\left(1+\gamma_{5}\right) b \\
\langle P| \Gamma_{\mu}^{1}|B\rangle \supset f_{+}\left(q^{2}\right), f_{-}\left(q^{2}\right) \\
\langle P| \Gamma_{\mu}^{2}|B\rangle \supset f_{T}\left(q^{2}\right) \\
\langle V| \Gamma_{\mu}^{1}|B\rangle \supset V\left(q^{2}\right), A_{1}\left(q^{2}\right), A_{2}\left(q^{2}\right), A_{3}\left(q^{2}\right) \\
\langle V| \Gamma_{\mu}^{2}|B\rangle \supset T_{1}\left(q^{2}\right), T_{2}\left(q^{2}\right), T_{3}\left(q^{2}\right)
\end{gathered}
$$

- 10 non-perturbative \boldsymbol{q}^{2}-dependent functions (Form factors) \Longrightarrow model-dependence
- Data on $B \rightarrow K^{*} \gamma$ provides normalization of $T_{1}(0)=T_{2}(0) \simeq 0.28$
- HQET/SCET-Approach allows to reduce the number of independent form factors from 10 to 3; perturbative symmetry-breaking corrections [Beneke, Feldmann, Seidel; Beneke, Feldmann]
- HQET \& $S U(3)_{\mathrm{F}}$ relate $B \rightarrow(\pi, \rho) \ell \nu_{\ell}$ and $B \rightarrow\left(K, K^{*}\right) \ell^{+} \ell^{-}$to determine the remaining FF's

Experimental data vs. SM in $B \rightarrow\left(X_{s}, K, K^{*}\right) \ell^{+} \ell^{-}$Decays

Branching ratios (in units of 10^{-6}) [HFAG: 2012]
SM: [A.A., Greub, Hiller, Lunghi PR D66 (2002) 034002]

Decay Mode	Expt. (BELLE \& BABAR)	Theory (SM)
$B \rightarrow K \ell^{+} \ell^{-}$	0.45 ± 0.04	0.35 ± 0.12
$B \rightarrow K^{*} e^{+} e^{-}$	$1.19_{-0.16}^{+0.17}$	1.58 ± 0.49
$B \rightarrow K^{*} \mu^{+} \mu^{-}$	$1.15_{-0.15}^{+0.16}$	1.19 ± 0.39
$B \rightarrow X_{s} \mu^{+} \mu^{-}$	$2.23_{-0.98}^{+0.97}$	4.2 ± 0.7
$B \rightarrow X_{s} e^{+} e^{-}$	$4.91_{-1.06}^{+1.04}$	4.2 ± 0.7
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	$3.66_{-0.77}^{+0.76}$	4.2 ± 0.7

- Inclusive measurements and the SM rates include the cut $M_{\ell^{+} \ell^{-}}>0.2 \mathrm{GeV}$
- SM \& Data agree within 25%

Forward-Backward Asymmetry in $B \rightarrow K^{*} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\frac{d A_{F B}}{d \hat{s}}=-\int_{0}^{\hat{u}(\hat{s})} d \hat{u} \frac{d \Gamma}{d \hat{u} d \hat{s}}+\int_{-\hat{u}(\hat{s})}^{0} d \hat{u} \frac{d \Gamma}{d \hat{u} d \hat{s}} \\
\sim C_{10}\left[\operatorname{Re}\left(C_{9}^{e f f}\right) V A_{1}+\frac{\hat{m}_{b}}{\hat{s}} C_{7}^{e f f}\left(V T_{2}\left(1-\hat{m}_{V}\right)+A_{1} T_{1}\left(1+\hat{m}_{V}\right)\right)\right]
\end{gathered}
$$

- T_{1}, T_{2}, V, A_{1} form factors
- Probes different combinations of WC's than dilepton mass spectrum; has a characteristic zero in the $\mathrm{SM}\left(\hat{s}_{0}\right)$ below $m_{J / \psi}^{2}$

$$
\begin{gathered}
\text { Position of the } A_{F B}(\hat{s}) \text { zero }\left(\hat{s}_{0}\right) \text { in } B \rightarrow K^{*} \ell^{+} \ell^{-} \\
\operatorname{Re}\left(C_{9}^{\text {eff }}\left(\hat{s}_{0}\right)\right)=-\frac{\hat{m}_{\mathrm{b}}}{\hat{\mathrm{~s}}_{0}} C_{7}^{\text {eff }}\left(\frac{\mathrm{T}_{2}\left(\hat{\mathrm{~s}}_{0}\right)}{\mathrm{A}_{1}\left(\hat{\mathrm{~s}}_{0}\right)}\left(1-\hat{\mathrm{m}}_{\mathrm{V}}\right)+\frac{\mathrm{T}_{1}\left(\hat{\mathrm{~s}}_{0}\right)}{\mathrm{V}\left(\hat{\mathrm{~s}}_{0}\right)}\left(1+\hat{\mathrm{m}}_{\mathrm{V}}\right)\right)
\end{gathered}
$$

- Model-dependent studies \Longrightarrow small FF-related uncertainties in \hat{s}_{0} [Burdman '98]
- HQET provides a symmetry argument why the uncertainty in \hat{s}_{0} is small. In leading order in $1 / m_{B}, 1 / E\left(E=\frac{m_{B}^{2}+m_{K^{*}}^{2}-q^{2}}{2 m_{B}}\right)$ and $O\left(\alpha_{s}\right)$:

$$
\frac{T_{2}}{A_{1}}=\frac{1+\hat{m}_{V}}{1+\hat{m}_{V}^{2}-\hat{s}}\left(1-\frac{\hat{s}}{1-\hat{m}_{V}^{2}}\right) ; \quad \frac{T_{1}}{V}=\frac{1}{1+\hat{m}_{V}}
$$

- No hadronic uncertainty in \hat{s}_{0} [AA, Ball, Handoko, Hiller '99]:

$$
C_{9}^{e f f}\left(\hat{s}_{0}\right)=-\frac{2 m_{b} M_{B}}{s_{0}} C_{7}^{e f f}
$$

$B \rightarrow K^{*} \ell^{+} \ell^{-}$decay in SCET

[AA, Gustav Kramer, Guohuai Zhu; hep-ph/0601034 (EPJC (2006))]

- Soft Collinear Effective Theory (SCET): Applicable to any QCD processes which contain collinear meson or jet, i.e. $P^{2} \ll Q^{2}$, in the final states
- The idea is borrowed from HQET and NRQCD, but technically SCET is more involved than HQET because of the collinear degrees of freedom
- For $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay, in the region $1 \mathrm{GeV}^{2} \leq q^{2} \leq 8 \mathrm{GeV}^{2}$

$$
P_{K^{*}}^{\mu}=(2.34,0,0,2.16) \mathrm{GeV} \quad\left[q^{2}=4 \mathrm{GeV}^{2}\right]
$$

- Light-cone vectors $n^{\mu}=(1,0,0,1), \bar{n}^{\mu}=(1,0,0,-1)$,

$$
\text { satisfying } n^{2}=\bar{n}^{2}=0 \text { and } n \cdot \bar{n}=2
$$

$$
\begin{gathered}
P^{\mu}=n \cdot P \frac{\bar{n}^{\mu}}{2}+\bar{n} \cdot P \frac{n^{\mu}}{2}+P_{\perp}^{\mu}=\left(P_{+}, P_{-}, P_{\perp}\right) \sim \boldsymbol{E}\left(\lambda^{2}, 1, \lambda\right) \\
{\left[P_{+}=0.18 \mathrm{GeV}, P_{-}=4.5 \mathrm{GeV}, \lambda \sim 0.2\right]}
\end{gathered}
$$

- Power counting and expansion in $\boldsymbol{\lambda}, \boldsymbol{\lambda} \sim \frac{\Lambda_{Q C D}}{E}$

Leading order in $\mathbf{1} / \boldsymbol{m}_{b}$ and all orders in $\boldsymbol{\alpha}_{s}$

[AA, Kramer, Zhu; EPJ (2006) 625]
The factorization formula in SCET

$$
\begin{aligned}
\left\langle K_{a}^{*} \ell^{+} \ell^{-}\right| H_{e f f}|B\rangle & =T_{a}^{I}\left(q^{2}\right) \xi_{a}\left(q^{2}\right)+ \\
& +\sum_{ \pm} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{ \pm}^{B}(\omega) \int_{0}^{1} d u \phi_{K^{*}}^{B}(u) T_{a, \pm}^{I I}\left(\omega, u, q^{2}\right)
\end{aligned}
$$

where $a=\|, \perp$ denotes the polarization of the K^{*} meson.

- formally coincides with the formula in QCD Factorization
[Beneke/Feldmann/Seidel 2001], but valid to all orders of α_{S},
- for $T^{I I}$, the logarithms are summed from $\mu=m_{b}$ to $\sqrt{m_{b} \Lambda_{h}}$,
- compared with BFS, the definition of $\xi_{\|, \perp}$ is also different here.

Reduction of Scale Uncertainty in SCET

Introduction $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay Summary SCET formulae Phenomenological discussion
 Forward-backward asymmetry

$A_{F B}\left(q_{0}^{2}\right)=0$ free of hadronic uncertainties [Burdman1998, Ali et al., 2000]

$$
q_{0}^{2}=\left(4.07_{-0.13}^{+0.16}\right) \mathrm{GeV}^{2} \text { with } \Delta\left(q_{0}^{2}\right)_{\text {scale }}={ }_{-0.05}^{+0.08} \mathrm{GeV}^{2}
$$

```
QCD-F
q0}=(4.3\mp@subsup{9}{-0.35}{+0.38})\mp@subsup{\textrm{GeV}}{}{2}\mathrm{ with }\Delta(\mp@subsup{q}{0}{2}\mp@subsup{)}{\mathrm{ scale }}{}=\pm0.25\mp@subsup{\textrm{GeV}}{}{2
```

Ahmed Ali
$B \rightarrow K^{*} \ell^{+} \ell^{-}$decay in soft-collinear effective theory

$$
\text { Experiment: } q_{0}^{2}\left(B^{0} \rightarrow K^{* 0} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=4.9_{-1.1}^{+1.3} \mathrm{GeV}^{2}
$$

- In agreement with the SM; however, current precision on \boldsymbol{q}_{0}^{2} is only 25%. Will improve at the upgraded LHCb and Super-B factories

Recent Measurements of Angular Observables in $B \rightarrow K^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

4

- Angular variables $\boldsymbol{F}_{\boldsymbol{L}}$ and $\boldsymbol{A}_{\boldsymbol{F} \boldsymbol{B}}$ have been extracted from the decays $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}(\rightarrow \boldsymbol{K} \boldsymbol{\pi}) \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$from the following expressions

$$
\frac{d \Gamma^{\prime}}{d \theta_{K}}=\frac{3 \Gamma^{\prime}}{4} \sin \theta_{K}\left(2 F_{L} \cos ^{2} \theta_{K}+\left(1-F_{L}\right) \sin ^{2} \theta_{K}\right)
$$

$$
\frac{d \Gamma^{\prime}}{d \theta_{\ell}}=\Gamma^{\prime}\left(\frac{3}{4} F_{L} \sin _{\theta_{\ell}}^{2}+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos _{\theta_{\ell}}^{2}\right)+A_{F B} \cos \theta_{\ell}\right) \sin \theta_{\ell}
$$

with $\Gamma^{\prime}=\Gamma+\bar{\Gamma}$

- Their dependence on the Wilson Coeffs. and the FFs has been worked out in great detail and the measurements are in agreement with the SM

Analysis at Low Recoil of $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$; Bobeth, Hiller, van Dyk [1212.2321]

- More angular variables can be extracted from the four-fold differential decay rate

$$
\frac{d^{4} \Gamma\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi} \propto J_{i}\left(q^{2}\right)
$$

- In general, 12 angular coefficients $\boldsymbol{J}_{\boldsymbol{i}}\left(\boldsymbol{q}^{2}\right)$; many are 0 in the SM and require extensions of the SM operator basis to include scalar, pseudoscalar, tensor and pseudotensor operators
- Several short- and long-distance-free ratios can be formed from the ratios of $J_{i}\left(\boldsymbol{q}^{2}\right)$; 2 interesting ones are $H_{\mathrm{T}}^{(2,3)}=2 \rho_{2} / \rho_{1} \sim r /\left(1+r^{2}\right) ; r=C_{9} / C_{10}$
- Measurement of $\boldsymbol{H}_{\mathrm{T}}^{(2,3)}$ and $\boldsymbol{A}_{\mathrm{FB}}$ constrain the ratio $\left|C_{9} / C_{10}\right|$
- Current constraints on the tensor and pseudotensor Coeffs. $\left|C_{\mathrm{T}}\right|^{2}+\left|C_{\mathrm{T} 5}\right|^{2} \leq 0.5$

Analysis at Large Recoil of $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$
Khodjamirian, Mannel, Wang [1211.0234]

- Includes an estimate of the non-local contributions based on QCD sum rules and dispersion relations at large hadronic recoil; find these effects are modest
- Re-evaluated $d \Gamma\left(\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}\right) / d \boldsymbol{q}^{2}$, CP-averaged isospin asymmetry $\boldsymbol{a}_{\boldsymbol{I}}^{(0-)}\left(\boldsymbol{q}^{2}\right)$, and forward-backward asymmetry $\boldsymbol{a}_{\mathrm{FB}}\left(\boldsymbol{q}^{2}\right) \Longrightarrow$ improved theoretical estimates at large recoil
- Both $a_{I}^{(0-)}\left(q^{2}\right)$ and $a_{\text {FB }}\left(q^{2}\right)$ are small in the SM
- $a_{\mathrm{FB}}\left(\boldsymbol{q}^{2}\right)$ in agreement with SM, but current data hints at significantly larger isospin asymmetry $a_{I}^{(0-)}\left(q^{2}\right)$

Isospin Asymmetries (Current Experimental Summary)

[HFAG 2012]

- $\Delta_{0-}\left(K^{*} \gamma\right)=0.052 \pm 0.026$
- $\Delta_{0-}\left(X_{s} \gamma\right)=-0.01 \pm 0.06$
- $\Delta_{0-}(\rho \gamma)=-0.46_{-0.16}^{+0.17}$
- $\Delta_{0-}(K \ell \ell)=-0.40_{-0.15}^{+0.16}$
- $\Delta_{0-}\left(K^{*} \ell \ell\right)=-0.44_{-0.12}^{+0.13}$
- Currently, there is no measurement of $\Delta_{0-}\left(X_{d} \gamma\right)$
- Others remain to be well measured; all will be undertaken at Belle II \& LHCb
- More theoretical work needed to reduce the parametric uncertainties

$B_{s} \rightarrow \mu^{+} \mu^{-}$in the SM

- Effective Hamiltonian

$$
\begin{aligned}
& \mathcal{H}_{e f f}=-\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t s}{ }^{*} V_{t b} \sum_{i}\left[C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right] \\
& \mathcal{O}_{10}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right), \quad \mathcal{O}_{10}^{\prime}=\left(\bar{s}_{\alpha} \gamma^{\mu} P_{R} b_{\alpha}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right) \\
& \mathcal{O}_{S}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)(\bar{l}), \quad \mathcal{O}_{S}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)(\bar{l} l) \\
& \mathcal{O}_{P}=m_{b}\left(\bar{s}_{\alpha} P_{R} b_{\alpha}\right)\left(\bar{l}_{5} l\right), \quad \mathcal{O}_{P}^{\prime}=m_{s}\left(\bar{s}_{\alpha} P_{L} b_{\alpha}\right)\left(\bar{l}_{\gamma_{5}} l\right) \\
& \operatorname{BR}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{2} f_{B_{s}}^{2} \tau_{B_{s}}}{64 \pi^{3}}\left|V_{t s}{ }^{*} V_{t b}\right|^{2} \sqrt{1-4 \hat{m}_{\mu}^{2}} \\
& \times\left[\left(1-4 \hat{m}_{\mu}^{2}\right)\left|F_{S}\right|^{2}+\left|F_{P}+2 \hat{m}_{\mu}^{2} F_{10}\right|^{2}\right]
\end{aligned}
$$

where $\hat{m}_{\mu}=m_{\mu} / m_{B_{s}}$ and

$$
F_{S, P}=m_{B_{s}}\left[\frac{C_{S, P} m_{b}-C_{S, P}^{\prime} m_{s}}{m_{b}+m_{s}}\right], \quad \quad F_{10}=C_{10}-C_{10}^{\prime}
$$

$\operatorname{BR}\left(\bar{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)_{\mathrm{SM}}=(\mathbf{3 . 2 3} \pm \mathbf{0 . 2 7}) \times \mathbf{1 0}^{-9} \quad$ [Buras et al.; arxiv:1208.09344]

- Experimentally, the measured BR is time-averaged (TA), which differs from this value beacause of $y_{S}^{\mathrm{SM}}=\Delta \Gamma_{s} / \Gamma_{s}=0.088 \pm 0.014$
$B R\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) \mathrm{TA}_{\mathrm{TA}}^{\mathrm{SM}}=(3.54 \pm 0.30) \times 10^{-9} ; \quad=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9}(\mathrm{LHCb}: \mathrm{PRL}$ 110, 021801 (2013))

Leading diagrams for $B_{s} \rightarrow \mu^{+} \mu^{-}$in SM, 2HDM \& MSSM

First Evidence for the Decays $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$
[R. Aaij et al. (LHCb), PRL 110, 021801 (2013)]]

$\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$in Supersymmetric Models

- The decay $B_{s} \rightarrow \mu^{+} \mu^{-}$probes essentially the Higgs sector of Supersymmetry, a type-II two-Higgs doublet model

$$
\mathcal{L}=\bar{Q} Y_{U} U_{R} H_{u}+\bar{Q}_{L} Y_{D} D_{R} H_{d}
$$

- Higgs-induced FCNC interactions are generated through loops

(a)
- As H_{u} gets a VEV $\left(v_{u}\right)$, it contributes an off-diagonal piece to the down-type fermion mass matrix, mixing s_{L} and b_{L} by an angle θ

$$
\sin \theta=\boldsymbol{y}_{b} \boldsymbol{\epsilon} \boldsymbol{v}_{\boldsymbol{u}} / \boldsymbol{m}_{b} ; \quad \text { as } \boldsymbol{m}_{b}=\boldsymbol{y}_{b} \boldsymbol{v}_{\boldsymbol{d}}, \quad \sin \theta=\boldsymbol{\theta} \tan \boldsymbol{\beta}
$$

- $\mathcal{A}\left(b \bar{s} \rightarrow \mu^{+} \mu^{-}\right) \simeq \sin \theta \mathcal{A}\left(b \bar{b} \rightarrow \mu^{+} \mu^{-}\right) \propto \tan \beta / \cos ^{2} \beta \Longrightarrow \tan ^{3} \beta$ for large-tan β

$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$vs. the CMSSM parameters

[Arbey et al.; arxiv:1212.4887]

Summary

- Thanks to dedicated experiments and progress in theoretical techniques (Pert. QCD, Lattice-QCD, QCD Sum Rules, Heavy quark Expansion, SCET) Rare \boldsymbol{B}-Decays are under quantitative control, but the precision varies between (10-30)\%
- From the CKM Phenomenology, there is added value in precisely measuring Rare B-Decays and in improving the SM theoretical accuracy, as this would overconstrain $\left|V_{t s}\right|$ and $\left|V_{t d}\right|$
- Rare B-Decays provide invaluable constraints on Beyond-the-SM Physics; theoretical interest in their dedicated studies remains high and they may turn out to be the harbinger of BSM physics, as they probe very high mass scales
- A new chapter on precision $\boldsymbol{B}_{\boldsymbol{s}}$-meson physics has opened at the LHC, in particular, by the LHCb, resolving some open issues and testing SM at an unprecedented rate, of which $\boldsymbol{B}_{\boldsymbol{s}}^{\mathbf{0}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$is a shining example
- We look forward to new data from the ongoing and planned experiments at the LHC and the Super-B factories

