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Abstract

Common treatments of light-matter interaction in free space consider an electro-
magnetic beam homogeneous over a transverse area A and use the concept of a
cross section σ to arrive at the probability σ/A for coupling light with a quantum
emitter, like an atom or a molecule. In conventional spectroscopy experiments this
ratio is very small and a single emitter is expected to have a weak effect on the light
incident on it. However, recent experiments have shown that extinctions up to 12%
can be attained in free space simply by focusing light or using small apertures. A
fundamental question is how close these values are to the theoretical limits. We
investigate the interaction of a single oscillating dipole with tightly confined opti-
cal fields and demonstrate that light can be perfectly reflected under appropriate
conditions. In particular, we find that a focused plane wave can be extinguished
up to 85%.

We also discuss possibilities for modifying light-matter interaction using con-
cepts from surface-enhanced spectroscopy. Recent progress in nanotechnology has
enabled us to fabricate nanoscale systems that could function as antennas for en-
hancing the excitation and emission of optical energy by atoms and molecules. We
discuss the main features of an optical antenna and show how they can improve
the coupling and the radiation properties of molecules. In particular, we present
realistic designs that increase fluorescence by more than three orders of magnitude
in the ultraviolet up to the near-infrared spectral range.

An important point of concern is whether one could transfer the designs found
in many electrical engineering textbooks into the optical domain to control light-
matter interaction at the nanometer scale. Moreover, since metals exhibit absorp-
tion losses at optical frequencies, it is not obvious that antennas are suitable for
light management at the single-photon level and that they achieve performances
comparable to those of optical resonators. These concerns go beyond the scope
of field-enhanced spectroscopy and sensing, and take us to the ultimate limits of
information processing.
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Chapter 1

Introduction

In the 18th century Bouguer studied the attenuation of light through a substance
and established a relationship between the absorption coefficient and the transmit-
tance (Bouguer, 1729). About 120 years later Beer extended these findings to so-
lutions and related absorption to the concentration of molecules (Beer, 1852). The
so-called Beer-Lambert-Bouguer law1 can be introduced in the form T = exp(−αl).
T represents the transmittance, whereas α is the absorption coefficient and l is the
distance that light travels through the substance. Moreover, for a diluted sample
one can write α = σN, where N is the number of molecules per unit volume and
σ is the cross section. The latter represents the probability that light gets absorbed
or scattered by one molecule and it characterizes the strength of light-matter in-
teraction at the microscopic level (Allen and Eberly, 1975; Atkins and Friedman,
2005).

Interestingly, the law was discovered before Maxwell formulated the dynamical
theory of light (Maxwell, 1865). In fact, the expression exp(−αl) seems to suggest
that T does not have a particular dependence on the incident beam, except from
the fact that its waist determines the illuminated area, hence the number of probed
molecules. Indeed, for many years spectroscopists have applied the Beer-Lambert-
Bouguer law to investigate the structural and dynamical properties of atoms and
molecules without raising concerns on its validity2 (Hollas, 2004).

The situation changes when one considers a single-photon source (Kimble and
Mandel, 1976), like atoms (Kimble et al., 1977), ions (Diedrich and Walther, 1987),
molecules (Brunel et al., 1999), quantum dots (Michler et al., 2000), or color cen-
ters in diamond (Brouri et al., 2000; Kurtsiefer et al., 2000). In this case the Beer-
Lambert-Bouguer law is commonly written as T = 1− σ/A, where A is an area
perpendicular to the propagation direction representing the beam spot size (Kar-
rai and Warburton, 2003). In conventional spectroscopic experiments σ/A is very

1The law is misattributed to Lambert, who quoted the work of Bouguer in his publication (Lam-
bert, 1760).

2Note that the law holds only if the spectral bandwidth of the probe light is narrow compared
to the linewidths in the spectrum.
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small because either A is large for technical reasons or σ is small for various broad-
ening effects. As a result, testing the limits of the Beer-Lambert-Bouguer law is
challenged by the difficulty in detecting the absorption signal of a single emitter.

The invention of the laser gave us highly stable and coherent light sources with
very narrow linewidths (Maiman, 1960), which opened the doors to high-resolution
spectroscopy (Hollas, 1998). Moreover, the laser pushed forward the resolution
limits of optical microscopy (Cremer and Cremer, 1978), hence the possibilities
of reducing A by focusing light to a tighter spot (Bassett, 1986). Lastly, it led to
stabilization schemes that significantly improved the sensitivity of a spectroscopic
experiment (Black, 2001).

These and other developments led to the first observation of the absorption
signal of a single ion in a transmission experiment (Wineland et al., 1987). The
measurement was possible also because the interaction cross section of a single
ion is a million times larger than that of a typical dye molecule in a host matrix
at room temperatures. Indeed, the field of single-molecule spectroscopy started
with the detection of pentacene in a para-terphenyl crystal at liquid-helium tem-
peratures (Moerner and Kador, 1989), where the suppression of broadening effects
enhances σ by orders of magnitudes (Friedrich and Haarer, 1984; Rebane, 1970).
The first steps toward the detection of single molecules focused in fact on the nar-
row spectral features in hole-burning experiments (Kharlamov et al., 1974) and on
its statistical fine structure (Carter et al., 1988).

Single-molecule spectroscopy, however, found its way through a detection
scheme based on fluorescence excitation spectroscopy (Orrit and Bernard, 1990). In
practice, a fraction of the weak fluorescence signal is spectrally separated from the
laser and it can be efficiently isolated from the source noise using a long-pass filter.
Since the demonstration of single-molecule detection at room temperatures (Betzig
and Chichester, 1993) the technique has become very important in physics, chem-
istry, biology and materials science (Kulzer and Orrit, 2004; Lupton, 2010; Michaelis
and Bräuchle, 2010; Moerner, 2002; Patterson et al., 2010; Tamarat et al., 2000; Weiss,
1999, 2000; Xie and Trautman, 1998). At the more fundamental level of light-matter
interaction, single-molecule fluorescent excitation spectroscopy enabled the first
quantum optical experiments using solid-state emitters (Basché et al., 1995; Brunel
et al., 1998, 1999; Fleury et al., 2000; Tamarat et al., 1995).

The advent of quantum information science (Nielsen and Chuang, 2000) and
the increasing attention on light as a reliable hardware for quantum communica-
tion and computation (Kimble, 2008; Knill et al., 2001; Ladd et al., 2010; Monroe,
2002; O’Brien, 2007) has renewed the interest for detection schemes that preserve
coherence in the interaction process (Cirac et al., 1997; Duan and Kimble, 2004; Sav-
age et al., 1990; Turchette et al., 1995; van Loock, 2011; Waks and Vuckovic, 2006;
Wilk et al., 2007). However, one should bear in mind that a major challenge per-
sists, namely the weak coupling of light with matter at the level of single emitters.
A well-know solution to this problem relies on the use of optical resonators (Benisty
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et al., 1999; Vahala, 2003). Indeed, several proposals of quantum networks and re-
peaters refer to coherent cavity-assisted interactions (Cirac et al., 1997; Duan and
Kimble, 2004; Turchette et al., 1995; van Loock et al., 2008). These have been tested
in a number of different realizations based on single quantum emitters coupled to
optical resonators (Birnbaum et al., 2005; Dayan et al., 2008; Fushman et al., 2008;
Schuster et al., 2008; Turchette et al., 1995; Wilk et al., 2007).

Recent experimental efforts have shown that light focused on single ions,
molecules, or quantum dots may be attenuated in transmission by a few per-
cent (Gerardot et al., 2007; Gerhardt et al., 2007b; Tey et al., 2008; Vamivakas et al.,
2007; Wrigge et al., 2008a). Indeed one expects that a quantum emitter has a strong
effect on the incident light when σ/A is close to unity. However, whether these
results are near or far from the maximum possible value was not known. From the
theoretical side, the interaction of freely propagating photons with the dipolar tran-
sition of a two-level system (TLS) has been investigated for a quasi-one-dimensional
case with emphasis on the quantum statistics of the incident light (Carmichael,
1993; Kochan and Carmichael, 1994). The model predicts that a single emitter can
be made optically thick, but it does not take into account the dynamical properties
of light, as for the case of the Beer-Lambert-Bouguer law.

These phenomena are strongly related to scattering theory, which studies the
propagation of light in an inhomogeneous medium from the electrodynamic point
of view (Sheng, 1995). For a single spherical object illuminated by a plane po-
larized wave, the exact solution of the scattering problem is often referred to as
Mie theory (Mie, 1908). It turns out that the amount of electromagnetic energy
removed in the propagation direction of the incident beam, the so-called extinc-
tion, corresponds to the sum of the total absorbed and scattered powers, irrespec-
tive of the shape of the object. This intriguing result, which expresses the optical
theorem (van de Hulst, 1949b), relates a transmission measurement, i.e. the Beer-
Lambert-Bouguer law, to the strength of light-matter interaction.

A point-like obstacle exhibits a cross section σ independent from the type of
illumination, because it probes the field amplitude only at one location (Jackson,
1999). Therefore, the Beer-Lambert-Bouguer law seems to be applicable to the case
of focused illumination without concerns and the use of scattering theory appears
unnecessary. Problems arise though from the choice of A, which for a diffraction
limited focus cannot be easily related to a geometrical feature of the beam (Stamnes,
1986), and from the failure of the optical theorem for focused illumination (Lock
et al., 1995). In fact, a more careful look at the interaction process reveals that
diffraction plays an important role in determining the attenuation of light by a
point-like scatterer, as shown in Figure 1.1 (Paul and Fischer, 1983).

Early attempts to generalize scattering theory to inhomogeneous illuminations
regarded the problem of collimated laser beams incident on large colloids (Morita
et al., 1968; Tsai and Pogorzelski, 1975), hence on objects having dimensions com-
parable or bigger than the beam waist. The attention on point-like scatterers came
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Figure 1.1: The absorption of light by a point-like oscillating dipole (red arrow)
illustrated from the electrodynamic point of view (after Paul and Fischer, 1983).

much later (van Enk, 2004; van Enk and Kimble, 2000, 2001). These latter studies
concluded that only the dipolar component of the excitation light can couple to a
dipole and that the transmitted power is only weakly attenuated. Interestingly and
somewhat in parallel, the literature on the interaction of a TLS with light confined
to a waveguide claims that very strong attenuation is possible (Domokos et al.,
2002).

The first part of this work investigates light scattering by a TLS in tightly con-
fined fields, obtained either by a subwavelength aperture (Bethe, 1944) of a scan-
ning near field optical microscope (SNOM) or by a strong lens (Richards and Wolf,
1959). The latter case allows us to derive analytical formulae, which take us to the
limits of light-matter interaction in free space. On the other hand, the aperture re-
veals the importance of the coherence between the incident and the scattered fields
and how this determines the extinction signal. In particular, we analyze visibility
and lineshape and show their complex dependence on the various parameters that
define the aperture, the molecule and the detected signal (Gerhardt et al., 2007a,b).
For focused beams we theoretically demonstrate that under appropriate conditions
the incident light is perfectly reflected and that the transmission can be attenuated
by up to 85% for the experimentally important case of a focused plane wave (Zu-
mofen et al., 2009, 2008). These upper bounds reveal the profound relationship
between the optimal concentration of electromagnetic energy in free space (Bassett,
1986) and the strength of light-matter interaction for a dipolar oscillator (Jackson,
1999). Moreover, we show that the Beer-Lambert-Bouguer law is still appropriate
if A is the effective area given by the ratio between the total incident power and
the field intensity at the focus. Inspired by a number of proposals for quantum in-
formation science (Savage et al., 1990; Turchette et al., 1995; van Loock et al., 2006)
we calculate the phase shift impressed by a TLS on a focused beam and find that
values of a few degrees can be easily achieved (Zumofen et al., 2009). These pre-
dictions have been confirmed by recent experiments performed on single trapped
atoms (Aljunid et al., 2009) and molecules (Pototschnig et al., 2011).

The resonant cross section of a weakly excited TLS is σo = 3λ2/2π, where λ is
the wavelength associated with the optical transition (Cohen-Tannoudji et al., 2004).
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This value is compatible with the diffraction limit, which states that a beam cannot
be focused down to an area smaller than (λ/2NA)2, where NA is the numerical
aperture of the optical system (Born and Wolf, 1999). On the other hand, the cross
section σ can also be several times smaller than σ0.
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Figure 1.2: (a) Molecule (not to scale) adsorbed on a rough metal surface. (b) Field
enhancement near a 100 nm gold nanosphere under plane-wave illumination. (c)
Chemically synthesized metal nanoparticles. (d) Schematics of an aperture SNOM
(molecule not to scale).

A well-known example of a weak interaction is Raman scattering (Raman and
Krishnan, 1928), where σ/A can be as small as 10−20! In the 1970s physical chemists
recognized that the enhancement in the Raman signal of molecules adsorbed on
rough metal surfaces was due to the strong local electromagnetic fields generated
by roughness (Albrecht and Creighton, 1977; Jeanmaire and Duyne, 1977). To ex-
plain these phenomena theorists started to develop simplified models based on
the electrostatic polarizability of very small metal particles and they soon under-
stood that these could yield better and more controllable enhancements (Aravind
et al., 1981; Gersten and Nitzan, 1980; Metiu, 1984; Moskovits, 1985). The first
experiments on enhanced Raman scattering by metal nanoparticles took place in
the 1980s (Lee and Meisel, 1982), in the same period of time when scanning near-
field optical microscopy was being developed (Lewis et al., 1984; Pohl et al., 1984).
In the following years, progress in fabrication has initiated a series of activities
aimed at replacing nanoparticles and metal-coated fibers with engineered nanos-
tructures to convert localized electromagnetic energy into radiation and vice versa
with a higher efficiency (Grober et al., 1997; Pohl, 2000). The dramatic advances of
nanotechnology experienced in recent years have boosted the interest in these de-
vices that function as nanoscale antennas (Greffet, 2005; Mühlschlegel et al., 2005).
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In fact, the amount of activities on this topic has grown very rapidly in various
fields of research, spanning physics, chemistry, electrical engineering, biology, and
medicine to cite a few (Anker et al., 2008; Bharadwaj et al., 2009; Novotny and van
Hulst, 2011; Schuller et al., 2010).

Our interest focuses on the enhancement of resonant phenomena and in particu-
lar on light absorption and emission by a quantum emitter. A series of experiments
in the 1960s and in the 1970s discovered that also molecular fluorescence is mod-
ified near metal surfaces (Drexhage, 1974, 1966). In subsequent years theoretical
works predicted, however, that the signal was quenched due to a drastic reduction
in the emission quantum yield caused by absorption in real metals (Chance et al.,
1978; Ruppin, 1982). That has led to a longstanding contrast between the huge
enhancements discovered in surface-enhanced Raman scattering (Kneipp et al.,
1997; Nie and Emory, 1997) and the quenching of fluorescence by metal nanoparti-
cles (Ruppin, 1982; Xu et al., 2004). It turns out that these phenomena are inherent
to near-field interactions, which for many years have posed a great challenge to
their experimental verification and quantitative understanding (Biteen et al., 2005;
Dulkeith et al., 2002; Kulakovich et al., 2002; Kümmerlen et al., 1993; Leitner et al.,
1985; Shimizu et al., 2002; Wokaun et al., 1983).

The advent of SNOM (Lewis et al., 1984; Pohl et al., 1984) and single-molecule
spectroscopy (Moerner and Kador, 1989; Orrit and Bernard, 1990) provided the ex-
perimental tools for controlled investigations of metal enhanced fluorescence and
quenching (Anger et al., 2006; Farahani et al., 2005; Frey et al., 2004; Kühn et al.,
2006). In particular, it has been shown that a spherical gold nanoparticle acts as
an optical antenna that modifies the excitation rate, the spontaneous emission rate,
and the radiation pattern of an emitter in its near field (Kühn et al., 2006, 2008).
These and previous works have shown that the competition between field enhance-
ment and quenching is distance dependent and that there is a separation where the
signal is maximal (Anger et al., 2006; Wokaun et al., 1983).

Several parameters influence the enhancement of fluorescence and the question
that arises is to what extent these could be optimized. While a huge literature exists
for the design of optical antennas for the field enhancement (Aizpurua et al., 2005),
much less attention has been devoted to the improvement of the fluorescence quan-
tum yield (Gersten and Nitzan, 1981; Lakowicz, 2005). In addition, these works had
in mind spectroscopy and sensing applications (Anker et al., 2008). Our concern
is instead the enhancement of light-matter interaction to a regime where single
photons couple with single quantum emitters with a high probability. This may
be possible only if large enhancements coexist with high quantum yields. For in-
stance, at room temperature the cross section σ of a typical dye molecule is about
five to six orders of magnitude smaller than σo. How much could we enhance it us-
ing optical antennas? Are these suitable for light management at the single photon
level and can they achieve performances comparable to those of optical resonator?

These are the questions that we address in the second part of this work. We an-
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Figure 1.3: An optical antenna made of two spheroidal gold nanoparticles enhances
radiation by a quantum emitter placed in the gap. The intense near field and the
length scale of the antenna are also shown.

alyze the various effects that influence the modification of the radiative decay rate
and the quantum yield near a metal surface. We then derive a number of empirical
rules to design optical antennas that lead to a strong enhancement of the fluores-
cence signal and, at the same time, to quantum yields close to unity. Next, we
take advantage of computational nano-optics (Kaminski et al., 2007) to investigate
how these rules perform in reality (Mohammadi et al., 2010, 2008b; Rogobete et al.,
2007). Moreover, we propose designs that are fully compatible with state-of-the-art
nanobrication and explore effects related to the antenna composition (Mohammadi
et al., 2009b).

An important figure of merit of radio-wave antennas is the so-called directiv-
ity (Balanis, 2005). It represents the power radiated in a certain direction with
respect to an hypothetical isotropic radiator. For instance, radiating dipoles exhibit
a broad pattern in comparison to directive antennas like the Yagi-Uda array (Uda,
1927; Yagi, 1928). Several applications ranging from fluorescence microscopy to
quantum information science would very much benefit from “directional” light
emitters. Indeed, the past decades have witnessed several attempts to increase the
collection efficiency for atoms and molecules using, to cite a few, dielectric planar
interfaces (Barnes et al., 2002; Koyama et al., 1999; Lee et al., 2011; Lukosz and
Kunz, 1977), optical resonators (Pelton et al., 2002; Strauf et al., 2007), gratings (Kit-
son et al., 1996; Knoll et al., 1981; Rigneault et al., 1999), surface roughness (Raether,
1988; Yablonovitch, 1982), photonic crystals (Rattier et al., 2002; Ryu et al., 2001;
Zelsmann et al., 2003), and more recently nanowires (Babinec et al., 2010; Chang
et al., 2007b; Claudon et al., 2010).

Another point of concern is whether one can take an engineering textbook and
simply adapt antenna designs to the optical domain. Several authors have shown
that this is a workable solution (Hofmann et al., 2007; Li et al., 2007) and their pre-
dictions have been experimentally confirmed (Curto et al., 2010). Here we follow
a different approach, which considers the different requirements and opportuni-
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ties of optics, photonics and antenna theory. More precisely, we require that the
antenna radiation pattern corresponds to a well-define optical mode, i.e. a guided
wave or a collimated beam, such that the system operates with a high efficiency
also in the excitation channel. Moreover, we design directional antennas that, in
addition, exhibit a strong enhancement of the emission rate and a high quantum
efficiency. These investigations have lead to the proposal of a high-throughput
SNOM (Chen et al., 2009, 2010a), a device that may largely improve scanning im-
plementations of fluorescence, Raman, or other nonlinear nanoscopies (Hartschuh,
2008; Hartschuh et al., 2004).

Figure 1.4: Marconi’s antenna system at Poldhu, Cornwall (Dec. 1901) (photo by
J. Belrose).

Optical antennas go beyond the issue of spectroscopy or sensing and take us
to the ultimate limits of communication and information processing. For more
than 100 years electromagnetic waves have been extensively used to exchange sig-
nals over long distances, and antennas have been playing a fundamental role since
the very beginning. In 1896 Marconi invented wireless telegraphy and in 1901
he managed to send the first wireless signal across the Atlantic with the help of
radio-wave antennas (Marconi, 1967). In 1966 Kao and Hockham proposed the use
of optical fibers to transmit light over several kilometers (Kao and Hockham, 1966)
and today a huge amount of information travels around the globe in thin threads of
glass. More recently, optical interconnects are being exploited in high-performance
computers. The reason is that electrical wires have energy and bandwidth issues
that are rapidly growing in the next integration targets. It is not yet clear how far
light will go into a chip, but it is certain that it will be playing an increasing role
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in information processing and that photonic devices will have to reach nanoscale
dimensions (Kirchain and Kimerling, 2007; Miller, 2009).

An optical photon carries energy of the order of 10−19 J. The amount of en-
ergy required to process a bit of information in a transistor should reach 10−18 J
in 2016 (ITRS). In a not too distant future we might envision data carried by light
pulses made of a few optical photons efficiently interfaced to an electrical tran-
sistor that processes information at tiny power levels. Or we could even think
of all-optical signal processing where a saturable light absorber like an atom or
a molecule is used to achieve strong and controllable interactions between single
photons (Hwang et al., 2009). These projections are approaching the even tighter
requirements of quantum information science, where bits are replaced by qubits.
These are quantum states of light or matter that need to be transmitted, processed
and stored with a high fidelity (Monroe, 2002). To this end there is an ongoing
incredible amount of work to improve light-matter interaction at a fundamental
level, with an explosion of activities in areas where, traditionally, quantum optics
and nanophotonics did not play a central role.

We have presented approaches based on optics, field-enhanced spectroscopy
and antenna theory to significantly enhance the interaction between light and very
small amounts of matter, ideally down to single atoms and molecules. We conclude
by discussing their relationship with resonators. To gain further insight on the
control of light-matter interaction, we first consider simplified antenna models and
discuss basic properties starting from analytical expressions. Since optical antennas
have dimensions smaller than the operating wavelength, we base the analysis on
the fundamental limitations of electrically small antennas (Hansen, 1981). Next, we
select a few popular resonator designs (Vahala, 2003) and compare their figures of
merit with those of optical antennas. We show that the enhancement of light-matter
interaction is comparable to that achievable with state-of-the-art cavities. Interest-
ingly, the antenna efficiency and the enhancement have opposite trends, but there
is a window of opportunity where optical antennas could function as nanoscale
resonators with a tiny device footprint and manageable absorption losses. There is
another important advantage in optical antennas. Having a low quality factor they
are fully compatible with methods and techniques of ultrafast spectroscopy (Dan-
tus and Lozovoy, 2004; Zewail, 2001) and coherent control (Bandrauk et al., 2002;
Rabitz et al., 2000). We will return to these aspects in the concluding part.
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Chapter 2

Single-molecule spectroscopy

Optical spectroscopy studies the properties of atoms, molecules and condensed
matter through the absorption and emission of light and under the usual assump-
tion of an incident polarized plane wave (Hollas, 2004). Common treatments of
scattering theory consider an incident plane wave too, but here light-matter interac-
tion is expressed in terms of a scattered wave that emerges from the target (Bohren
and Huffman, 1983; van de Hulst, 1949a). Before we study in detail molecular
scattering in strongly confined optical fields we need to establish a connection be-
tween these two pictures. We thus review the semi-classical theory of light-matter
interaction at the single-molecule level and formulate scattering theory for a point-
like oscillating dipole. We introduce the concept of a cross section to represent the
coupling strength and to distinguish between absorption, scattering and extinction.
Lastly, we outline the general framework of coherent spectroscopy and specify it
for a transmission experiment performed on a single quantum emitter.

2.1 Optical properties of a single molecule

Throughout this work we focus our attention on an ideal TLS. Nonetheless it is
useful to begin by making a connection with experiments and explain why single
molecules are suitable candidates for this type of investigations (Gerhardt, 2006;
Kühn, 2006; Wrigge, 2008). In what follows we briefly discuss the optical proper-
ties of single molecules and explain how they depend on their microscopic struc-
ture (Atkins and Friedman, 2005). In particular, we consider the case of a dopant
molecule in a host matrix (Rebane, 1970). Our goal is to point out the differences
and the analogies with respect to the response of a TLS. For the sake of complete-
ness, we also include a short historical note on single-molecule detection.



22 Single-molecule spectroscopy

2.1.1 Energy level diagrams and transition rates

The energy level structure of a molecule results from a complex hierarchy of inter-
actions between its fundamental constituents. In the Born-Oppenheimer approxi-
mation we can distinguish electronic, vibrational and rotational states, which are
well separate in the energy scale. This classification has important consequences
on the optical properties of molecules, because it determines transition frequencies
and rates among the different levels.

The Jablonski diagram

The electronic ground state of a molecule is typically a singlet S0, because the
bonding molecular orbital hosts paired electrons with antiparallel spins. The ex-
cited states can be singlets Si or triplets Ti, with the latter tending to have a lower
energy due to the first Hund’s rule (Atkins and Friedman, 2005). Because of the
spin selection rule the strongest optical transitions are singlet-singlet, e.g. S0 ↔ S1.
They typically cover the visible spectrum and have fluorescence lifetimes of the
order of 1-10 ns. Triplet-singlet transitions are weakly allowed, hence much less
probable. The S1 → T1 transition is named intersystem crossing, whereas the
T1 → S0 one refers to the so-called phosphorescence, with decay times that are sev-
eral orders of magnitude longer than fluorescence. These processes, together with
the relevant level structure, are illustrated in Figure 2.1a. This schematic represen-
tation is called Jablonski diagram, after the Polish physicist Aleksander Jabłoński
(1898-1980), a pioneer in the study of the photophysics of molecules.
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Figure 2.1: (a) Jablonski and (b) simplified diagram for the description of the energy
level structure and the optical transitions of a single molecule. The transitions rele-
vant for this work are color coded. The green lines refer to resonant excitation and
emission using the ground state, whereas the red line labels the red-shifted fluores-
cence.

Figure 2.1a shows additional sublevels that stem from the vibrational degrees
of freedom. These can affect the optical properties of a molecule in two ways. First,
an excited state can lose energy through a series of fast nonradiative transitions
mediated by the vibrational motion. This internal conversion process can reduce
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the quantum yield, i.e. the ratio between the radiative and the total decay rates,
and relax the system to the vibrational ground state (Kasha, 1950). Second, optical
absorption and emission can involve one or more vibrational transitions. Therefore,
the spectra reflect the asymmetry of the energy level structure and present the
typical profiles shown in Figure 2.3.

Strength of the zero phonon line

For dopant molecules hosted in a solid matrix the rotational degrees of freedom
can be ignored because the matrix usually prevents this type of motion. However,
one has to take into account couplings with the delocalized vibrational excitations
of the host lattice, the phonons. In this work we are mainly interested in transitions
that approximate the optical properties of a TLS (Allen and Eberly, 1975). These
are indicated in Figure 2.1a by green lines. The excitation from the zeroth (0) vi-
brational level of the S0 state to the zeroth (0) vibrational level of the S1 is called
the 00-ZPL (Zero Phonon Line). The emission spectrum of dye molecules is typi-
cally dominated by this transition and by the red-shifted fluorescence, indicated in
Figure 2.1a by a red line.

The strength of the 00-ZPL transition and the direct decay to the ground state
vary with the dopant molecule and the host matrix (Friedrich and Haarer, 1984;
Rebane, 1970). The ratio between the decay rate k21 to the ground state S0 and
the total decay into the vibrational sublevels k23 is called the branching ratio (see
Figure 2.1b). It is associated with the Franck-Condon principle, which states that
an electronic transition occurs without changing the interatomic distances in the
molecule (Atkins and Friedman, 2005). This is schematically illustrated in Fig-
ure 2.2a, where the energy levels are plotted as a function of the normalized nuclear
coordinate. It is shown that the excitation of the 00-ZPL is vertical and proportional
to the overlap between the ground state vibrational wavefunctions of the S0 and S1

electronic states. The mismatch, which depends on the variation ∆q of the equilib-
rium distance of the nuclei, results in the so-called Franck-Condon factor αFC. For
terrylene in hexadecane, a typical system used in single-molecule spectroscopy, αFC
is of the order of 0.4 (Moerner, 1994).

The presence of a host matrix modifies the spectrum of the single molecule by
adding a phonon wing to each allowed transition, as shown in Figure 2.2b for the
00-ZPL. This component can be explained by considering a linear electron-phonon
coupling that transfers molecular excitations into lattice vibrations. The lineshape
of the phonon sideband corresponds to a Poisson distribution, but in many cases
it can be approximated by a Gaussian profile (Markham, 1959). The effect can be
characterized by the so-called Debye-Waller factor αDW, which is the intensity of
the 00-ZPL normalized with respect to the total intensity (Friedrich and Haarer,
1984; Rebane, 1970). The displacement ∆ of the phonon wing with respect to the
transition frequency νo of the 00-ZPL is related to the strength of the electron-
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Figure 2.2: (a) Energy levels of a single molecule plotted as a function of the nor-
malized nuclear coordinate qi. The Franck-Condon principle implies that for any
transition from the ground S0 to the excited S1 state there is no nuclear momentum
transfer. (b) In the presence of linear electron-phonon coupling, momentum conser-
vation implies that the emission spectrum acquires a phonon wing, with a central
frequency shifted by ∆ from the purely electronic transition at νo. The homogeneous
broadening ∆νhom is shown for comparison.

phonon coupling (see Figure 2.2b).
In summary, the strength of the 00-ZPL is reduced by the factor α = αFCαDW.

Rigid molecules tend to have a larger α. They thus approach the behavior of a
TLS, especially for what concerns the coherent properties of the emitted light. In
fact, the inelastic transitions that determine αFC and αDW give rise to incoherent
radiation without phase relationship with the probe laser.

Molecular spectra

The host matrix has another important effect on the optical properties of molecules.
It creates a nanoenvironment that induces spectral shifts that depends on the pre-
cise location of each molecule. Therefore, the absorption and emission spectrum of
an ensemble is typically very broad, as shown in Figure 2.3. This effect is called
inhomogeneous broadening. Even at cryogenic temperatures (T ≤ 2K) it ranges
from 1 THz in polymers down to less than 1 GHz for unstressed sublimated crys-
tals (Brouwer et al., 1996).

The spectrum of a single molecule is instead characterized by the homogeneous
linewidth

∆νhom =
Γ2

π
=

Γ1

2π
+

Γ∗2
π

, (2.1)

where Γ1 and Γ∗2 are the decay rate of the excited state population and the dephas-
ing rate of the polarization, respectively. Γ2 defines instead the total decay rate of
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Figure 2.3: Typical excitation and emission profiles of dopant molecules in a matrix.
At cryogenic temperatures the spectral lines are much narrower. In particular, the
direct transitions between electronic levels as well as those that involve a change
in the vibrational state are much sharper than the phonon wings. In fluorescence
excitation spectroscopy the upper electronic state is populated and the transitions
to the vibrational levels of the ground state are probed. Conventional setups use a
long-pass filter to block the 00-ZPL emission and its phonon contribution.

the polarization (Allen and Eberly, 1975). In Section 2.3 we will discuss in more
detail how light interacts with a TLS and how these quantities affect the coherence
properties of the scattered light. The lineshape of the 00-ZPL has a Lorentzian pro-
file with a full-width at half maximum (FWHM) equal to ∆νhom (see Figure 2.2b).

Dephasing processes can be largely suppressed by cooling the sample down
to cryogenic temperatures and the spectral lines become extremely narrow (Bloess
et al., 2001). The lower limit to the linewidth is imposed by the Heisenberg uncer-
tainty principle, which relates the excited state lifetime to the so-called natural or
lifetime-limited linewidth ∆ν. For typical dye molecules it is of the order of 10-20
MHz. It is not easy to obtain dopant molecules that exhibit a natural linewidth and
the host matrix must be carefully chosen (Boiron et al., 1996; Harms et al., 1999).

Cross sections

The strength of light-matter interaction is usually expressed in terms of a cross
section σ. It has dimensions of a surface so that, to give an intuitive picture, it
represents the effective area that a molecule probed by a laser beam exhibits to it.
For a TLS under weak resonant excitation one finds (Allen and Eberly, 1975)

σ = σo =
3λ2

2π
. (2.2)
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For a transition wavelength of 600 nm, the above equation yields an area of about
1.7× 10−9 cm2, whereas the room temperature cross section of a dye molecule like
Rhodamine 6G is only 4.4× 10−16 cm2. The huge discrepancy can be understood
if we take into consideration the various effects that decrease the strength of the
00-ZPL transition. All together they lead to

σ = σo
Γ1

2Γ2
αFCαDW cos2 θ. (2.3)

The ratio Γ1/2Γ2 accounts for the presence of dephasing. At room temperatures
this factor can be of the order of 10−5, which already makes up most of the size
reduction of the cross section. The Franck-Condon and Debye-Waller factors can
lead to an additional decrease of more than one order of magnitude, depending on
the particular system. The last term is the geometrical factor, which accounts for
the orientation of the transition dipole moment with respect to the polarization of
the incident electric field. Note that this correction plays an important role in solid
samples, where the molecular orientation cannot be changed (Pfab et al., 2004).

According to the Beer-Lambert-Bouguer law the absorption signal is propor-
tional to the ratio σ/A, where A is the transverse area of the incident laser beam.
In order to be able to detect a single molecule, the value of σ/A must be confronted
with the various sources of noise.

In the next section we will briefly review the most common experimental ap-
proaches for identifying single molecules. Here we bear in mind that under ap-
propriate conditions the cross section can well approximate that of a TLS. There-
fore, single molecules in a solid matrix allow us to make proof-of-principle experi-
ments to advance our understanding of light-matter interaction, especially for what
concerns coherent phenomena and quantum-optical effects. For instance, a favor-
able choice for performing this type of studies is the molecule dibenzanthanthrene
(DBATT) in a n-hexadecane (Boiron et al., 1996) or in a n-tetradecane (Lettow et al.,
2007) Shpol’skii matrix, as well as in a naphthalene crystal (Jelezko et al., 1997).
Another system is dibenzoterrylene (DBT) in naphthalene (Jelezko et al., 1996) or
in anthracene (Hofmann et al., 2005; Toninelli et al., 2010).

2.1.2 Single-molecule detection

At cryogenic temperatures single molecules hosted by an appropriated matrix ex-
hibit very narrow transitions down to linewidths of a few megahertz (Harms et al.,
1999). Moreover, the local solid environment induces spectral shifts that lead to dis-
tinguishable molecular transitions in the inhomogeneous spectrum of the specific
host matrix (Friedrich and Haarer, 1984; Rebane, 1970). Therefore, single molecules
can be individually addressed either by optical microscopy of a highly diluted sam-
ple or by selective resonant excitation using a narrowband tunable laser. What
matters then is the signal-to-noise ratio that is reachable with the selected detection
scheme.
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Absorption spectroscopy

The first optical detection of a single molecule was performed on the absorption
signal of a para-terphenyl crystal doped with pentacene (Moerner and Kador,
1989). To suppress the laser noise, the resonant frequency of the molecular tran-
sition was modulated using the Stark effect and the signal-to-noise ratio was im-
proved using a lock-in amplifier (Kador et al., 1990). Unfortunately, lock-in tech-
niques tend to lose information on the absolute phase of the signal (Wineland et al.,
1987) and they are thus not ideal for single-molecule coherent spectroscopy. These
types of measurements have not been pursued much farther (Kador et al., 1999)
until recently (Chong et al., 2010).

An attempt to perform a phase-sensitive detection of a single-molecule relied
on a Sagnac interferometer, where about 20 molecules could be sensed at room
temperature (Hwang et al., 2006). Another technique might exploit the interference
between the scattered field and the light reflected by a dielectric interface located
near the sample (Lindfors et al., 2004). Using ultrasmooth surfaces it was possible
to detect the scattering signal of a single colloidal quantum dot (Kukura et al.,
2009). Furthermore, these findings have enabled the first absorption measurement
of a single molecule at room temperature (Celebrano et al., 2011; Kukura et al.,
2010).

In the next chapter we will show that the signal-to-noise ratio of an absorption
experiment can be significantly improved using tightly focused light. In particular,
we find that at low temperatures the interaction strength becomes so large that a
single molecule extinguishes a large fraction of the incident light (Wrigge et al.,
2008a; Zumofen et al., 2008) and induces phase shifts of a few degrees (Pototschnig
et al., 2011; Zumofen et al., 2009).

Fluorescence excitation spectroscopy

An alternative strategy to detect single molecules relies on the collection of the
red-shifted fluorescence. Here the laser noise is avoided by means of a low-pass
filter, which blocks the excitation source in the detection path (see Figure 2.3). The
technique is so simple that already in 1976 Hirschfeld demonstrated a sensitivity of
less than 100 fluorophores at room temperature (Hirschfeld, 1976). At low temper-
atures single molecules could be detected by scanning a narrowband laser across
a molecular resonance and collecting fluorescence (Orrit and Bernard, 1990). For
photostable dye molecules with a high quantum yield the signal-to-noise ratio is
only limited by the detector noise. That is why fluorescence excitation spectroscopy
rapidly became the standard technique for single molecule detection at cryogenic
and room temperatures (Moerner, 2002).

However, not all molecule are efficient light emitters nor are photostable, even
at moderate excitation levels. Moreover, since the fluorescence signal is incoher-
ent, any phase information is completely lost. An extinction experiment would not
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present these issues and the detection sensitivity could be larger than via fluores-
cence under certain conditions (Wrigge, 2008; Wrigge et al., 2008b). Because the
signal relies on scattering and absorption by a weakly excited molecule, it is useful
to formulate the problem starting from scattering theory.

2.2 Scattering theory

Having described the optical properties of a single molecule, we now focus on the
description of light-matter interaction from the point of view of the electromagnetic
field. Here we introduce the fundamental concepts and the basic quantities that we
need in the subsequent chapters to investigate the optical response of an emitter
probed by strongly confined optical fields.

2.2.1 General formulation

For a material body of specified size, shape and composition illuminated by an
electromagnetic wave, the goal of scattering theory is to determine the electric
and magnetic fields inside and outside the object at any given location. Here we
limit ourselves to the situation where the scatterer is embedded in a homogeneous
linear non-absorbing medium. Furthermore, we make our considerations for a
plane monochromatic wave, keeping in mind that an arbitrary incident field can be
expressed as a linear superposition of plane wave components.

It is convenient to treat the problem by introducing the following quantities. Einc

is the incident field, Esca the scattered field and Eint the field inside the object. Each
of them has a corresponding magnetic field H. Moreover, the incident field is a
linearly polarized plane monochromatic wave propagating along the z-axis, Einc =
Eo exp(ikz− iωt)x̂, where we choose the x-axis as polarization direction. Next we
need to impose the boundary conditions at the interface between the object and
the surrounding medium. Because there are neither charges nor free currents at
the boundary, it is sufficient that the tangential components of the electromagnetic
field are continuous across the interface

(Einc + Esca)× s = Eint × s, (2.4)

where s is the unit vector normal to the object surface.

The amplitude scattering matrix

The scattered field generated when the incident wave impinges on the object prop-
agates in a direction different than Einc. In the direction of observation of Esca,
it is convenient to decompose Einc into components parallel and perpendicular to
the scattering plane. The latter is uniquely defined by the unit vectors n, for the
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observation direction, and ẑ, for the propagation direction.

Einc = Einc,‖e‖ + Einc,⊥e⊥. (2.5)

For distances from the object much larger than the wavelength of light, the scattered
field is transverse and takes the form of a spherical outgoing wave (Jackson, 1999)

Esca = − eikr

ikr
A, (2.6)

where A · n = 0. Therefore, Esca can be expressed as the sum of a component
parallel and perpendicular to the scattering plane

Esca = Esca,‖e′‖ + Esca,⊥e′⊥. (2.7)

Note that e′⊥
‖

are basis vectors different from e⊥
‖

, because they are respectively

orthogonal to n and z, the latter being the propagation direction of the incident
wave.

The linearity in the boundary conditions of Eq. (2.4) and the previous field
decompositions establish a relationship between Esca and Einc in matrix form(

Esca,‖
Esca,⊥

)
= − eik(r−z)

ikr

(
S2 S3

S1 S4

)(
Einc,‖
Einc,⊥

)
, (2.8)

where S = (S2; S3; S1; S4) is the amplitude scattering matrix, whose elements de-
pend on the scattering and azimuthal angles, θ and ϕ, respectively. These are
associated with the observation direction and the scattering plane in the spherical
coordinates (r, θ, ϕ) (Bohren and Huffman, 1983).

Extinction, scattering and absorption

Equation (2.8) represents the most general expression for relating the scattered to
the incident field. In the following we assume that we have been able to obtain Esca

and move our attention on the energy flow. To do so we consider the time-averaged
Poynting vector S in the medium surrounding the scattering object, which can be
written as the sum of three terms

S = Sinc + Ssca + Sint, (2.9)

Sinc =
1
2

Re{Einc ×H∗
inc}, (2.10)

Ssca =
1
2

Re{Esca ×H∗
sca}, (2.11)

Sint =
1
2

Re{Einc ×H∗
sca + Esca ×H∗

inc}. (2.12)
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A 

Figure 2.4: A material object scatters and absorbs light. The beam has a cross
sectional area A much larger than the region where light propagation is perturbed.
The total amount of energy removed by the object can be measured by placing a
detector that collects the transmitted power enclosed into an infinitesimal solid angle
about the beam axis. The dashed circle indicates the integration path of the Poynting
vector.

While Sinc and Ssca are related to the incident and scattered powers, the term Sint

results from the interference between the incident and scattered fields.
Figure 2.4 illustrates a typical transmission experiment. A fraction of the in-

cident power Pinc is either absorbed or scattered by a material object and in both
cases it is removed from the beam. This amount of power is called extinction and it
can be measured by placing a detector downstream the object along the beam axis.
We assume that the beam intensity is constant over a cross section A much larger
than the area where light propagation is perturbed (Bohren, 1983; Paul and Fischer,
1983). According to Poynting theorem (Jackson, 1999), the net power that crosses
the surface Σ of a virtual sphere with radius r � λ enclosing the object reads

Pabs = −
∫

4π
S · n r2 dΩ, (2.13)

where n is a unit vector normal to Σ. Pabs represents the power absorbed only by
the object, because the surrounding medium is lossless. According to Eq. (2.9) Pabs
can be decomposed into three contributions, namely

Pi = −
∫

Σ
Sinc · n r2 dΩ, Psca =

∫
Σ

Ssca · n r2 dΩ, Pint = −
∫

Σ
Sint · n r2 dΩ.

(2.14)
Psca represents the total scattered power and Pi is always identical to zero for a
non-absorbing medium. Hence Eqs. (2.13) and (2.14) lead to

Pint = Psca + Pabs. (2.15)

In other words, Sint can be used to compute the total amount of power removed
from the beam. For this reason it is more often referred to as extinction (Bohren
and Huffman, 1983).
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Cross sections

For the case of an incident plane wave, which carries an infinite amount of incident
power, it is advantageous introducing the concept of a cross section. It has dimen-
sions of a surface so that, to give an intuitive picture, it represents the effective area
that an object placed in an incident beam exhibits to it, as sketched in Figure 2.5. If
Iinc is the intensity of the incident plane wave, we define the scattering, absorption
and extinction cross sections as

Csca =
Psca

Iinc
, Cabs =

Pabs

Iinc
, Cext =

Pint

Iinc
. (2.16)

Figure 2.5: An object immersed in a plane wave scatters and absorbs light. This
effect is correlated with a perturbation of the energy flow, as nicely described by Paul
and Fischer (1983) for a dipole and Bohren (1983) for a nanoparticle. The red line
draws the approximate extension of the interaction cross section, which can be larger
than the size of the object.

The amplitude scattering matrix given in Eq. (2.8) contains all the necessary
information to yield an expression for these cross sections. For an incident x-
polarized plane wave propagating along the z axis the scattering problem can be
reduced to the calculation of the vector scattering amplitude X. This is related to
the elements of the scattering matrix as (Bohren and Huffman, 1983)

X = (S2 cos ϕ + S3 sin ϕ)e′‖ + (S4 cos ϕ + S1 sin ϕ)e′⊥. (2.17)

After some complicated algebraic manipulation we obtain the following expres-
sions

Cext =
4π

k2 Re{(X · x̂)θ=0}, (2.18)

Csca =
∫

4π

|X|2
k2 dΩ, (2.19)

and Cabs = Cext − Csca. |X|2/k2 is often called the differential scattering cross sec-
tion and it specifies the angular distribution of the scattered light. Note that these
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cross sections are purely electromagnetic quantities and as such do not represent
the geometrical shadow that an object would produce in the geometrical optics
limit (Bohren, 1983; Paul and Fischer, 1983). Indeed, Figure 2.5 indicates that the
interaction can lead to cross sections that are larger than the geometrical cross sec-
tional area that an object exhibits to an incident beam. Lastly, we remark that these
results assume that the incident beam can be well approximated by a plane wave.
This prescription requires some explanation.

The optical theorem

Equation (2.18) is one particular formulation of the optical theorem, which states
that the total amount of power removed from the beam, the so-called extinction,
depends only on the vector scattering amplitude X in the forward direction θ =
0. This theorem is not restricted to electromagnetic waves, but it is valid for all
wave scattering phenomena (Feenberg, 1932; Newton, 1976; van de Hulst, 1949b).
The fact that the information about the power scattered in all directions and that
absorbed in the object is fully contained in a far-field quantity along one specific
direction might look puzzling. To show that this is not a surprising result we must
consider in more detail what is meant for extinction and how it is measured. We do
so by referring to the interpretation of the optical theorem given by van de Hulst
(1949a).

Consider the situation depicted in Figure 2.4. The power Pcoll collected by a
detector of area AD placed after the object in the direction of the incident beam can
be written as

Pcoll =
∫

AD

S · ẑ r2dΩ ' Iinc

(
AD +

|X|2
k2 ΩD − Cext

)
, (2.20)

where the second equality holds for large kz, such that the solid angle ΩD ' AD/z2

subtended by the detector is sufficiently small. In such case we can express the
received power as

Pcoll = Iinc(AD − Cext). (2.21)

Since IincAD can be obtained by removing the object from the light path, Cext is a
well defined measurable quantity. If the detector area is increased or if it is moved
closer to the object, the scattering term must be taken into account. The same
occurs for large targets, where the scattered power tends to be concentrated in the
forward direction (Bohren and Huffman, 1983). From Eq. (2.21) we infer that Cext

is the maximum observable extinction. To arrive at this result we actually made
use of the optical theorem in the formulation of Eq. (2.18).

Cext results at the same time from the integration of Sint over a closed sur-
face Σ around the object and from the vector scattering amplitude along the beam
propagation direction. The latter explains why Cext can be measured by a transmis-
sion experiment, but the link between the first and the second expressions remains



2.2 Scattering theory 33

undisclosed. The origin of the optical theorem must be sought in the expression of
Sint. This represents a power flow associated with the interference between the in-
cident and scattered waves. In this particular case Einc is a plane wave propagating
along ẑ. If we now make a plane-wave decomposition of Esca, we find that only
the amplitude parallel to Einc contributes to a net power flow. That is why the inte-
gration of Sint is a projection of the vector scattering amplitude on the propagation
direction of Einc, i.e. θ = 0.

2.2.2 Scattering and absorption by a dipolar radiator

For the scattering and absorption of electromagnetic waves by objects whose di-
mensions are small compared to the wavelength, it is convenient to think of the
incident field as inducing electric and magnetic multipoles that oscillate with a well
defined phase with respect to the driving wave and that radiate energy into direc-
tions other than the incident one. For nanoscale particles and for single molecules
the interaction can be very well described in terms of a single oscillating dipole
p, which is related to Einc by the polarizability tensor α through p = εoαEinc. For
our purposes we can greatly simplify the formalism by assuming that the dipole is
induced by a scalar polarizability α.

The induced dipole moment p = εoαEo exp(−iωt)x̂ is located at z = 0 and
oscillates with the frequency of the applied field. Therefore, it radiates an electric
field Esca that in the far region (kr � 1) reads (Jackson, 1999)

Esca =
k2

4πεo

eikr

r
(n× p)× n, (2.22)

where n is a unit vector in the direction of observation, r is the distance from the
dipole and the time-dependent factor exp(−iωt) has been omitted. From Eq. (2.22)
we can extract the expression for the vector scattering amplitude

X =
ik3

4π
αn× (n× x̂). (2.23)

We then use Eqs. (2.18) and (2.19) to arrive at a simple expression for the extinction
and scattering cross sections

Cext = kIm{α}, Csca =
k4

6π
|α|2. (2.24)

Note that these formulae do not contain any information on the incident field and
are thus valid for any type of illumination in free space.

Classical oscillator

Let us consider a point-like oscillating dipole as a classical model for light-matter
interaction and review the Abraham-Lorentz equation in Gaussian (cgs) units (Jack-
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son, 1999)
q̈ + Γ′q̇− τ

...q + ω2
0q =

e
m

E0x̂ e−iωt, (2.25)

where q is the vectorial displacement of a charge e with mass m, ω0 is the oscillator
resonant frequency and Γ′ represents damping by non-radiative channels. E0 is the
electric field amplitude at the place of the oscillator and x̂ is the unit vector along
the direction of the driving field Einc. τ is the characteristic time of damping by
radiation reaction, whose rate Γ reads (Jackson, 1999)

Γ = τω2
0 =

2e2ω2
0

3mc3 . (2.26)

The stationary state solution of q is given by

q =
e
m

E0e−iωt

ω2
0 −ω2 − iωΓt

x̂, (2.27)

where Γt = Γ′ + (ω/ωo)2Γ is the total decay constant. For laser frequency detuning
∆ = ω −ω0 such that |∆| � ω0 the previous equation can be approximated by

q ' − e
mω0

E0e−iωt

2∆ + iΓt
x̂. (2.28)

Since p = eq, the polarizability of a classical oscillating dipole reads

αCL = − e2

mω0

1
2∆ + iΓt

= −3
2

1
k3

Γ
2∆ + iΓt

cgs→SI
= −6π

k3
Γ

2∆ + iΓt
, (2.29)

where cgs → SI stands for the conversion to SI units.

The scattering cross section

From the preceding expression it follows that extinction and scattering cross sec-
tions read

Cext = σ0
ΓΓt

4∆2 + Γ2
t

, Csca = σ0
Γ2

4∆2 + Γ2
t

, (2.30)

where σ0 = 3λ2/2π is the resonant cross section of an ideal radiator (Jackson,
1999). These equations can be conveniently used to compute the extinguished and
scattered powers for any incident electric field given at the dipole position.

2.3 Coherent spectroscopy

In coherent spectroscopy the response of the system depends not only on the elec-
tromagnetic field amplitude, but also on its phase. This statement embraces a num-
ber of experimental methods and techniques that find application in a broad re-
search context, ranging from quantum information science to femtochemistry (Ki-
raz et al., 2004; Zewail, 2001). When dealing with coherent light-matter interaction
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and optical transitions it is clear that we cannot describe this process through tran-
sition rates, because these have no information on the phase of the field. We thus
need to adopt an appropriate formalism that treats the interaction at the Hamilto-
nian level and not in the framework of perturbation theory. Solving this problem
for the complex level structure of a single molecule is a formidable task. Even in
the situation of a simplified level diagram the analytical solution of the dynam-
ical equations gets quickly very complicated (Rabitz et al., 2000). Since we are
interested in how basic interaction processes are influenced by a complex electro-
magnetic environment, we limit ourselves to the case of a TLS.

2.3.1 Two-level system driven by a laser

We consider a quantum emitter, atom or molecule, as a TLS with a ground |1〉 and
excited |2〉 states, with energies E1 and E2, respectively. We focus on electric dipole
transitions and model light-matter interaction in the semi-classical picture. The
Hamiltonian that determines the time evolution of the TLS under laser excitation
can be written as

Ĥ = ĤTLS − d̂ · E(O, t). (2.31)

ĤTLS is the unperturbed Hamiltonian of a TLS and the second term in Eq. (2.31)
represents the interaction with the electromagnetic field E(O, t) = Eo cos(ωt)x̂,
where O stands for the location of the TLS. Since we only have transitions between
|1〉 and |2〉, we can work in the two dimensional Hilbert space spanned by these
eigenstates. The matrix elements of the operators are thus

ĤTLS =
(

E2 0
0 E1

)
=

h̄ω0

2
σz, (2.32)

where h̄ω0 = E2 − E1, σz is a Pauli matrix (Loudon, 2000) and the constant term
(E2 + E1)/2 has been omitted because it does not affects the dynamics nor the
frequency of the absorbed and emitted light.

d̂ · E(O, t) =
(

0 d12Eoe−iωt

d12Eoe−iωt 0

)
= −h̄V e−iωtσx, (2.33)

where d12 = 〈1|d · x̂|2〉 is the transition dipole moment, assumed to be real, V =
−d12Eo/h̄ is the so-called Rabi frequency and σx is another Pauli matrix (Loudon,
2000).

The time evolution of the TLS is determined either using the Schrödinger or
Heisenberg equations. The expression of Ĥ in terms of Pauli matrices makes the
second approach more practical. We thus consider the Heisenberg equations of
motion in the rotating wave approximation (RWA) (Allen and Eberly, 1975; Cohen-
Tannoudji et al., 2004; Loudon, 2000)

˙̃σ− = (i∆− Γ2) σ̃− + 1
2 iV σz ,

σ̇z = −Γ1σz + iV (σ̃− − σ̃+) ,
(2.34)
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where σ̃−, σ̃+ and σz are operators of a pseudo 1
2 -spin. The tilde and the dot indicate

the RWA and the derivative with respect to time, respectively. In the Heisenberg
equations we have introduced two phenomenological decay constants. Γ1 is the
radiative decay rate of the excited state given by the Einstein coefficient, Γ1 =
d2

12ω3
0/(3πεo h̄c3). Γ2 is the damping rate of the polarization, Γ2 = Γ1/2 + Γ∗2 (see

Section 2.1.1). In the semi-classical approximation Eqs. (2.34) do not contain the
dynamics of the electromagnetic field operators and the expectation values of terms
like V σz ignore quantum correlations between the TLS and the electromagnetic
field, i.e. 〈V σz〉 = V 〈σz〉 (Allen and Eberly, 1975). The expectation values at
stationary state conditions read

〈σ̃−〉ss =
V (∆− iΓ2)

2
(
∆2 + Γ2

2 + V 2Γ2/Γ1
) , (2.35)

ρss
22 =

1
2

(1 + 〈σz〉ss) =
Γ2V

2

2Γ1
(
∆2 + Γ2

2 + V 2Γ2/Γ1
) . (2.36)

ρss
22 gives the stationary state population of the upper state |2〉. Equation (2.35)

is instead related to the steady state value of the dipole moment induced in the
TLS by the driving laser. The polarizability of a TLS αTLS can be expressed using
〈σ̃−〉ss (Cohen-Tannoudji et al., 2004; Loudon, 2000)

αTLS = −d12〈σ̃−〉ss

1
2 ε0E0

, (2.37)

where the factor 1/2 in the denominator comes from the RWA. From Eq. (2.35) we
obtain

αTLS = −
d2

12
ε0h̄

∆− iΓ2

∆2 + Γ2
2 + V 2Γ2/Γ1

= −3π

k3
Γ1(∆− iΓ2)

∆2 + Γ2
2 + V 2Γ2/Γ1

. (2.38)

Note that the polarizability αTLS depends on the intensity of the driving laser
through V 2. In other words the coupling strength between a TLS and an external
electromagnetic field is parametric and it differs from that of a classical oscillating
dipole. Furthermore, this particular expression for αTLS does not fulfill the optical
theorem (Berman et al., 2006; Loudon and Barnett, 2006). Hence the general ex-
pressions for the cross sections derived in Section 2.2.2 must be used with care. We
thus take one step backward and discuss light scattering by a TLS starting from
Eqs. (2.35) and (2.36).

2.3.2 Coherent and incoherent scattering

The light scattered by a TLS, even in the semi-classical picture, can be divided into
two parts. One is coherent with respect to the driving field, and the other one is
incoherent (Cohen-Tannoudji et al., 2004). Only the coherent part interferes with
the incident field and falls into the framework of classical scattering theory.
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From Eq. (2.36) the total scattered power Psca emitted by a TLS can be deter-
mined

Psca = h̄ωΓ1ρss
22 =

σ0

2
Γ1Γ2(

∆2 + Γ2
2 + V 2Γ2/Γ1

) Iinc , (2.39)

where σ0 is the cross section of an ideal classical oscillating dipole (Jackson, 1999)
and Iinc denotes the intensity of the incident field. h̄ω in the first equality gives the
average energy of the emitted photons and correspondingly the second equality
holds for |ω − ω0| � ω0. It is interesting to point out that Psca is also given
by kIm{αTLS}Iinc, which is the formula for the sum of the coherently scattered
and absorbed powers of a classical oscillator. We thus state that the incoherently
scattered light corresponds to a loss channel in classical scattering theory.

For the coherently scattered far field (see Eq. (2.22)), assuming that the dipole
moment and Einc are both parallel to the x-axis, we write

Ecoh
sca = αTLSEinc(O)

k2

4π

eikr

r
(n× x̂)× n

= − 3Γ1 (∆− iΓ2) Einc(O)
4
(
∆2 + Γ2

2 + V 2Γ2/Γ1
) eikr

kr
(n× x̂)× n,

(2.40)

where n is a unit vector in the direction of the observation point, O is the position
of the TLS and the time-depedent factor exp(−iωt) has been omitted. Because
Eq. (2.40) has the same expression of the field scattered by a classical oscillating
dipole, we can use Eq. (2.24) to write the coherent scattered power Pcoh

sca as

Pcoh
sca =

σ0

4
Γ2

1(∆2 + Γ2
2)

(∆2 + Γ2
2 + V 2Γ2/Γ1)2

Iinc. (2.41)

Dependence on the saturation parameter

By defining the saturation parameter s = V 2Γ2/[(∆2 + Γ2
2)Γ1], the scattered, coher-

ent and incoherent powers read

Psca =
h̄Γ1

2
s

s + 1
, (2.42)

Pcoh
sca =

h̄Γ1

2
Γ1

2Γ2

s
(s + 1)2 , (2.43)

Pincoh
sca =

h̄Γ1

2
s

(s + 1)2

(
s + 1− Γ1

2Γ2

)
. (2.44)

Figure 2.6 illustrates their behavior as a function of the saturation parameter s
and for Γ2 = Γ1/2. The ratio Pcoh

sca /Pincoh
sca is also plotted. For small values of s

the incoherently emitted power is negligible and the TLS can be considered an
ideal classical oscillating dipole. When Γ2 � Γ1 the incoherent part can be large
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even under weak excitation. For instance, this is the typical situation of a dye
molecule at room temperature. The ultrafast dephasing processes make this type
of spectroscopy very challenging both in terms of signal-to-noise ratio (Celebrano
et al., 2011; Kukura et al., 2010) and coherent dynamics (Hildner et al., 2011).

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

Saturation Parameter

In
te

ns
ity

Psca
incoh

Psca
coh

Psca
coh

�Psca
incoh

Figure 2.6: Coherent and incoherent photons emitted by a TLS as a function of the
saturation parameter s for Γ2 = Γ1/2.

Weak excitation and radiative broadening

In the following we limit our analysis to weak excitation, i.e. s � 1, and neglect V

in the previous equations. In this case the polarizability αTLS fulfills the optical the-
orem and Eqs. (2.24) give the cross sections for the extinguished and the scattered
powers. Furthermore, we assume that the TLS does not suffer from dephasing pro-
cesses other than the radiative decay. The important quantities that we use in the
next sections read

σ = σ0
Γ2

1
4∆2 + Γ2

1
(2.45)

Ecoh
sca = −3

2
Γ1

(2∆ + iΓ1)
Einc(O)

eikr

kr
(n× x̂)× n, (2.46)

Visibility and lineshapes

When a plane wave weakly excites a TLS, the power collected in the forward di-
rection is always attenuated. Since for a TLS Cext = Csca, according to Eq. (2.20),
the extinction dip amounts to σ/AD for very small collection angles. For a colli-
mated laser beam, the detector area can be replaced with the beam area A and the
transmission takes the form

T = 1− σ

A
. (2.47)
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This is the commonly-used expression of the Beer-Lambert-Bouguer law for a sin-
gle emitter (Karrai and Warburton, 2003). Equation (2.47) can be further analyzed
by writing σ/A = VL(∆), where V is the visibility and L(∆) is the lineshape, which
depends on detuning. From Eq. (2.45) we find that the visibility of a TLS is equal
to σ0/A and the lineshape is a Lorentzian (Loudon, 2000).
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Chapter 3

Coherent spectroscopy in strongly
confined fields

In the previous chapter we have established a connection between the coherent
detection of a single emitter and the ratio σ/A. At the very beginning of single-
molecule spectroscopy, efforts for reducing A by focused illumination and near-
field probes mainly concerned the improvement of the signal-to-noise ratio and
the achievement of a better spatial resolution. For example, one major goal was
to address individual molecules in a dense sample by focusing light below the
diffraction limit (Betzig and Trautman, 1992). The first images of single fluores-
cent molecules at room temperatures were indeed delivered using a SNOM (Betzig
and Chichester, 1993). Since then several groups have combined SNOM with spec-
troscopy of single emitters by detecting the inelastic fluorescence that is red shifted
by the excitation light at room and at cryogenic temperatures (Guest et al., 2002;
Hess et al., 1994; Matsuda et al., 2003; Moerner et al., 1994; Trautman et al., 1994)

At low temperatures dephasing processes are largely suppressed and the cross
section of a single emitter approaches the value given in Eq. (2.45). Based on
Eq. (2.47) we therefore expect that a laser beam focused down to the diffraction
limit would produce a large dip in the transmittance. However, it turns out that
it is not easy to explore this idea experimentally, because systems in the gas phase
are not easily compatible with strongly confined laser fields (Wineland et al., 1987).

Recent developments in far-field techniques have been able to explore the in-
terference between the coherent radiation of a single emitter and a part of the
excitation beam (Alén et al., 2006; Plakhotnik and Palm, 2001). Soon after, a series
of experiments have demonstrated that light focused on single ions, molecules, or
quantum dots may be attenuated by a few percent in transmission (Gerardot et al.,
2007; Gerhardt et al., 2007a,b; Tey et al., 2008; Vamivakas et al., 2007; Wrigge, 2008;
Wrigge et al., 2008a).

The intriguing question that arises is whether the experimentally observed cou-
pling efficiencies are close to or far from the theoretical maximum. In particular, is
it possible to make an atom optically thick? Is it possible for an atom to imprint a
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large phase shift on a photon that passes by? In order to answer these questions
we need to explore the connection between the strength of light-matter interaction
and the limits to the optimal concentration of electromagnetic energy in free space.

A laser beam can be focused to a spot of about (λ/2NA)2, where NA is of
the order of one, or even to a subwavelength area using a SNOM aperture. If we
consider an ideal TLS for which σ = σo = 3λ2/2π, the ratio σ/A can be close to
unity and we are led to think that a single emitter can fully extinguish the incident
light. However, when the beam waist is comparable to the emitter cross section a
proper definition of A becomes important, because a slightly different value for A
can have a large effect on the transmission dip. We thus need to step back to the
fundamentals of scattering theory and coherent spectroscopy to derive the correct
formulae that describe the extinction of a strongly confined field by a TLS.

3.1 Optimal concentration of electromagnetic energy

We begin our analysis by reviewing concepts and methods related to tightly-
focused beams and near-field optics. We discuss first high-NA optics and vectorial
diffraction theory in free space. Later we move the attention to diffraction in the
near field of subwavelength apertures, to the generalization of scattering theory for
evanescent waves and to source-probe interactions (Girard and Dereux, 1996),

3.1.1 Focused beams

In laser spectroscopy the incident field can be often described as a beam whose
transverse intensity profile is a Gaussian function. The latter originates from the
approximate solution of Helmholtz equation in the paraxial form (Born and Wolf,
1999). In this case the amplitude of the electric field E reads

E(ρ, z) = E0
w0

w(z)
e−ρ2/w2(z)ei(kz+kρ2/2R(z)−ζ(z)). (3.1)

ρ is the radial distance, k = 2π/λ is the wavevector, w0 is the beam waist, R(z) =
z(1 + (zR/z)2) is the radius of curvature of the wavefront, ζ(z) = arctan(z/zR) is
the Gouy phase shift, and w(z) = w0

√
1− (z/zR)2 is for variation of the beam spot

size, where zR = πw2
0/λ is the Rayleigh range. In order the paraxial approximation

to be valid, the angle θ between the beam radius w(z) and the beam axis has to
be much smaller than one, which implies w0 � λ. We are instead interested in
situations where the beam waist is of the order of the wavelength, such that A
becomes comparable to σ0. Even though descriptions of Gaussian beams beyond
the paraxial approximation are possible (Barton and Alexander, 1989; Sheppard
and Saghafi, 1999), they are not convenient for describing the complex structure of
the electromagnetic field near the focus of a high-NA optical system.
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Figure 3.1: (a) A Gaussian beam and its main parameters. b = 2zR is the confoncal
parameter and Θ ' 2w0/zR represents the total angular spread of the beam. See text
for details on the other labels. (b) A plane wave focused by a high-aperture optical
system. The wavevector k indicates the plane wave propagation direction, f is the
lens focal length. α is the focusing semi-angle and β the collection semi-angle on the
Gaussian reference sphere (GRS). The blue lines and labels refer to the procedure for
determining the transformation of the field after the aperture.

Figure 3.1b sketches a tightly-focused beam obtained by a plane wave passing
through a high-NA objective, simplified by an aperture that contains some opti-
cal elements. These refract the incident field in a way that at the right side of the
aperture the wavefront corresponds to a strongly converging wave. A satisfactory
description of the focusing process requires vector diffraction theory (Born and
Wolf, 1999; Jackson, 1999) because, as we will see later, the vector nature of electro-
magnetic waves plays an important role in determining the structure of the field
in the focal region. Moreover, there exist several kinds of high-aperture optical
systems that implement different focusing schemes (Born and Wolf, 1999; Stamnes,
1986). In the following we restrict our analysis to a certain number of focused
waves, which we consider as representative examples.

The diffraction limit

The possibility to concentrate light down to a certain cross sectional area is related
to the diffraction limit. This is a quantity that is typically used to express the
resolving power of image-forming system, like a microscope or a telescope. Note,
however, that a diffraction-limited spot does not imply that light has been confined
to the smallest possible area. It just means that the focusing degree corresponds
to the instrument theoretical limit (Born and Wolf, 1999). If NA= sin α is the
numerical aperture of an optical system in vacuo, the diffraction limit states that it
is possible to focus light to a spot of about (λ/2NA)2. α is the focusing semi-angle
as indicated in Figure 3.1.

The intensity distribution I(ρ) in the focal plane of an optical system of revo-
lution with a small NA was first determined by Airy using scalar diffraction the-
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ory (Airy, 1835), when he derived the celebrated expression

I(ρ) = Iinc

(
2J1(kρ sin α)

kρ sin α

)2

, (3.2)

where ρ is the radial direction in the cylindrical coordinates (ρ, φ, z), Iinc is the
incident intensity and J1(ρ) is the cylindrical Bessel function (Abramowitz and
Stegun, 1972). Defining the beam spot size in the focal plane by choosing the first
zero of the Bessel function yields

A = π

(
0.61

λ

NA

)2

, (3.3)

which agrees with the previous statement that A should be of the order of
(λ/2NA)2. Since this expression has been derived using scalar diffraction theory,
we cannot use it for large NA focusing systems.

Expressing the field in the image space

A wave incident on an aplanatic focusing system is transformed into converging
spherical waves with a common center, which defines the so-called Gaussian ref-
erence sphere (GRS) (Born and Wolf, 1999). An expression of the electromagnetic
field on the GRS can be conveniently obtained starting from a geometric ray pic-
ture. In Figure 3.1b consider the ray (blue line) that is bent in the image space to
form an angle θ with the optical axis. If the incident ray is linearly polarized that
is also true for the refracted ray in the image space. An aplanatic system satisfies
the sine condition, meaning that the ray meets the GRS at the same height at which
the corresponding incident ray enters the system. Next we define the electric fields
E0 = E0eikS0e0 and E1 = E1eikS1e1 associated with the incident and converging rays,
respectively. S0 and S1 represent the eikonal function of geometrical optics (Born
and Wolf, 1999), whereas e0 and e1 are the polarization vectors of the electric field.
Energy conservation implies the relation E1 =

√
cos θE0, where the term

√
cos θ is

the apodization function a(θ) of an optical system (Richards and Wolf, 1959). Next
we need to relate e1 to e0 for every value of θ and ϕ, the angles that define a point
on the GRS in the spherical coordinates (r, θ, ϕ). Here we omit the technical details
of this procedure and give the result (Richards and Wolf, 1959)

e1 = (g0 · x̂)g1 + (g0 · ŷ)(g1 × s), (3.4)

where g0 and g1 are unit vectors perpendicular to the rays and lie in the meridional
plane as shown in Figure 3.1b. x̂ and ŷ are unit vectors for the x and y axes,
respectively, and s is a unit vector along the converging ray. In conclusion, the
electric field on the GRS reads

E( f , θ, ϕ) = E0
√

cos θeik f [(g0 · x̂)g1 + (g0 · ŷ)(g1 × s)] Θ(α− θ), (3.5)
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where the step function Θ(α− θ) determines the NA of the focusing system. This
expression has been derived for a plane wave, but the procedure is identical for
any type of incident beam.

Once that we have the electric field on the GRS we need to solve a vectorial
diffraction problem, namely the field radiated by an aperture with a boundary con-
dition determined by Eq. (3.5). In the following we make use of two equivalent, yet
complementary, approaches, which are described in more detail in Appendix A.1
and A.2.

Debye diffraction integrals

The first method relies on the Huygens-Fresnel principle, where every point of the
wave front in Eq. (3.5) can be seen as a source of a secondary wave that propa-
gates toward the center of the GRC. The field in the focal region is thus given by
a coherent superposition of plane waves, which is expressed by so-called diffrac-
tion integrals. These depend on the polarization of light and are thus able to
account for diffraction phenomena that originate from the vector nature of electro-
magnetic waves. The approach was initiated by Debye using Greens theorem (De-
bye, 1909) and was extended by Wolf using the method of stationary phase (Wolf,
1959). For an incident plane wave the formalism was first applied by Richards and
Wolf (Richards and Wolf, 1959).

For a focused plane wave (FPW), the electric field in the focal region reads

Ex(ρ, φ, z) = −iA0(I0(ρ, z; α) + I2(ρ, z; α) cos 2φ), (3.6)

Ey(ρ, φ, z) = −iA0I2(ρ, z; α) sin 2φ, (3.7)

Ez(ρ, φ, z) = −2I1(ρ, z; α) cos φ, (3.8)

where ρ, φ and z are cylindrical coordinates with respect to the focal spot and
A0 = E0 f k/2. Similar expressions hold for the magnetic field H in the focal region.
The diffraction integrals I0, I1 and I2 depend on the focusing semi-angle α and
are given in Appendix A.1.1. Equations (3.6)-(3.8) reveal that all three field com-
ponents appear in the focal region even if the incident field is a linearly-polarized
plane wave. Since the strength of light-matter interaction is proportional to d · E,
polarization effects in vectorial diffraction play an important role here.

Multipole expansion

Diffraction integrals are advantageous for representing a tightly-focused beam in
the focal point. There they assume a simpler form that allows one to derive analyti-
cal expressions. On the other hand, they offer less insight on the general properties
of the focused beam, because every point requires a different diffraction integral.
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An alternative approach relies on the multipole expansion of the electromag-
netic field in the image space (Sheppard and Török, 1997a). Symmetry arguments
select the appropriate multipoles that need to be used in the expansion, whereas
the multipole coefficients are found by imposing the boundary condition that the
field must match Eq. (3.5) at the GRS. Adopting the notation of (Bohren and Huff-
man, 1983) we write for the electric field of a FPW

E(r) = ∑
l

Ae,1,l(Ne,1,l(r)− iMo,1,l(r)). (3.9)

Ne,1,l and Mo,1,l are vector spherical harmonics and the coefficients are provided in
Eq. (A.39) of the Appendix.

Structure of the field in the focal region

Figure 3.2a and 3.2b represent the electric energy density of a FPW in the focal
plane for α = 90o and α = 45o, respectively. The graphs compare a situation under
extreme focusing, where vectorial diffraction gives rise to a spot size elongated in
the polarization direction of the incident wave, with the case where the intensity
distribution is well approximated by Eq. (3.2), which is the result of scalar diffrac-
tion theory. Figures 3.2c and 3.2d show instead the z-component of the Poynting
vector in the focal plane for α = 90o and α = 45o, respectively. In the first case
the Poynting vector presents areas with positive and negative values, which are a
signature of field vortices (Boivin et al., 1967; Stamnes, 1986).

The structure of the electromagnetic field in the focal region can also be con-
trolled by changing the incident wave. The past two decades have witnessed a
large number of contributions aimed at obtaining diffraction-limited spots with
engineered focal field distributions, for applications in lithography, storage, mi-
croscopy (Sheppard, 2007), particle trapping (Ashkin, 1970) and quantum op-
tics (van Enk, 2004). In particular, purely theoretical studies include annular aper-
tures (Sheppard, 1978), radially polarized beams (Quabis et al., 2000, 2001; van
Enk, 2004), and dipole waves (Dhayalan and Stamnes, 1997; Sheppard and Larkin,
1994; Sheppard and Török, 1997b; Stamnes and Dhayalan, 1996). While these
focused fields exhibit various confinement and polarization properties (Stamnes,
1986), what interests us is the amount of energy in the focal spot that couples with
the TLS.

The Bassett limit

Several restrictions exist on the degree to which light can be concentrated by pas-
sive optical systems, like a lens or an optical resonator (Bassett, 1984, 1986; Bassett
and Winston, 1984; Mandel, 1961). They all originate from a geometrical optics
principle, the conservation of étendue, which is the optical analogue of Liouville’s
theorem in classical statistical mechanics (Welford and Winston, 1978). For our
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Figure 3.2: The electric energy density (on log10 scale) at the focus of a FPW with
(a) α = 90o and (b) α = 45o. (c) and (d) show the Poynting vector in the z direction
for the same conditions as (a) and (b) respectively.

purposes we are interested in the limit for the energy density that can be obtained
at a point when light passes only once (Bassett, 1986).

Consider the situation where a beam is focused by an optical system. We would
like to derive an upper bound for the ratio W/Pinc, where W is the energy density
at the focal point and Pinc is the incident power. It is convenient to describe the
focused wave in terms of multipoles, because they yield additive contributions to
Pinc and W. This follows from the orthogonality properties of multipoles and not
from the fact that we deal with incoherent fields. Moreover, we take the origin of
the multipole expansion to coincide with the focus, such that we can establish an
immediate link between this derivation and the multipole description of a focused
wave (Sheppard and Török, 1997a). First, we note that only the dipole waves do not
vanish at focus. Second, to find an expression for Pinc we consider only incoming
multipoles (Bohren and Huffman, 1983). The electric energy density WE at the
origin is ε0k2/12π for each of the three electric dipole waves Ne,−1,1, Ne,0,1 and
Ne,1,1, where we adopt the notation from Bohren and Huffman (1983). If we assume
that Pinc is carried only by an incident dipole wave Ne,m,1, we find Pinc = 1/4Z
irrespective of m, where Z is the vacuum impedance. Hence we find

WE

Pinc,E
=

k2

3πc
, (3.10)

where Pinc,E stands for the power carried by a dipole wave and c is the speed of
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light.
For an arbitrary superposition of multipole waves we also have the energy den-

sity WM associated with the magnetic dipoles. It is easy to show that WM = WE

independently of m. The same is true for the power Pinc,M carried by an incident
magnetic dipole wave and the result of Eq. (3.10) is also valid for WM/Pinc,M. If we
now consider the additive contributions of the other multipoles to Pinc, we obtain
the upper bound

W
Pinc

≤ k2

3πc
, (3.11)

which is the expression derived by Bassett (1986). In summary, the ratio W/Pinc

is far or close to the upper bound given in Eq. (3.10) depending on the multipole
content of the incident field.

We will find that there is a profound relationship between this limit and the
maximum possible strength of light-matter interaction in free space. Before do-
ing so, we want to discuss the other approach that we have followed for confining
light to tighter spots. In near-field microscopy we are not restricted by the diffrac-
tion limit and we intuitively expect to achieve stronger interactions. On the other
hand, we need to include evanescent waves that considerably complicate the de-
scription of the incident field (Girard and Dereux, 1996) and also of the scattering
problem (Carney, 1999).

3.1.2 Subwavelength apertures

The ability to achieve high spatial resolutions in scanning near field optical mi-
croscopy relies on the strongly confined evanescent fields that exist near a subwave-
length aperture. Electromagnetic diffraction by apertures of dimensions smaller
than the wavelength of light is a theoretical problem that has received consider-
able attention over many years (Bethe, 1944; Bouwkamp, 1954; Garcı́a de Abajo,
2007). As shown in Figure 3.3a, a classic configuration is a plane wave incident
on a perfectly conducting and infinitely thin metal screen with a circular aperture.
An approximate solution was first proposed by Bethe (1944) and a few years later
corrected and improved by a number of authors (Bouwkamp, 1950; Meixner and
Andrejewski, 1950; Nomura and Katsura, 1955).

Even if these analytical theories qualitatively explain the basic features of a
SNOM aperture, the first works that analyzed geometries relevant for near-field
microscopy were published after the first experimental demonstrations of subwave-
length optical resolution (Lewis et al., 1984; Pohl et al., 1984). For example, Roberts
(1987) was the first to consider an aperture in a thick metal screen. Soon after there
have been other works focused on aspects relevant for SNOM probes (Leviatan,
1986; Roberts, 1989, 1991). A rigorous electrodynamic analysis of light propaga-
tion, diffraction, and image formation for realistic apertures, like the one shown in
Figure 3.3b, became possible with the development of more elaborate theories and
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with the first applications of computational electrodynamics to nano-optical prob-
lems (Berntsen et al., 1993; Kann et al., 1995a,b; Labeke and Barchiesi, 1992, 1993;
Martin et al., 1995; Novotny and Pohl, 1995; Novotny et al., 1995). More details on
past and recent theoretical developments in near-field optics can be found in two
topical review papers (Girard, 2005; Girard and Dereux, 1996).

k

(a) (b)

Figure 3.3: (a) An incident plane wave is diffracted by a subwavelength aperture
in a perfectly conducting screen. (b) A subwavelength aperture is used in SNOM to
achieve a spatial resolution below the diffraction limit.

The near field

The subwavelength aperture of a SNOM probe creates an illumination that is sub-
diffraction limited in the near field. In this region the electromagnetic field contains
evanescent waves, whose occurrence can be qualitatively explained by invoking the
Heisenberg uncertainty principle (Dürig et al., 1986; Vigoureux and Courjon, 1992).

In the following section we exploit computational electrodynamics to obtain
the near field of a realistic SNOM probe. Here we are more interested in qualita-
tive features and for this purpose we are satisfied with the approximate analytical
theory developed by Bethe and Bouwkamp (Bethe, 1944; Bouwkamp, 1950). An
aperture with radius a in a perfectly conductive and infinitely thin metal screen is
illuminated by an x-polarized plane wave at normal incidence. The z-axis is cho-
sen for the propagation direction. The diffraction problem leads to a power-series
solution in the variable ka if the aperture dimensions are subwavelength. In Fig-
ure 3.4 we plot the electric field components in the first order approximation. The
x-component is the strongest one and it has an antinode at the center. Even if the
aperture is perfectly circular the pattern has an elongated shape in the polarization
direction. This is a confirmation that the diffraction process strongly depends on
the vector nature of the electromagnetic field. Note also that the spot size is of the
order of the aperture area, as desired. The y and z-components are much weaker
and have a node on the aperture axis. Since we assume that the molecule is located
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there, we neglect these contributions and consider only the x polarization. How-
ever, in scanning the SNOM tip across the sample one has to take into account all
three field components (Gerhardt, 2006).

EzEyEx

Figure 3.4: Electric field in a plane located 50 nm from a 100 nm aperture in a
perfect metal screen. The calculation is based on the Bethe-Bouwkamp approximate
theory for λ = 615 nm (Bethe, 1944; Bouwkamp, 1950).

The tight lateral confinement of the electromagnetic field is possible because
its Fourier spectrum contains evanescent components. These, however, are non-
propagating waves and hence limit this type of illumination to a few decades of
nanometers from the aperture. Figure 3.5 depicts this behavior for each field com-
ponent. The amplitude drops very rapidly for all polarizations, even though the
x-component extends over a longer distance.

EzEyEx

Figure 3.5: Electric field in the xz plane for a 100 nm aperture in a perfect metal
screen. The cut corresponds to y = 0 nm. The calculation is based on the Bethe-
Bouwkamp approximate theory for λ = 615 nm (Bethe, 1944; Bouwkamp, 1950).

Throughput

Since the electric field decays exponentially as one moves away from the aperture,
it is important to pay attention to the throughput of the system. According to
Bethe theory the transmission of a subwavelength aperture in an infinitely thin
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perfect conductor drops as (a/λ)4. It means that for a 100 nm aperture and a 600
nm wavelength the throughput is of the order of 5 × 10−5. Adding the fact that
most of the diffracted field contains evanescent components that decay with z, the
amount of incident electromagnetic energy that reaches the molecule is very small.
Furthermore, in a real SNOM probe a lot of light is reflected and absorbed even
before getting to the aperture. From the practical point of view one has to find a
compromise between aperture size, working distance and signal-to-noise ratio in
the photon flux (Gerhardt, 2006). Note that for subwavelength apertures in a flat
metal screen it is possible to achieve extraordinary transmission by engineering
surface plasmon-polariton resonances (Garcı́a de Abajo, 2007; Genet and Ebbesen,
2007). In the next chapter we will discuss how these electromagnetic modes can be
exploited to obtain a high throughput SNOM (Chen et al., 2009, 2010a).

The far field

In coherent spectroscopy we are interested in the interference between the incident
and the scattered fields in the far field. In Section 3.3 we will compute them by
means of a near-to-far field transformation of the near-field data. To gain insight on
the field diffracted by the aperture in the detector region, we once more consider
a hole in a perfectly conducting plane screen. The radiation can be viewed as
originating from effective sources located in the aperture (Jackson, 1999). For a
subwavelength radius the contribution of high-order multipoles is negligible and
the far field is due to an effective electric p and magnetic m dipole. These are
expressed in terms of integrals of the tangential electric field in the aperture

p = ε0n
∫

A
n · EtandA, m =

2
iωµ0

∫
A

n× EtandA, (3.12)

where Etan is the exact tangential electric field in the aperture, n is the normal to
the screen and A is the aperture area. These considerations indicate that the radi-
ation pattern of the aperture resembles that of a tightly focused wave made by the
combination of electric and magnetic dipoles (Dhayalan and Stamnes, 1997; Shep-
pard and Larkin, 1994). We thus expect that the far field analysis of the scattering
process be similar to that for a tightly focused beam.

3.2 Generalized scattering theory

In Section 2.2 we introduced scattering theory as the appropriate framework for
coherent spectroscopy. We have considered the most standard formulation of the
theory, which assumes that the incident field is a linearly polarized plane wave and
the scatterer is embedded in an infinite homogeneous and non-absorbing medium.
When one considers the scattering problem in the context of focused or evanescent
illumination, there are some important aspects that need to be addressed.
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Morita et al. (1968) as well as Tsai and Pogorzelski (1975) where the first to
extend the theory to the case of an incident focused Gaussian beam. Their work
must be associated with the invention of the laser, which made available narrow-
band collimated beams that can have cross sections smaller than the target. For
particle scattering these developments have led to the so-called generalized Mie
theory (Gouesbet and Grehan, 1982). It is found that there are significant devia-
tions from the case of plane-wave illumination if the size of the scatterer is larger
than the beam waist. Till recently, much less attention has been devoted to the
case of subwavelength targets (Mojarad and Agio, 2009; Mojarad et al., 2008, 2009).
Scattering theory has also been extended to the context of evanescent illumina-
tion (Quinten et al., 1999) and SNOM. In the latter case much emphasis has been
given to the near-field distribution (Girard et al., 1993) and the tip-sample interac-
tion (Girard et al., 1994).

While the accurate electromagnetic description of the incident field can be cir-
cumscribed to the solution of a technical problem, the analysis of the scattering
signal and, in particular, the applicability of the optical theorem requires some
discussion.

3.2.1 The optical theorem

The optical theorem establishes a relationship between the total power removed
from a beam, i.e. the sum of the absorbed and scattered powers, and the vector
scattering amplitude in the forward direction (Feenberg, 1932; Newton, 1976). Be-
cause this property is profoundly linked to the interference between the scattered
and incident fields, we expect deviations from the original result of plane-wave
scattering (van de Hulst, 1949b).

Failure of the optical theorem

The interpretation of extinction in generalized scattering theory and the extension
of the optical theorem has been thoroughly investigated (Carney, 1999; Lock, 1995;
Lock et al., 1995). Here we present a demonstration of its failure for the case of a
spherical particle illuminated by a focused plane wave. The scattering problem is
solved using a multipole description of the incident field (Mojarad et al., 2008). An
expression for Einc is provided in Eq. (3.9) and the scattered field Esca reads

Esca = −∑
l

Ae,1,l(alNe,1,l(r)− iblMo,1,l(r)), (3.13)

where Ae,1,l are the same multipole coefficients of Einc, and al and bl are the scat-
tering coefficients for a sphere (Bohren and Huffman, 1983). From the far-field
expressions of Eqs. (3.9) and (3.13) we can find an analytical formula for the total
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scattered and extinguished power (Mojarad et al., 2008)

Psca =
π

2Zk2 ∑
l
|Al|2

2l2(l + 1)2

2l + 1

(
|al|2 + |bl|2

)
, (3.14)

Pext =
π

2Zk2 ∑
l
|Al|2

2l2(l + 1)2

2l + 1
(al + bl) . (3.15)

Next we write Esca using the vector scattering amplitude

X = i
cos ϕ

E(O) ∑
l
(−i)l Al (alτl − blπl) eθ − i

sin ϕ

E(O) ∑
l
(−i)l Al (alπl − blτl) eϕ, (3.16)

where πl(θ) and τl(θ) are the angular dependent function introduced in Sec-
tion A.2.2 and E(O) is the field amplitude at the position of the scatterer. The
polarization versors eθ and eϕ are related to e′‖ and e′⊥ of Eq. (2.17), respectively.
Using the expression for πl and τl for θ = π and ϕ = 0, the propagation direc-
tion of the incident plane wave 1, we obtain the relevant element of the amplitude
scattering matrix

S2 = i
1

2E(O) ∑
l

il Al l(l + 1) (al + bl) . (3.17)

According to the optical theorem the expression 4π IincRe{S2}/k2, where Iinc =
|E(O)|2/2Z is the incident intensity, must be equal to Eq.(3.15). This condition
requires that the multipole coefficients read

Al = −iE(O)(−i)l 2l + 1
l(l + 1)

, (3.18)

which indeed corresponds to the expansion of an x polarized plane wave of am-
plitude E(O) that propagates towards −ẑ (Bohren and Huffman, 1983). Therefore
we conclude that a multipolar scatterer fulfills the optical theorem in its standard
formulation only if it is illuminated by a plane wave.

Focused waves

A generalization of the optical theorem to focused illumination has been proposed
by Lock et al. (1995). They interpret the forward scattering amplitude S2 as the
first moment of the partial waves that form the incident beam. The extinguished
power is thus given by an infinite series that contains the weighting factors of the
partial waves and higher order moments of the forward scattering amplitude. Even
though their formulation leads to an expression that relates the forward scattering
amplitude to the extinction cross section it turns out to be not relevant for practical
applications.

1This particular multipole expansion has been done assuming that the propagation direction is
along −ẑ.
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Another intuitive way to explain the failure of the optical theorem considers
the power flow associated with the Poynting vectors introduced in Eqs. (2.9)-(2.12)
and their integration over the virtual surface depicted in Figure 2.4. The Poynting
vector Sint, which is associated with the interference between the incident and
scattered fields, has a net power flow in the forward direction with an angular
spread determined by Einc. This can be understood if one decomposes these fields
into plane waves. For each component of Esca there must be one component of Einc

with the same wavevector in order to contribute to Pint. Therefore, in a transmission
experiment the maximum extinction does not correspond to the dip measured by
an infinitesimal on-axis detector. To measure Pint one has to integrate the received
power over the solid angle subtended by the incident wave. However, by doing so,
Eq. (2.20) shows that we are also collecting a portion of Psca. Therefore, associating
the transmission dip with Pext alone is not possible.

Evanescent waves

When the incident field contains evanescent waves the scattering problem exhibits
one more difficulty. If we now enclose the scatterer in a virtual sphere and apply
Poynting theorem, we find that it is not possible to follow the same steps that hold
for propagating fields. The reason is that an evanescent field must be generated
at finite distances from the scatterer and the surface of integration cannot be taken
as large as we like. Therefore, all asymptotic methods used for the calculation of
extinction are not applicable in this case (Bohren and Huffman, 1983). To overcome
these issues Carney introduced a model for the generation of evanescent waves
based on total internal reflection at a dielectric interface between to semi-infinite
half spaces. He derived a generalized expression for the optical theorem to relate
the scattering amplitude to the total power removed from the incident wave. In
particular, he found that for each evanescent plane wave in the incident field, the
optical theorem has the same expression for a propagating plane wave, but with
the scattering amplitude being as an analytical function of the complex wavevec-
tor (Carney, 1999). Since the generation of evanescent fields depends on the chosen
geometry, we will not pursue this formalism. We will instead base our analysis on
an analytical model whose parameters have to be found via numerical solution of
the scattering problem.

3.2.2 Scattering and absorption by a dipolar radiator

We now discuss generalized scattering theory for a point-like scatterer and extend
the results presented in Section 2.2.2.
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Focused waves

When the target is a point-like oscillating dipole, the scattered field is the dipolar
wave defined in Eq. (2.22). For the case of focused illumination it is convenient to
express Esca in terms of the vector spherical harmonic N(3)

e,1,1. The superscript (3)
indicates that we have chosen the Hankel function of the first kind (Abramowitz
and Stegun, 1972). This corresponds to an outgoing wave. The subscripts explain
that we consider a wave generated by an electric dipole oriented towards the x-
axis. Moreover, we include the multipole coefficient A1 from the electric dipole
wave component N(1)

e,1,1 of the incident field, where the superscript (1) refers to
the spherical Bessel function of the first kind (Abramowitz and Stegun, 1972), as
explained in Appendix A.2.1. We thus write

Esca = −cA1N(3)
e,1,1, (3.19)

where c is a complex number. When we calculate the scattered and extinguished
powers for any incident field that contains N(1)

e,1,1 in the expansion, the orthogonality
of vector spherical harmonics yields (see also Eqs. (3.14) and (3.15))

Psca =
π

2Zk2
8
3
|A1|2|c|2, Pext =

π

2Zk2
8
3
|A1|2Re{c}. (3.20)

Since only the electric dipole wave N(1)
e,1,1 contributes to electric field intensity at the

origin, we find E(O) = 2A1/3. This result has two important consequences. The
first one is that the cross sections, obtained by dividing the quantities in Eq. (3.20)
by Iinc = |E(O)|2/2Z, read

Csca = σ0|c|2, Cext = σ0Re{c}. (3.21)

These expressions correspond to Eq. (2.30) if

c = i
Γ

2∆ + iΓt
. (3.22)

In fact the intrinsic dipole cross sections do not depend on the shape of the incident
field. We can thus write Psca = Csca Iinc and Pext = Cext Iinc. By equating these
expressions with those of Eq. (3.20) we indeed find that c is given by Eq. (3.22). Note
that for an ideal oscillating dipole Γt = Γ, which yields |c|2 = Re{c} and Psca = Pext.
In summary, a weakly excited TLS responds to illumination with a scattered field
proportional to the dipole coefficient of the incident wave. The second important
consequence of E(O) = 2A1/3 and Eq. (3.20) is that a dipolar scatterer fulfills the
optical theorem in its standard form irrespective of the incident field, because the
condition given in Eq. (3.18) holds only for A1 and reads, indeed, A1 = 3E(O)/2.
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Evanescent waves

For a point-like dipolar scatterer the optical theorem is valid also for evanescent
waves, because an infinitesimal scatterer cannot discriminate between waves of
different types. The only amendment that need to be done is the analytical contin-
uation of the vector scattering amplitude in the complex plane, to include the fact
that the wavevectors of evanescent waves are complex (Carney, 1999).

3.3 A molecule illuminated by a SNOM aperture

An early analysis of coherent spectroscopy under near-field illumination has been
given by Plakhotnik (1995). He considered the source field diffracted by a sub-
wavelength aperture in the Bethe-Bouwkamp approximation. Even if he predicted
modification of the visibility and lineshape in the transmitted signal, he was un-
able to conclude on the question of maximum extinction that can be achieved, even
for the idealized model of an aperture in a perfectly conducting and infinitely thin
metal screen.

Here we present a study where we consider a realistic SNOM aperture and
parameters that are relevant for experiments (Gerhardt et al., 2007a,b). We show
that the detected far field traces the complex behavior of the near field and of the
coherent tip-sample interaction produced by the currents induced on the tip surface
by the molecule. To gain insight on these processes we have developed a numerical
model based on the Finite-Difference Time-Domain method (FD-TD) (Taflove and
Hagness, 2005) and generalized scattering theory.

3.3.1 Layout of the problem

We first specify the general layout of the problem, namely the SNOM tip, the near
and far-field detection schemes. We furthermore discuss some aspects of the FD-
TD implementation, leaving the details in the Appendix B.

Illumination and detection

Figure 3.6 sketches the arrangement of the scattering configuration. The illumina-
tion is provided by a SNOM aperture, which is modeled as a truncated aluminum-
coated conical waveguide with a glass core. The aperture radius is 50 nm and the
cladding thickness 200 nm. The tip head has thus a diameter of 500 nm. These
are dimensions that are compatible with fabricated probes (Gerhardt, 2006). To
avoid spurious effects due to the truncation of the SNOM probe, which is only 600
nm, we terminate the structure in perfectly matched layers (Roden and Gedney,
2000). These can absorb any incident wave without reflections such that the tip
behaves like if it where a semi-infinite scatterer. We excite the field inside the tip
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using an x-polarized Gaussian profile, which approximates the linearly-polarized
guided mode of a metal-coated fiber. Moreover the time profile of the source is
Gaussian and it enables us to obtain spectral information in one single simulation.
The FD-TD algorithm gives immediate information on the near field, which is used
to excite the molecule. The latter is located along the tip axis, at distances between
40 and 600 nm. In order to obtain far-field quantities that can be compared with
experiments (Gerhardt et al., 2007a,b), we perform a near-to-far field transforma-
tion using the fields recorded at the near-field detector indicated by dashed lines in
Figure 3.6. The transformation yields the field in the radiation zone as a function of
the angles θ and ϕ. The detected power contains the incident and scattered fields
and it can be recorded taking a small solid angle along a certain direction or in full
collection.

z

x
Far-field detector 

Near-field detector 

600nm

(θ,ϕ)

Figure 3.6: Layout of the scattering problem. Tip parameters: core (SiO2), cladding
(Al), cladding thickness 200 nm, aperture radius 50 nm. Molecule parameters: dipole
oriented along x, resonant at λ = 615 nm. In the experiments the molecule is embed-
ded in a thin crystalline matrix. Here we assume that the molecule is in vacuo and
approximate it with a TLS.

Modeling molecular scattering

While FD-TD modeling of nano-optical problems has concerned the resolution in
the near field (Kann et al., 1995a,b) or the analysis of the incoherent fluorescent
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emission (Bian et al., 1995), much less attention has been dedicated to coherent
interactions.

Since we are working in the weak-excitation limit, we can replace the molecule
with a classical oscillating dipole. In the FD-TD scheme the dipole is represented by
cubic cell of material with a polarizability α given by a Lorentz dispersion model.
We take into account the molecular orientation by assigning this polarizability only
to the x-component of the field, while the rest is equal to the surrounding medium.
The electric field Etip near the tip induces a coherent dipole moment

p = εoα(Etip · x)x, (3.23)

where
α = −A

2
(∆− iγ)L(ω), L(ω) =

1
π

γ

∆2 + γ2 . (3.24)

An expression for A is derived in the Appendix B.2.1. ∆ is the detuning from
resonance, 2γ is the radiative linewidth and L(ω) a Lorentzian. The molecular
dipole driven by the incident field oscillates and radiates energy into the far field.
Figure 3.7 presents two snapshots of the y-component of the magnetic field for two
molecule-tip distances. Note that in both cases the scattered field reaches the tip
and it is reflected2. Later we will find that this phenomenon leaves an important
footprint in the scattering spectra.

Electromagnetic field near the aperture

Before moving to the far field and the detected signals it is useful to compare
the near field of a realistic SNOM aperture with that of Bethe-Bouwkamp theory.
Figure 3.8 plots the result of an FD-TD calculation with steady excitation at λ =615
nm. The symmetry of the field components corresponds to that of Figure 3.4.
Furthermore, Ex is elongated in the polarization direction of the excitation field
in agreement with Bethe-Bouwkamp theory. The largest deviation occurs for Ey,
which shows here the termination of the cladding layer on top of the aperture. In
the following we consider only the Ex component, since the molecule is located
on-axis and it has its dipole moment oriented along x.

3.3.2 Far-field pattern and detected signals

We now focus our attention on the far field and on the interpretation of the detected
visibilities and lineshapes. The far field of a subwavelength aperture in an infinite
perfect metal screen can be represented by a combination of electric and magnetic
dipoles (Jackson, 1999). In place of computing these effective sources, we obtain the

2In the FD-TD calculations we can easily separate the incident from the scattered fields, because
the latter is emitter by a dipolar oscillator with a high quality factor. Hence, the scattered field
persists in the near-field region much longer than the incident pulse
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Detector

Tip

Hy - d=40 nm

Hy - d=400 nm

Figure 3.7: (top left panel) Layout of the near-field detector used for the near-to-
far field transformation. (bottom left panel) FD-TD implementation of a SNOM tip.
Only the last section of the tip is modeled. To avoid spurious finite size effects the
tip is terminated inside the absorbing boundary conditions (see Appendix B.1.2 for
details). (right panels) Magnetic field component Hy for two different distances d
of the molecule from the tip. Tip parameters: core (SiO2), cladding (Al) cladding
thickness 200 nm, aperture radius 50 nm. Molecule parameters: oriented along x,
resonant at λ = 615 nm.

field by means of a near-to-far field transformation of the FD-TD data. Figure 3.9
shows the power distribution as a function of θ along two azimuthal directions,
namely ϕ = 0o and ϕ = 90o. The spread is indeed close to that of a dipolar source,
even if here some power propagates in the backward directions. The tip is not an
aperture in an infinite metal screen and diffraction effects can direct optical energy
even in the opposite direction with respect to the excitation wave in the aperture.

The signal detected in the far field contains two contributions, the field radiated
by the SNOM tip and the field coherently scattered by the molecule excited near the
aperture. In the received power we also have to take into account the interference
between these two fields (Plakhotnik and Palm, 2001). To simplify the analysis and
work with scalar quantities, it is convenient to parametrize the incident field with
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Figure 3.8: Electric near field near the SNOM probe as described in the caption
of Figure 3.6. The calculation is based on the FD-TD method with steady state
excitation at λ = 615 nm.
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Figure 3.9: Far-field radiation pattern of the SNOM tip calculated using a near-to-
far-field transformation.

respect to its value at the molecule position rm.

Etip(r → ∞) = (Etip(rm) · um)gud = Bgud. (3.25)

um stands for the orientation of the molecular dipole and it corresponds to x in our
model. ud is instead the field orientation that is detected in the far field and g is a
complex number that accounts for the propagation from the near to the far region.
Likewise the scattered field Esca is proportional to the molecular dipole moment,
hence to the near field through the polarizability α. In the far field it reads

Esca(r → ∞) = −A
2

(∆− iγ)L(ω)B f ud. (3.26)

Note that the complex number f includes contributions of scattered light reflected
by the SNOM tip, which is illustrated in Figure 3.7. At the detector the signal S is
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thus determined by the total electric field

Etot = Etip + Esca = B
[

g− f
A
2

(∆− iγ)L(ω)
]

ud. (3.27)

Normalizing with respect to the radiated power in absence of the molecule leads
to

S =
|Etot|2
|Etip|2

= 1 +
γ

4π
V2L(ω)−VL(ω)(∆ cos ψ + γ sin ψ) (3.28)

where the visibility V(θ, ϕ) = A| f /g| and phase shift ψ(θ, ϕ) = ψ f − ψg refer to
the amplitude ratio and phase difference of f and g, respectively. S depends on the
detector position (θ, ϕ), polarization ud and also on the molecule distance d with
respect to the SNOM tip.
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Figure 3.10: FD-TD results (red dots) and fit of the detected signal S (thin solid
line) based on Eq. (3.28) for two different set of parameters. a = 100 nm is the length
scale used in the FD-TD simulations.

Figure 3.10 illustrates these considerations for two situations. The numerical re-
sults given by the FD-TD model are fitted using Eq. (3.28). The agreement between
FD-TD and analytical fit is remarkable. Interestingly the lineshape can change from
absorptive to dispersive depending on the value of ψ (Karrai and Warburton, 2003;
Plakhotnik and Palm, 2001). To gain further insight we have performed several
FD-TD calculations changing d, θ and ϕ and fitted the spectra to extract V and ψ.

Distance dependence

We first consider the behavior of V and ψ as the molecule moves away from the
SNOM tip. In the first 300 nm the visibility drops because its denominator g is
inversely proportional to the near field (see Eq. (3.25)). When the distance crosses
a value of the order of λ/2, there is a minimum in the visibility curve. The effect
is explained by considering that a fraction of Esca is reflected by the SNOM tip,
which acts as a mirror. Its strength in the visibility curves depends on several
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parameters, such as the tip geometry, tip optical constants, molecule orientation,
and collection angles. In practice, the situation is similar to that of a molecule in
front of a mirror. The reflected field acts as a coherent feedback that modulates
the molecular polarizability as a function of distance. This model has been used
to explain the modification of the spontaneous emission rate (Chance et al., 1978),
but it is also applicable to the coherent part of the emitted field. In conclusion,
V depends on the strength of the near field and also on the coherent interaction
between molecule and SNOM tip.
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Figure 3.11: Visibility V and phase shift ψ as a function of distance d from the
SNOM tip and for various detection angles. Each circles corresponds to the fit of an
FD-TD simulation.

These features can also be recognized in the distance dependence of the phase
shift ψ. In correspondence with a visibility minimum there is a variation of ψ

over distances that are much smaller than the wavelength and that could not be
explained by the tip near field alone.

Angle dependence

The change of V and ψ with the angle θ is less pronounced than the case of the
distance dependence. The reason is that the tip far field can be approximated by
the field produced by the sum of two crossed electric and magnetic dipoles, whose
angular spread is quite similar to that of the molecule.

Tip dependence

Lastly we discuss the dependence of V and ψ on two relevant tip parameters: the
aperture diameter and the extent of the tip end facet. As expected, a smaller aper-
ture yields a larger visibility, which however has the drawback of a significantly
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Figure 3.12: Visibility V and phase shift ψ as a function of the angle θ and for various
molecule-tip distances. Each circles corresponds to the fit of an FD-TD simulation.

reduced throughput. The effects of the tip parameters in the coherent feedback are
instead more apparent in the phase shift. A smaller aperture in a large tip facet
makes a better mirror than a larger aperture or a smaller tip and it gives rise to a
sharper phase variation in correspondence of the visibility minimum.
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Figure 3.13: Visibility V and phase shift ψ as a function of two relevant tip pa-
rameters: aperture and tip diameters. Each mark corresponds to the fit of an FD-TD
simulation.

Fluorescence

A point of concern in the previous analysis is the fact that we have neglected the
quantum electrodynamics (QED) effects that take place when a molecule is near a
metal interface. These can modify its spectroscopic properties by changing the tran-
sition frequency and the spontaneous emission rate (Chance et al., 1978; Drexhage,
1974). A detailed study of these effects for the case of a molecule near SNOM tips
indicates that the changes are appreciable only at very short distances (Ambrose
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et al., 1994; Bian et al., 1995). We verify that indeed we can ignore QED phenomena
by computing the modification of the spontaneous emission rate as a function of
distance for two orientations of the dipole moment. Figure 3.14 confirms that for
a molecule oriented parallel to the tip surface the deviations from free space are
small, especially when the distance is larger than 50 nm.
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Figure 3.14: Modification of the spontaneous emission rate for a molecule near a
SNOM tip. The legend indicates the orientation of the dipole moment with respect to
the tip facet.

The FD-TD model predicts strong extinction of a dipolar emitter placed in front
of a subwavelength aperture. The visibility and the phase depend in a non-trivial
manner on several parameters: the detection angle, the position of the molecule in
the near field of the tip, the orientation of the molecule with respect to the incident
field (not shown), and the tip geometry. Our model captures the phenomena ob-
served in recent experiments (Gerhardt, 2006), with which it is in good quantitative
agreement (Gerhardt et al., 2007a).

We remark that the dispersive shapes (see Figure 3.10) disappear if the received
power is integrated over a solid angle comparable to the angular spread shown
in Figure 3.9, in agreement with the generalized optical theorem discussed in Sec-
tion 3.2.1. Nonetheless, the complex diffraction phenomena involved in the so-
lution of this scattering problem and the need for brute force numerical analysis
hinder the derivation of upper bounds for light-matter interaction and extinction.
Diffraction-limited focused waves are unable to confine light as much as a sub-
wavelength aperture, but allow an analytical solution of the scattering problem
and do not include the cumbersome treatment of evanescent fields and multipole
scattering.
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3.4 A single molecule in a strongly focused beam

The interaction between focused light and a single quantum emitter has been first
addressed by Carmichael (1993). He reduced the problem to a one-dimensional
system, where the ratio between the focusing angle and the angular spread of
spontaneous emission determines the coupling efficiency. He predicted that light
is perfectly reflected when this ratio is equal to one. A few years later van Enk
and Kimble (2000) gave the correct dimensionality to the scattering problem by
considering a focused Gaussian beam incident on an atom. They introduced the
scattering ratio, defined as the ratio between the scattered and incident powers, to
express a measure of the coupling strength. Their analysis concluded that “. . . by
strongly focusing light on a single atom in free space, one may create an appre-
ciable light-atom interaction, which, however, is not as strong as might be naively
expected. On the one hand, this implies that a coherent-state field employed for
classical addressing of a single atom in implementations of quantum computing
and communication carries little information about that atom, so that entangle-
ment of the atom with other atoms in a quantum register can be preserved. On the
other hand, there are serious obstacles associated with using a single atom to pro-
cess quantum information encoded in single photons in free space.” Subsequent
work based on a more elaborate analysis of the focused field did not change the
above statement (van Enk, 2004; van Enk and Kimble, 2001).

In the following we reconsider this fundamental problem with the help of gen-
eralized scattering theory and derive, for the first time, an upper bound for the level
of interaction achievable in free space (Zumofen et al., 2009, 2008). The previous
sections explain how we describe a tightly focused beam and the basic scatter-
ing properties of a dipolar emitter. Here we establish a relationship between the
optimal concentration of electromagnetic energy and the strength of light-matter
interaction.

3.4.1 The scattering ratio

The strength of the interaction between a light beam and an oscillating dipole can
be expressed by Ksca, the ratio of the scattered to the incident powers. Ksca can also
be given as the ratio of two independent quantities, the scattering cross-section σ

defined in Eq. (2.45) and the inverse of an effective focal area A (van Enk, 2004;
Zumofen et al., 2008)

Ksca =
Psca

Pinc
=

σ

A
. (3.29)

For a point-like oscillator the scattered power depends solely on the field
strength at the position of the oscillator. Accounting for the electric nature of the
interaction, the effective focal area can be given as the ratio of the incident power



66 Coherent spectroscopy in strongly confined fields

and the electric energy density at the focal spot

A =
Pinc

2cWel(O)
=

Pinc

Sz(O)
, (3.30)

where Sz(O) denotes the z-component of the Poynting vector and Wel(O) the elec-
tric energy density at the focal spot O. The second equality holds for circular sym-
metry of the incident field strength with respect of the z-axis; a condition which, for
instance, is obeyed by a focused plane wave (FPW) but not by a directional dipole
wave (px). A is closely related to the normalized energy density Wel/Pinc that has
been studied for various focal systems using vectorial diffraction theory (Sheppard,
2007; Sheppard and Larkin, 1994; Sheppard and Török, 1997b). The peculiarities
of the incident field enter Ksca via A. Consequently, as we will show below, the
problem of maximum extinction is shifted to that of a minimal A, and a strong
photon oscillator interaction is reachable for Ksca > 1 (Domokos et al., 2002).

We first consider an incident x-polarized plane wave of amplitude E0. The
calculation of the power incident over the aperture is straightforward and yields
Pinc = cε0E2

0πa2/2, where a is the radius of the entrance aperture shown in Fig-
ure 3.1b. We also have Wel(O) = ε0(π f E0I0(O)/2λ)2, where f is the focal length
of the focusing system and I0(O) is the diffraction integral given in Eq. (A.8) of the
Appendix. The resulting value of A then yields

Ksca =
128
75

1
sin2 α

(
1− 1

8
(5 + 3 cos α) cos3/2 α

)2

, (3.31)

where α specifies the focusing semi-angle. For α = π/2, Ksca reaches the maxi-
mum value of 128/75 ' 1.7. Assuming full collection in a backward and forward
half space and accounting for the fact that half of the power is scattered in each
direction, it follows that up to 85% of the incident light is reflected into the back-
ward half space. For this configuration, the reflectance and transmittance are thus
limited to R ≤ 0.85 and T = 1− R ≥ 0.15, respectively.

An alternative way of calculating Pinc is to consider the energy flow in the focal
plane (FP). Because the intensity has cylindrical symmetry about the optical axis,
the electric and the magnetic energy densities are equal at the focal spot (Richards
and Wolf, 1959) so that 2cWel(O) = Sz(O). The calculation of A then becomes

A =

∫
FP Szd2r
Sz(O)

=

∫
FP(|I0)|2 − |I2|2)d2r

|I0(O)|2 , (3.32)

where I2 is again a diffraction integral given in Eq. (A.10). The integration in the
numerator turns out to be straightforward when an orthogonality relationship for
Bessel functions is considered (Abramowitz and Stegun, 1972). We note that the
fields in a strongly focused beam show vortices in the FP (Stamnes, 1986) so that Sz

takes on positive and negative values as shown in Figure 3.2. Thus, in general, Sz

cannot be substituted by 2cWel, which is a positive quantity. We remark in passing
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that van Enk and Kimble (2000) predict a much lower value than 1.7 for a quantity
equivalent to our parameter Ksca. We believe one of the origins of this discrepancy
is that they took the integrand in the definition of A to be 2cWel.

In order to derive an upper limit of Ksca for the general class of transverse ax-
ially symmetric systems, we consider the field produced by the combination of
an electric and a magnetic dipole which has been suggested for optimal focus-
ing (Dhayalan and Stamnes, 1997; Sheppard and Larkin, 1994). To emulate such a
field, one considers the emission field patterns at the GRS of virtual electric and
magnetic dipoles orthogonal to each other and placed at O and then reverses the
field propagation. Using Eq. (3.32) for the calculation of A, we obtain

Ksca =
1
4
(7− 3 cos α− 3 cos2 α− cos3 α). (3.33)

At α = π/2, Ksca = 7/4 establishes the maximum value for transverse axially
symmetric systems. This is only slightly larger than 128/75 obtained for the plane
wave.
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Figure 3.15: Scattering ratio Ksca as a function of α for several focused waves. pz

denotes the dipole wave with the electric dipole along the z-axis, FPW a focused plane
wave, p+m stands for a combined electric and magnetic dipole wave, and px a wave
that corresponds to an electric dipole oriented along the x-axis.

We next abandon the restriction of axial symmetry and search for an upper limit
of Ksca in general. Guided by a mode matching argument (Sondermann et al., 2007;
van Enk and Kimble, 2000), we consider a directional dipolar incident wave. In this
case the incident field stems from the emission pattern at the GRS of a virtual
dipole parallel to the x-axis and placed at the origin (Stamnes and Dhayalan, 1996).
Following Eq. (3.30), we obtain

Ksca =
1
2
(4− 3 cos α− cos3 α). (3.34)
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At α = π/2, A reaches its minimum value of σ0/2 and Ksca its ultimate maximum
value of 2, respectively. This is consistent with the limit W(O)/Pinc ≤ k2/(3πc)
given by Bassett for the sum W(O) of the time-averaged electric and magnetic
energy densities at the focal spot, as discussed in Section 3.1.1.

As a last case study, we consider the interaction of an oscillating dipole oriented
along the z-axis with a radially polarized dipolar incident field obtained from the
radiation of a virtual dipole oriented along the z-axis and located at O (Sheppard
and Larkin, 1994). In this case

Ksca = (2 + cos α)(1− cos α)2. (3.35)

Here, too, we find that Ksca reaches the maximum value of 2 at α = π/2.
Figure 3.15 displays Ksca as a function of α for various illuminations considered

above. In all cases, Ksca ≥ 1 is met for realistic numerical apertures. We are, thus,
facing the paradoxical seeming situation that the power emitted by the oscillator
may be larger than the incident power. However, this finding does not violate the
law of power conservation because there is destructive interference in the forward
direction. We now analyze this interference by determining the incident and scat-
tered fields at the GRS for z > 0.

The dipole wave content

A particularly insightful approach is to expand an arbitrary excitation field in terms
of vectorial multipoles, as described in details in the Appendix A.2. All multipoles
become zero at the origin except the electric dipole mode, which for a transverse
system reads (Bohren and Huffman, 1983)

Ne,1,1 =


2
3

, r = 0

(cos θ cos ϕêθ − sin ϕêϕ)
ei(kr−π/2)

kr
, kr � 1.

(3.36)

We note that the field for kr � 1 is given only for the outgoing wave. The advancing
phase shift of −π/2 is interpreted as a Gouy phase accumulated when propagating
from the focal spot O to the GRS for z > 0 (Collett and Wolf, 1980; Wolf, 1980).
According to Eq. (3.9), the electric dipole-wave component of the excitation field
can be written as

E(d)
inc(r) = A1Ne,1,1(r). (3.37)

The field scattered by the oscillator also forms a dipole wave, whose expression
derived from Eqs. (2.46) and (3.19) reads

Esca(r) = − iΓ
2∆ + Γ

A1Ne,1,1(r). (3.38)

Therefore, at resonance the dipole-wave component of the excitation field is com-
pletely reflected just as in the reflection of a collimated beam from a perfect metal.
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The total field assumes the general expression

Etot = Einc −
iΓ

2∆ + Γ
A1Ne,1,1. (3.39)

In summary, there is a profound relationship between the optimal concentration of
electromagnetic energy, the dipole-wave content of a focused beam and the strength
of light-matter interaction.

3.4.2 Reflection and transmission

This approach allows for an easy calculation of the transmittance T as a function
of the angles α and β. In particular, for β = π/2 one finds

T = 1− R = 1− 1
2

σ

A
, (3.40)

where R is the reflectance. The factor 1/2 in the second equality accounts for the
fact that an equal amount of scattering takes place in the forward and backward
directions. For an oscillating dipole with non-radiative damping the transmission
formula reads

T = 1−Kabs −Ksca/2, (3.41)

where Kabs is the ratio between the absorbed and incident powers (Mojarad et al.,
2009).
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Figure 3.16: Transmittance as a function of laser detuning displayed for a focused
plane wave (FPW) with α = β = π/3 and for a directional dipole wave (px) with
α = β = π/2.

Focused plane wave

For the calculation of the transmittance in the general case of β ≤ π/2 we assume
resonance and consider a solid angle Ωβ forming a cone of semi-opening β in the
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forward direction, as indicated in Figure 3.1b. Moreover, we consider a focused
plane wave and give first the ratio of the power Pout of the outgoing incident wave
collected in Ωβ to the incident power

Pout(β)
Pinc

=


sin2 β

sin2 α
, β ≤ α

1 , β > α .

(3.42)

For the ratio of the scattered to incident power we write

Psca(β)
Pinc

=
3

2 sin2 α
[I0(α)]2 X(β) , (3.43)

irrespective of whether β is larger or smaller than α. Here I0(α) denotes the diffrac-
tion integral of Eq. (A.8) at O and α is the only argument retained in the following
expressions. X(β) gives the ratio of power radiated into the solid angles Ωβ and
4π

X(β) =
π
∫ β

0

(
1 + cos2 θ

)
sin θdθ

π
∫ π

0 (1 + cos2 θ) sin θdθ
=

1
8

(
4− 3 cos β− cos β3

)
. (3.44)

The time-averaged interference is given by

Pint(β) = 2
c

8π

∫
Ωβ

r2 Re {Eout · E∗sca} dΩ , kr � 1, z > 0 . (3.45)

Taking the incident electric field Eout from Eq. (A.3) and the scattered field Esca from
Eq. (3.38), the β-dependence of the interference turns out to be proportional to the
scattering integral I0(β) (see Eq. (A.8) and replace α by β). This proportionality can
also be seen from a reciprocity type of argument: only the dipole-wave component
of the incident field gives rise to an electric field at the origin, the field strength
being proportional to I0(O). Reciprocally, the interference induced by the radiation
of a dipole located at the focal spot is also expected to be proportional to I0(O). We
therefore write for the ratio of the interference power collected in the solid angles
Ωβ and Ωα

Pint(β)
Pint(α)

=


I0(β)
I0(α)

, β ≤ α

1 , β > α .

(3.46)

We further make use of the fact that the power radiated into a solid angle of 4π has
to be balanced by the total interference, Psca(4π) + Pint(α) = 0. With this condition
and with Eqs. (3.42) - (3.46) we find for the transmittance in closed form

T(α, β) =
Pout(β) + Psca(β) + Pint(β)

Pout(β)

= 1 +
3I0(α)

2 sin2(min{α, β})
[I0(α)X(β)− I0(min{α, β})] .
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This expression is used for the calculation of the transmission at resonance in Fig-
ure 3.17, while the shape of the dip is Lorentzian according to Eq. (2.45). For β ≥ α

the preceding expression simplifies to

T(α, β) = 1− 3[I0(α)]2

2 sin2 α
[1− X(β)] , (3.47)

where the rightmost term in rectangular brackets denotes, according to Eq. (3.44),
the relative power radiated into the solid angle 4π−Ωβ, complementary to the col-
lection solid angle Ωβ. Correspondingly, the transmittance is given by the incident
power reduced by the power scattered into the solid angle 4π −Ωβ for β ≥ α and
the calculation of the interference is not required for this case.
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Figure 3.17: Transmittance for an incident FPW as a function of the angles α and β

as defined in Figure 3.1b. The dashed curve indicates the edge along the geometrical
shadow boundary α = β. The vertical arrow indicates the location α = β ' 0.43π of
the minimum, which is approximately equal to 10%. T values for the cases α = π/2,
β → 0, and α = β = π/2 are also marked.

The numerical data in Figure 3.17 display a rapid decrease of T with increas-
ing α, while the dependence on β is less pronounced. Of particular experimental
relevance is the geometrical shadow boundary where α = β; i.e., all of the inci-
dent light is collected. Along this line, the transmittance experiences a minimum
of T ' 0.1 at α ' 0.43π. T as a function of the detuning is presented in Figure 3.16
for α = β = π/3. We point out that more complicated expressions are expected
if the dipole is displaced from the focal spot. Particularly, the phase fronts of the
scattered and excitation fields no longer match at the GRS (Celebrano et al., 2010).
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Directional dipole wave

Based on the same procedure as for a focused plane wave we have also determined
the transmittance as a function of α and β for a directional dipole wave px.

T(α, β) =1− 1
16

(4− 3 cos α− cos3 α)×

(
4 + 3 cos(max{α, β}) + cos3(max{α, β})

)
,

(3.48)

where the dipole is assumed to be on resonance. An example as a function of
detuning is presented in Figure 3.16. Figure 3.18 displays a rapid decrease of T
with increasing α and an edge along the geometrical shadow boundary α = β, as
for the focused plane wave. As shown in Eq. (3.48), T is invariant with respect to β

for β < α, while for β > α, T increases with β. Contrary to the previous case of a
focused plane wave, T decreases monotonously with increasing α and reaches the
value of zero at α = π/2.3
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Figure 3.18: Transmittance for an incident px wave as a function of the angles
α and β as defined in Figure 3.1b. The dashed curve indicates the edge along the
geometrical shadow boundary α = β.

Transmission and energy flow

In the previous sections we have analyzed the behavior of Ksca as a function of α

for several types of focused beams, finding that a directional dipole wave yields
Ksca = 2 for α = 90o. To gain more insight we consider the dependence of the
Poynting vectors on the angle θ. Figure 3.19 displays Sinc, Ssca and Sint for a px

wave at α = 90o. The fact that in the forward direction Sinc and Ssca coincide explain

3We remark that perfect reflection does not imply perfect excitation of a TLS. The latter requires
a full dipole wave and time reversal of the spontaneously emitted single-photon pulse (Stobińska
et al., 2009). These differences with respect to our work can also be understood by considering the
TLS as an optical resonator (Heugel et al., 2010).



3.4 A single molecule in a strongly focused beam 73

why Ksca must be equal to 2 since Psca is symmetrically distributed with respect
to the focal plane. Furthermore, Sint is not zero only in the forward direction and
it shares the same angular dependence of Sinc and Ssca. A more careful look at
Figure 3.19 shows that Sint = (Ssca + Sinc). Thus, in the forward direction the
collected power is always zero irrespective of the collection angle β, which is also
noticeable in Figure 3.18. The small differences between Sinc and Ssca must be
attributed to the finite number of multipoles (typically 15) used in Eq. (A.40). For
comparison we add in Figure 3.19 the Poynting vectors for a FPW. Ssca has the
same angular profile as for a px wave. The different amplitudes are due to a
normalization proportional to Pinc, which is different for a FPW and a px wave.
However, Sinc and Ssca do not overlap anymore and Sint has a different behavior.
Therefore, Ksca < 2 and the FPW is not perfectly reflected. In conclusion, a px wave
maximizes Ksca because it matches the radiation pattern of a dipolar scatterer.
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Figure 3.19: Poynting vectors Ssca, Sinc (solid curves) and Sint (dashed curves)
as a function of the angle θ for the case of a dipole under a FPW and a px wave for
α = 90o. These quantities have been integrated over the azimuthal angle ϕ.

3.4.3 Phase-shift

The strong interaction demonstrated in the previous section may have important
implications for a number of proposals in quantum information science. For in-
stance, quantum logic operations could be implemented by exploiting the phase
shift created by a quantum emitter on an incident light field (Savage et al., 1990;
Turchette et al., 1995; van Loock et al., 2006). To this end previous experiments have
measured phase shifts of up to 30o for atoms or quantum dots coupled to optical
resonators (Fushman et al., 2008; Turchette et al., 1995).

With our formalism it is also easy to calculate the phase shift φ imposed on the
beam by a single oscillator at the focal spot. The phase shift φ is defined by

φ = arg(Etot · E∗inc), (3.49)

where Einc is introduced as a reference field for the detection of the phase shift.
Making use of Eq. (3.39) and assuming that a detector is positioned on the z-axis,
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Figure 3.20: Phase shift φ of Eq. (3.50) in units of degrees as a function of laser
detuning. The results are plotted for a FPW and for two different semi-aperture
angles α, as indicated.

we find

φ = arg
(

1− i
Γ

2∆ + iΓ
Ksca

2

)
. (3.50)

An extra negative sign is introduced to account for the Gouy phase shift of π

imposed on the incident field (Collett and Wolf, 1980; Wolf, 1980). Figure 3.20
shows a typical dispersive behavior. It amounts to 5o-15o at the extremal points for
semi-aperture angles accessible in experiments and it approaches the value of 90o

when Ksca tends to 2. The extremal points are located at approximately ∆/Γ=1/2
and φ decays only slowly with increasing detuning. We expect that integration
over a collection solid angle would not change substantially the picture gained
from Eq. (3.50) because of the coinciding phase fronts of the incident and scattered
field (Aljunid et al., 2009).

Considering a quantized field, we are led to conclude that a few or even sin-
gle photon pulses can be fully reflected or phase shifted by a single TLS if the
coherence time of the photon is sufficiently long compared to the excited state life-
time (Domokos et al., 2002). The modal formalism developed in this section can
be extended in the context of QED to analyze such phenomena and should be the
subject of a future study.



Chapter 4

Shaping molecular fluorescence by
optical antennas

In the previous chapter we investigated light-matter interaction in free space and
showed that the coupling efficiency becomes very strong if light is focused onto
a TLS by a high NA objective. We now move to situations where the interaction
process exhibits cross sections that are much smaller than 3λ2/(2π). Unfortunately
it is not easy to make A accordingly smaller to keep the ratio σ/A large. This dif-
ficulty is related to the diffraction limit and to the fact that it is not trivial to find
ways to miniaturize the wavelength of light at will. One may argue that a solution
could be SNOM. However, a subwavelength electromagnetic spot does not neces-
sarily imply a significant reduction of A. In fact, since A = Pinc/(2cWel), what
matters is the electric energy density obtained for a given amount of incident pho-
tons. Therefore both field confinement and throughput are important for achieving
a large Ksca.

Optical antennas are metal nanostructures that convert strongly localized en-
ergy into radiation and vice versa with a high throughput (Grober et al., 1997; Pohl,
2000). They could be exploited to enhance the cross section of a quantum emitter
by improving its radiative properties, and to focus light below the diffraction limit.
In this chapter we investigate these phenomena in detail. In particular, we analyze
the conflict between strong field enhancement and quenching of molecular fluores-
cence (Ruppin, 1982). We derive design rules for optimizing the antenna perfor-
mances, taking into account material properties as well as constraints imposed by
nanofabrication. Next, assisted by computational nano-optics we propose geome-
tries that lead to huge enhancements of the radiative decay rate without compro-
mising the quantum yield of the emitter (Mohammadi et al., 2010, 2008b, 2009b;
Rogobete et al., 2007). We find that these performances occur for molecule-antenna
separations that are fully accessible using state-of-the-art experimental techniques.
Moreover, these distances are such that microscopic effects (Ford and Weber, 1984;
Leung, 1990; Persson, 1978) can be safely neglected and the design strategies are
only based on electrodynamics considerations like for radio-wave antennas (Bal-
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anis, 2005). Lastly, we investigate the possibility of channeling molecular fluores-
cence into a well defined optical mode by means of monolithic directional antennas
that are fully compatible with scanning-probe technology (Chen et al., 2009, 2010a).

4.1 Enhancement and quenching of fluorescence

Before focusing on the antenna designs we review the basic phenomena that take
place when a quantum emitter interacts with a metal nanostructure. Like in the
previous chapter, we limit our analysis to the weak excitation limit, where the
semi-classical theory of light-matter interaction is greatly simplified. Furthermore,
we describe the emission process in the perturbative regime and compute the mod-
ification of decay rates.

4.1.1 Field enhancement and quantum efficiency

In the weak-excitation limit, the relevant quantities that need to be considered when
a molecule is coupled to an optical antenna are the fluorescence signal, the field
enhancement, the spontaneous emission rate, the quantum yield and the collection
efficiency. These are discussed in the following subsections except for the last topic,
which will be explained at a later stage, when the connection with radio-wave
antenna theory is more evident.

Fluorescence signal

Under weak resonant excitation Eq. (2.39), which gives the power emitted by a TLS,
can be approximated by the formula

So = ξoηo|Eo · d|2. (4.1)

The parameter ξo represents the collection efficiency, d is the transition electric
dipole moment, and Eo is the electric field at the emitter position. ηo = Γo

r /Γo
t is

the quantum yield and it corresponds to the ratio between the radiative and total
decay rates.1 The latter takes into account the fact that the excited state can lose
energy also via non-radiative channels, i.e. Γo

t = Γo
r + Γo

nr. The label o indicates that
these quantities refer to an isolated emitter.

Field enhancement

Away from saturation the fluorescence signal can be increased either by giving
more power to the incident beam or by placing the molecule near a nanostruc-
ture that enhances the field locally (Metiu, 1984; Moskovits, 1985). The field en-
hancement is often accompanied by changes in polarization and phase, because

1Γo
r and Γo

t respectively correspond to Γ1 and Γ2 used in the previous chapters.
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the nanostructure imposes additional boundary conditions. Since the fluorescence
signal depends only on the square of the field E, we can ignore phase shifts and
concentrate our attention on amplitude and polarization.2 Because the excitation
rate is proportional to |E · d| (Allen and Eberly, 1975), polarization and amplitude
play a similar role. We thus write that the fluorescence signal is enhanced by a
factor K = |E · d|2/|E · d|2. Later we show that the polarization of the local field is
important for shaping the radiation pattern as well as for the modification of the
decay rates.

Spontaneous emission

It is well known that the spontaneous emission rate is not an intrinsic property
of an atom or molecule, but it also depends on the local electromagnetic environ-
ment (Purcell, 1946). Indeed the spontaneous emission rate Γt of a molecule near
a material structure is different than its free space value Γo

t . Depending on the
particular configuration, Γt can be larger or smaller than Γo

t . Here we are primarily
interested in situations where Γt � Γo

t and neglect the other case. Note that a larger
emission rate permits a higher degree of light extraction as it postpones saturation
to higher excitation power levels.

The modification of the radiative decay rate can be obtained by computing the
power emitted by a classical dipole placed in proximity of the optical antenna. The
correspondence between quantum and classical theory is valid if the normalized
quantities are used (Chance et al., 1978; Wylie and Sipe, 1984; Xu et al., 2000), i.e.

Γr

Γo
r

=
Pr

Po
, (4.2)

where Γo
r and Po are respectively the fluorescence decay rate and the radiated power

of a classical dipole in free space. Pr is instead the power radiated to the far field
when the optical antenna is present.

Because part of the emitted power is absorbed by Ohmic losses, a full charac-
terization of the system requires the calculation of both radiative and non-radiative
decay rates (Chance et al., 1978). The latter can be obtained from Γt by subtract-
ing Γr. The corresponding classical quantities are easily derived from the Poynting
theorem (Jackson, 1999). The total decay rate Γt is expressed by

Γt

Γo
r

=
Pt

Po
, (4.3)

where Pt is the total power dissipated by the dipole. Further details on the calcula-
tion of these quantities are provided in Appendix B.2.2.

2The phase shift is important in coherent spectroscopy, as discussed in Section 3.3
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Quantum efficiency

The enhancement of the radiative decay rate is expected to improve the quantum
yield of a light emitter. Unfortunately optical antennas suffer from absorption
losses due to real metals and the previous statement requires some attention. In
the next sections we will discuss the consequences of that in more detail. Here we
follow an approach borrowed from antenna theory (Balanis, 2005). The antenna ef-
ficiency ηa is defined as the ratio between the radiated power Pr and the total power
Pt transferred from the load to the antenna. Based on the equivalence between the
modification of transition rates in classical and quantum electrodynamics (Xu et al.,
2000), we define an antenna efficiency also for the case of a quantum load, i.e. an
atom or a molecule. This reads ηa = Γr/(Γt − Γo

nr) and the quantum yield η takes
the expression

η =
ηo

(1− ηo)Γo
r /Γr + ηo/ηa

. (4.4)

We assume that the intrinsic non-radiative decay rate Γo
nr is not affected by the

presence of electromagnetic boundaries.3

For ηo = 1 the quantum yield η is solely determined by ηa, whereas when ηo �
1 the enhancement of the radiative decay rate F = Γr/Γo

r becomes relevant. For
F � 1 it turns out that η = ηa. Hence the antenna efficiency is important as much
as the modification of the spontaneous emission rate and plays a fundamental role
in the enhancement and quenching of fluorescence.

4.1.2 Surface-enhanced fluorescence and quenching

Before discussing optical antennas in detail we review the case of a molecule near a
flat metal surface. We do so not just for historical reasons, but because it represents
an ideal system to gain insight on the modification of spontaneous emission and
fluorescence quenching.

The pioneering experimental works date back to late ’60s in which the fluo-
rescence lifetime of an excited ion was measured near gold, silver and copper
surfaces (Drexhage, 1974, 1966; Drexhage et al., 1966, 1968). The decrease in the
lifetime when the distance becomes small, compared to the wavelength, was un-
clear until the analogy between these experiments and the problem of radio-wave
propagation near the surface of the earth became apparent (Chance et al., 1974).
In the classical viewpoint, the emitting molecule acts as an oscillating dipole (an-
tenna) near a partially absorbing and partially reflecting surface (earth). Sommer-
feld (1909) provided the first theoretical treatment of the radio problem and pointed
out the possibility of a surface wave being present for the antenna close to the earth.

3We keep the emitter at a distance where the nanostructure does not affects its electronic struc-
ture and where the interaction can be fully described using macroscopic Maxwell’s equations.
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Polarization effects

Even for a flat metal surface the analytical calculation of the modification of the
decay rates is not a simple task, as it involves the near and far-field interaction
of the emitter with the interface. Nevertheless, if the metal is approximated by
a perfect mirror one obtains the exact analytical solution with the help of image
theory (Jackson, 1999). The dipole moment is made of two closely-spaced opposite
charges and each of them has an image charge of opposite sign located inside
the perfect metal at the position −d, where d is the distance from the mirror as
illustrated in Figure 4.1. The image charges build up a dipole that, if d is much
smaller than the wavelength, radiates in phase or in opposite phase with respect
to the other one. In the first case the emitted power is twice the free-space value,
whereas in the second case it is zero. This result indicates that the modification
of spontaneous emission depends on the orientation of the dipole moment with
respect to the metal surface and that for enhancing fluorescence the dipole moment
needs to be perpendicular to the metal surface.

d

d

+-

d

d
+
-

Figure 4.1: Dipoles near a perfect mirror with orientation perpendicular and parallel
to the interface. The dashed arrows represent the image dipoles.

Near-field energy transfer

Like Sommerfeld did for radio waves it has been shown that the surface-plasmon
polariton (SPP) modes at a metal dielectric interface (Raether, 1988) are those that
couple to the near field of the emitting molecule (Amos and Barnes, 1997; Morawitz
and Philpott, 1974). The consequences can be seen in Figure 4.2, which shows
that when the emitter is less than about λ/4 from the surface a strong distance
dependent quenching sets in.

The non-radiative decay processes involve the transfer of energy from the ex-
cited dipole to the substrate (Vaubel et al., 1971). For the small separation un-
der consideration the dipole field can be treated in the electrostatic approxima-
tion. Again, we can make use of image theory for boundary value problems with
dielectrics (Jackson, 1999) to find a simplified formula for the normalized non-
radiative decay rate

Γnr

Γo
r

=
sηo

4d3 Im
{

εm − εb

εm + εb

}
, (4.5)
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Figure 4.2: Lifetime of Eu3+ ions in front of a Ag mirror as a function of separation
between the ions and the mirror. The solid curve is a theoretical fit (adapted from
Amos and Barnes, 1997). The ions emit at a wavelength λ ' 614 nm.

where the orientation parameter s is equal to 3/2 (3/4) for the perpendicular (par-
allel) dipole configurations (Chance et al., 1978). εb and εm are the dielectric func-
tions of the medium where the emitter is located and the metal, respectively. Note
that the rate has an inverse cubic power dependence on the distance d, in agree-
ment with simple dimensionality considerations. Equation (4.5) shows that, when
the angular frequency ω of the dipole transition is such that εm(ω) is close to −εb,
the non-radiative decay rate is strongly enhanced. This corresponds to the exci-
tation of a SPP in the region where its dispersion relation is almost flat (Raether,
1988), i.e. where the density of photonic states is larger (Barnes, 1998) 4. There are
other mechanisms that contribute to energy absorption, like Ohmic losses and non-
localities in the dielectric function (Ford and Weber, 1984; Leung, 1990). Moreover,
if the molecule is very close to the surface (less than 3 nm) the dominant process
may become the direct excitation of electron-hole pairs in the metal (Persson, 1978).
All together these effects rapidly decrease the excited state lifetime with distance
and quench the fluorescence signal.

The energy coupled into SPPs would not be lost if these modes were strongly
radiative. For instance, a simple strategy to avoid quenching could rely on metallic
gratings (Kitson et al., 1996; Knoll et al., 1981) or on rough metal surfaces (Raether,
1988). These configurations are particularly attractive for applications based on
planar fabrication technology, such as light-emitting devices, fluorescence-based
assays and solar cells (Feng et al., 2005; Lakowicz, 2005), but they are unable to
yield enhancements larger than one order of magnitude. Moreover, their size must
be large with respect to the wavelength of light. To overcome these limitations we

4In Chapter 5 we will discuss the relationship between the field enhancement and the local
density of states.
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take advantage of the unique optical properties of metal nanoparticles (Bohren and
Huffman, 1983; van de Hulst, 1949a).

4.1.3 Metal nanoparticles as optical antennas

The beautiful colors of metal colloids have been used for centuries to make artistic
glasses and pottery. When a plane wave illuminates a nanoparticle, the applied
electric field drives the motion of the free electrons in the metal. Under appropriate
conditions they oscillate in phase to build up collective modes that are similar
to the SPP introduced in the previous section. For a spherical shape, they can
be classified as dipole, quadrupole, and so on (Mie, 1908). The multipoles have
different oscillator strengths with respect to the incoming light and also diverse
radiative properties that vary with size, composition and surrounding. For the
noble metals these modes lie in the visible spectral range and determine the color
of nanoparticles via resonant scattering and absorption.
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Figure 4.3: (a) Scattering spectrum of a 100 nm gold nanoparticle in air (εb=1)
computed using Mie theory (blue line) and the effective polarizability of Eq. (4.7)
(red dashed line). (b) and (c) represent the amplitude of the scattered electric field
calculated using Mie theory (Bohren and Huffman, 1983). The illumination is a
plane wave propagating along z and polarized along the x direction. The yellow disks
depict the nanoparticle to scale.

The solid curve in Figure 4.3a shows the spectrum of a 100 nm gold nanoparticle
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in air computed using Mie theory (Bohren and Huffman, 1983; Mie, 1908). The
particle dimensions are such that only the dipole mode can be excited by a plane
wave. Moreover, most of the incident light is scattered and the broad spectrum
implies that radiative broadening is very strong. What makes metal nanoparticles
particularly interesting for our purposes is also the intense and strongly confined
near field. Figure 4.3b indicates that it can be very large near the metal surface and
thus lead to stronger enhancements than SPPs at flat interfaces (Messinger et al.,
1981).

Polarizability models

The optical response of a metal nanosphere can be modeled with the dipolar po-
larizability

α =
πD3

2
εm − εb

εm + 2εb
, (4.6)

where D is the diameter, εb and εm are the dielectric functions of the background
medium and of the nanoparticle, respectively (Bohren and Huffman, 1983). For
εm = −2εb the polarizability exhibits a singularity that corresponds to the SPP
resonance condition.

Gold nanospheres of diameter of 50 to about 100 nm are in the regime where
the dynamical effects become important and the observed SPP resonance begins
to deviate from that predicted by the simple formula in Eq (4.6). Nevertheless, it
has been shown that the spectra of such particles can be reproduced very well if
one takes into account radiation damping (Wokaun et al., 1982) and dynamic depo-
larization (Meier and Wokaun, 1983) to arrive at an effective dipolar polarizability
given by

αeff = α
1− π2εbD2

10λ2

1− α
2πεb

Dλ2 − iα
4π2ε3/2

b
3λ3

. (4.7)

Figure 4.3a shows that the far-field scattering cross section calculated according to
Mie theory (blue) agrees quite well with that evaluated by using αeff (dashed red).
The contribution of higher multipoles is negligible in the far field, but it could
amount to up to 10% of the dipolar one in the near field. This deviation becomes
more important for larger particles or higher values of εb.

These models have been extensively used in the ’80s (Metiu, 1984; Moskovits,
1985), when it was difficult to perform an electrodynamic analysis of metal
nanoparticles using computational methods. Larger metal nanoparticles can still
be described by considering the response of the first electric multipole (Bohren and
Huffman, 1983). The corresponding Mie coefficient a1 leads to a dipole polarizabil-
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ity α = i6πa1/k3 that reads

α =
i6π

k3
mψ′(ka)ψ(mka)− ψ′(mka)ψ(ka)
mχ′(ka)ψ(mka)− ψ′(mka)χ(ka)

, (4.8)

where ψ(ρ) = − cos ρ + (sin ρ)/ρ and χ(ρ) = −(i + ρ) exp(iρ)/ρ are Riccati-Bessel
functions of the first and third kind, respectively (Abramowitz and Stegun, 1972).
The prime indicates the first-order derivative, m is the ratio between the nanosphere
and the surrounding medium refractive indices, and a is the radius. Equation (4.8)
is more accurate than the electrostatic approximation, even when the latter in-
cludes radiative and dynamic depolarization corrections (Meier and Wokaun, 1983;
Wokaun et al., 1982). Dipolar polarizabilities can give satisfactory results for what
concerns the calculation of the field enhancement by isolated nanoparticles. On the
other hand, when the driving field is highly inhomogeneous, higher order terms
need to be taken into account (Aravind et al., 1981; Gersten and Nitzan, 1981).

Decay rates and quenching

The modification of the spontaneous emission rate corresponds indeed to the sit-
uation where a dipolar radiating source is near a metal nanoparticle. The first
electrodynamic analysis of this phenomenon is due to Ruppin (1982). He showed
that the non-radiative decay rate dominates when the dipole approaches the metal
surface. The reason for that must be found in the transfer of energy to higher order
multipoles that are primarily damped by absorption. As the distance decreases, the
source field becomes more and more inhomogeneous across the nanoparticle vol-
ume and the same happens for the induced current distribution, which determines
the multipole response (Jackson, 1999).

Figure 4.4 illustrates the behavior of the decay rates as a function of distance
and excitation wavelength (Rogobete et al., 2007). The dotted curve in the left
panel shows the sphere scattering cross section calculated for plane wave illumina-
tion. The solid and dashed curves display the wavelength dependence of Γr and Γnr

normalized to the unperturbed decay rate Γo
r for an emitter-sphere separation of 3

nm. Both Γr and Γnr are enhanced around the SPP resonance, but Γnr clearly domi-
nates. The right panel of Figure 4.4 displays Γr and Γnr at the spectral maximum of
Γr as a function of the emitter-sphere separation, showing the distance-dependent
competition between them. This is indeed what has been pointed out in the lit-
erature for truncated tips (Thomas et al., 2004) and spherical particles (Carminati
et al., 2006). In what follows, we show that this is not a general rule and that it is
possible to design antenna architectures that strongly enhance Γr and at the same
time maintain a large η.
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Figure 4.4: Normalized decay rates for an emitter coupled to a gold nanosphere with
diameter 24.5 nm (2D model (after Rogobete et al., 2007)). (left panel) Wavelength
dependence for a particle-emitter distance of 3 nm. The scattering cross section of the
nanosphere is also plotted (dotted curves) to show its SPP resonance for comparison.
(right panel) Distance dependence of the radiative (solid curves) and non-radiative
(dashed curves) decay rates. The emission wavelength is tuned to λ = 535 nm. The
emitter is oriented as shown in the graph.

4.2 Optical antennas

Optical antennas share several concepts of radio-wave antennas, but they also have
distinctive features, which are illustrated in Figure 4.5. First, the coupling between
the antenna and its load is not via wired electric currents, but via displacement cur-
rents proportional to the near field vector E, which makes the interaction strongly
position and polarization dependent (Rogobete, 2007). Second, the load is typ-
ically a quantum system, like an atom or a molecule, and as such it is affected
by QED phenomena associated with the modification of the local electromagnetic
environment. Third, metals at optical frequencies are not perfect conductors and
their optical properties are strongly affected by the existence of SPP resonances.
These modes are tightly confined and can be controlled at the nanoscale by shap-
ing metals using state-of-the-art nanofabrication (Barnes et al., 2003). Furthermore,
they also depend on intrinsic material properties such as the optical constants and
the electron mean free path (Kreibig, 2008). Fourth, in optics we often work with
focused beams and guided waves. These should be considered as additional de-
grees of freedom for interfacing light with optical antennas (Mojarad and Agio,
2009; Mojarad et al., 2008). In summary, optical antennas represent a truly interdis-
ciplinary effort that involves electrical engineering, physical chemistry, quantum
optics, materials science as well as optics and photonics. In this respect, there are
ongoing efforts to reconcile these differences with standard antenna theory (Alù
and Engheta, 2008; Greffet et al., 2010; Novotny, 2007).
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Figure 4.5: Optical antennas: a truly interdisciplinary research field that involves
diverse areas like electrical engineering, physical chemistry, quantum optics, materi-
als science, as well as optics and photonics.

4.2.1 Design rules

The differences between optical and radio-wave antennas have consequences on the
design rules (Balanis, 2005). Here we summarize the most important features for
the optical domain and give some general guidelines. In the next section we will
instead focus on the modification of the spontaneous emission rate and investigate
its dependence on the relevant antenna parameters.

Field enhancement

Engineering textbooks do not discuss the field enhancement because it is not an
important design parameter for radio-wave antennas (Balanis, 2005). In optics the
phenomenon has been thoroughly investigated in the context of surface-enhanced
Raman spectroscopy. Pioneering works based on polarizability models indicated
the SPP resonance and the lighting rod effect as the two most important electro-
magnetic enhancement mechanisms (Moskovits, 1985). The latter can be intuitively
explained by considering the increase in the surface charge density σ with the
curvature of a metal surface (Jackson, 1999). Since the near field is directly pro-
portional to σ, nanoparticles with sharp edges tend to exhibit larger enhancements
than nanospheres. Other strategies to improve the strength of the near field in-
clude the exploitation of nanoscale gaps between two nanoparticles (Aravind et al.,
1981), the suppression of radiative broadening (Wokaun et al., 1982) and the choice
of different metals (Cline et al., 1986; Zeman and Schatz, 1987). These basic de-
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sign concepts have been applied in a more aggressive manner in the subsequent
years, when computational methods for nano-optics became available (Girard and
Dereux, 1996).

Radiative decay rate

Following the analogy between classical and quantum electrodynamics (Xu et al.,
2000), we take advantage of the reciprocity argument (Balanis, 2005) to state that a
strong field enhancement is also associated with a strong modification of the radia-
tive decay rate. Indeed, it can be shown that for an antenna that does not modify
the radiation pattern of the emitter, these two quantities are exactly equal (Taminiau
et al., 2008b). Therefore, one could simply refer to the design strategies discussed
in the previous subsection to obtain a large modification of spontaneous emission.

Antenna efficiency

In the past years much less attention has been dedicated to the antenna efficiency, a
parameter that is instead very important to assess the performances of radio-wave
antennas (Balanis, 2005). Once more we make the analogy between the modifica-
tion of the radiative decay rate by a quantum emitter and that of radiation by a
classical oscillating dipole to arrive at the efficiency

ηa =
Γr

Γt
=

Γr

Γr + Γnr
, (4.9)

where we assume that the quantum emitter does not have an intrinsic non-radiative
decay channel. For single-molecule spectroscopy and quantum optical applications
it is very important that ηa be close to unity.

Equation (4.9) shows that ηa is large if Γr � Γnr. In the previous sections
we have explained that Γnr is related to the non-radiative energy transfer to the
metal. In particular, it is mainly associated with the excitation of higher-order SPP
modes that are strongly damped by absorption. Therefore, the polarizability mod-
els based on the electric dipole approximation are not suitable for describing this
process. That is why the design rules for the field enhancement are not sufficient
for guiding the optimization of the antenna efficiency. Gersten and Nitzan (1981)
used higher-order electrostatic polarizabilities to investigate this effect, but their
model has been shown to yield efficiencies larger than one (Mertens et al., 2007;
Mertens and Polman, 2009). Moreover, there is a contrast between the field en-
hancement and the antenna efficiency. For example, while radiative effects reduce
the near-field strength (Wokaun et al., 1982), they tend to increase ηa. Obtaining
a large modification of the spontaneous emission rate without compromising the
quantum efficiency is thus not trivial.

A central idea in our work is to minimize the dissipation of energy into the
antenna. Here we exploit the property that the SPP resonance of a gold nanorod
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Figure 4.6: Normalized decay rates for an emitter coupled to a gold ellipse (long
axis = 60 nm, short axis = 10 nm, corresponding to the same area of the nanosphere of
Fig. 4.4) (2D model (after Rogobete et al., 2007)). (left panel) Wavelength dependence
for a particle-emitter distance of 3 nm. The scattering cross section of the ellipse
is also plotted (dotted curves) to show its SPP resonances for comparison. (right
panel) Distance dependence for the radiative (solid curves) and non-radiative (dashed
curves) decay rates. The emission wavelength is tuned to λ = 770 nm. The emitter is
oriented as shown in the graph.

can be sharper than that of a gold nanosphere of the same volume (Sönnichsen
et al., 2002) because the resonance corresponding to the longer axis of the particle
shifts to the near-infrared region, where the imaginary part of the dielectric func-
tion is smaller (Lide, 2006). Inspired by this phenomenon and by the fact that the
enhancement of the excitation field is expected to be strong at the apex of an elon-
gated particle, we have considered the emission of a dipole close to an elliptical
particle. As shown in the left panel of Figure 4.6, we see that, although both Γr

and Γnr experience a substantial enhancement, Γr overshadows the non-radiative
losses at the SPP resonance of the long axis. The right panel of Figure 4.6 plots
the distance dependence of Γr and Γnr at the long-axis SPP resonance, illustrating
that in this case Γr dominates for all separations larger than 3 nm. We note that in
this work we do not discuss the strong quenching observed at shorter wavelengths,
which we attribute to the excitation of higher multipoles.

The key design principles for achieving a strong modification of the sponta-
neous emission rate with minimal suffering from non-radiative losses can be sum-
marized as follows. First, tailor the geometry such that the SPP resonance of the
antenna lies in a favorable spectral region for minimizing dissipation in the metal.
Second, choose elongated objects to benefit from strong near fields at sharp corners.
Third, choose antennas with dipolar resonances and adjust the emitter orientation
such that its electric dipole moment is aligned with that of the antenna. Fourth,
ensure that in the antenna higher order SPP modes are spectrally separated from
the dipolar one. An exhaustive exploration of parameters such as the material,
size, and shape of the antenna, as well as the transition wavelength of the emitter,
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is provided in the following sections.

Antenna bandwidth

The antenna bandwidth is one of the most crucial parameters for radio-wave anten-
nas (Balanis, 2005). At optical frequencies the bandwidth is not a major concern,
because the spectrum is typically quite broad, e.g. of the order of 20 to 50 nm.
Nonetheless, a finite bandwidth is responsible for the modification of the emission
spectrum (Kühn et al., 2008; Ringler et al., 2008). Moreover, there are applica-
tions where a broader response is desired. For instance, in Raman spectroscopy
to enhance the signal across several Stokes-shifted lines or in photovoltaics to fully
absorb the solar spectrum (Aubry et al., 2010).

Radiation pattern and polarization

Radiation pattern and polarization are two other features that have received a great
deal of attention in the radio frequency domain (Balanis, 2005), whereas the prob-
lem of directing molecular emission with metal nanoparticles did not find substan-
tial consideration in field-enhanced spectroscopy (Metiu, 1984; Moskovits, 1985).
In the past few years, much interest has been devoted to this topic in the context
of optical antennas. The modification of the radiation pattern has been theoreti-
cally studied for various systems (Blanco and Garcı́a de Abajo, 2004; Bonod et al.,
2010; Chen et al., 2010a; Li et al., 2007; Novotny, 1996; Rogobete, 2007) and recently
demonstrated in a number of experimental arrangements (Curto et al., 2010; Kühn,
2006; Kühn et al., 2008; Taminiau et al., 2008a).

Figure 4.7: Far-field emission pattern (solid curves) for a molecule coupled to a gold
nanosphere for two different dipole orientations.

We will discuss the phenomenon in more detail in Section 4.2.4. Here we pro-
vide a simple and intuitive explanation through the concept of energy transfer and
polarization. For simplicity we consider two limiting cases. In the first situation the
molecule is strongly coupled to the optical antenna. Its energy is efficiently trans-
ferred to the SPP modes and these radiate to the far field. Therefore, the emission
pattern is completely determined by the antenna (Taminiau et al., 2008a). The other
setting considers one or more nanoparticles polarized by a nearby molecule (Li
et al., 2007). The arrangement is similar to a phased array, where the interference
between dipolar radiators gives rise to a tailored emission pattern (Balanis, 2005).
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Figure 4.7 illustrates this situation for the case of a gold nanosphere (Rogobete,
2007). Note that in this case the redistribution of radiation strongly depends on
the orientation of the molecular dipole moment. The intermediate cases are more
difficult to interpret and their analysis requires a numerical approach.

Computational nano-optics

In the previous subsections we have introduced the main features of optical an-
tennas and given design rules for directing and enhancing molecular emission.
Progress in nanotechnology has enabled us to fabricate systems with controlled
dimensions at the nanometer scale. An immediate concern is whether one could
transfer the designs found in many electrical engineering textbooks into the optical
domain. While simple systems like flat interfaces and spheres can be analytically
solved (Chance et al., 1978; Ruppin, 1982), the investigation of more complex struc-
tures requires numerical solution of Maxwell’s equations.

Computational electrodynamics plays a fundamental role as a tool to optimize
the performances of conventional antennas. The development and application of
numerical methods for the electrodynamic analysis of optical nanostructures dates
back to the onset of near-field optical microscopy (Girard and Dereux, 1996) and it
is still a subject of active research (Girard, 2005; Hafner et al., 2010). Among the ex-
isting approaches (Chari and Salon, 2000; Jin, 2002) we chose the three-dimensional
(3D) Finite-Difference Time-Domain (FD-TD) method (Taflove and Hagness, 2005),
which has been extensively tested and applied to the calculation of decay rates
in dielectric environments (Hermann and Hess, 2002; Xu et al., 2000). Moreover,
the following calculations are performed using the body-of-revolution (BOR) algo-
rithm, which increases the accuracy while reducing the computational cost. Details
on this approach can be found in Appendix B.1.5 as well as in Mohammadi et al.
(2008b) and references therein. We choose emitter-antenna distances larger than 5
nm to ignore effects due to nonlocality in the optical constants of the metal inter-
face (Ford and Weber, 1984; Leung, 1990), other microscopic effects (Persson, 1978),
and convergence issues in the FD-TD method (Kaminski et al., 2007).

4.2.2 Shape dependence

In Figure 4.6 we have shown that changing the shape of the optical antenna can
have a huge impact on its performances. In this section we analyze this in more
detail, with emphasis on the modification of the spontaneous emission rate and
the antenna efficiency. In particular, we pay attention to systems and parameters
that are within the reach of standard nanofabrication methods and of the common
experimental techniques used in nano-optics.
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Adding a second nanoparticle

It is well known that the field enhancement produced by two metal nanoparticles is
larger than for a single one (Aravind et al., 1981). Here we wish to investigate if the
same trend occurs for the quantum efficiency. The decay rates of one emitter cou-
pled to two gold nanospheres have already been studied in the literature (Blanco
and Garcı́a de Abajo, 2004), but without focusing on ηa and on situations accessi-
ble to experiments. Moreover, instead of placing the emitter right in the middle of
the gap, a better comparison with the single nanoparticle case can be seen if the
molecule is at a fixed distance from one of the two nano-objects, while the other
one is approached from far away (Agio et al., 2007).

The inset of Figure 4.8 schematically shows how the coupling between emitter
and nano-antenna is modified by changing the distance d. The molecule is oriented
towards the nanoparticle and, for the case of two, one is fixed at a distance of
10 nm from the emitter. The gold nanoparticles have a radius of 50 nm and the
background medium is air. The calculations are performed analytically for the
single nanoparticle (Klimov et al., 1996; Ruppin, 1982), whereas the FD-TD method
is employed for the case of two. The excitation wavelength chosen for computing
the field enhancement is λex=532 nm, while the emission wavelength for the decay
rates and the quantum efficiency is λem=580 nm, which correspond to terrylene
molecules in para-terphenyl (Kühn et al., 2006; Pfab et al., 2004).

Figure 4.8a shows the normalized total decay rate as a function of d and for ηo=1.
For distances of the order of 100 nm, the total decay rate for the emitter coupled to
two nanoparticles is almost equal to the one coupled to a single nanoparticle when
the distance is 10 nm. Indeed, the curve corresponding to a single nanoparticle
shows that the modification of the decay rate begins when d is smaller than 30 nm.
When both nanoparticles are close to the emitter, the decay rate is clearly larger
than for a single nanoparticle.

Figure 4.8b shows the antenna efficiency ηa for one and two nanoparticles. For
one nanoparticle the quantum yield rapidly drops to zero when the distance be-
comes smaller than 20 nm (Kühn et al., 2006; Ruppin, 1982; Wokaun et al., 1983),
whereas for two nanoparticles the quantum efficiency slightly increases up to
d ' 15 nm and then starts decreasing until quenching (not shown), but at shorter
distances than for the previous case. When the second nanoparticle is far away η

corresponds to the case of a single nanoparticle at 10 nm from the emitter. Fig-
ure 4.8c displays the excitation enhancement as a function of the nanoparticle dis-
tance. As expected, the near field is stronger when the two nanoparticles are close.
The data from Figures 4.8b and c highlight the competition between intensity en-
hancement and antenna efficiency. It is evident that the balance between them
is different for one and two nanoparticles. That is even more apparent in Fig-
ure 4.8d, where the fluorescence enhancement is plotted assuming that the emitter
has ηo equal to one. While the enhancement achievable with a single nanoparticle
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Figure 4.8: (a) Enhancement of the total decay rate Γt/Γo
t ; (b) antenna efficiency ηa;

(c) intensity enhancement |E/Eo|2; (d) fluorescence enhancement S/So for a single
molecule coupled to one or two gold nanospheres. The inset describes the coupling
scheme: molecule position and dipole orientation, nanosphere position, and distance
d from the molecule. For the two-nanospheres case, the one at the bottom is kept at
10 nm from the molecule. Parameters: background medium air, nanosphere radius 50
nm, excitation wavelength λex = 532 nm, emission wavelength λem = 580 nm.

is maximal at a distance of approximately 14 nm, with a nano-antenna made of two
nanoparticles the enhancement is still increasing when the emitter is 10 nm from
both nanoparticles. Therefore, in a well controlled experiment one should be able
to see an order of magnitude improvement with respect to the single nanoparticle
studied in previous works (Anger et al., 2006; Kühn et al., 2006). One has to keep in
mind that the coupling of the two nanoparticles shifts the SPP resonance towards
longer wavelengths (Aravind et al., 1981; Rechberger et al., 2003; Sundaramurthy
et al., 2005). This dynamical detuning makes the overall enhancement more diffi-
cult to control.

Changing the nanoparticle shape

We now explore the possibility of even further enhancing Γr by combining the
design of the antenna shape with the addition of a second nanoparticle (Rogobete
et al., 2007). The solid and dashed curves in Figure 4.9 with the upward-pointing
triangles depict the wavelength dependence of Γr and ηa for an emitter placed
in the middle of two identical ellipses with a gap of 6 nm. The curves with the
diamonds replot the data of a single ellipse from Figure 4.6 for comparison. We
find that Γr has been enhanced by about 1000 times. Furthermore, although more
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metal surrounds the emitter, in the double-ellipse antenna ηa reaches the value
of 0.9. Note that the SPP resonance of the new structure has shifted to longer
wavelengths and has become broader because of the near-field coupling of the
two ellipses (Aravind et al., 1981; Rechberger et al., 2003). We emphasize that this
broadening stems from a larger polarizability and therefore a stronger scattering
cross section; it should not be confused with a dissipative broadening.
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Figure 4.9: Normalized radiative decay rates (solid curves) and antenna efficiencies
(dashed curves) for different gold nano-antennas (2D model (after Rogobete et al.,
2007)). All structures have the same area (A = 491 nm2 per particle) and a gap
width of 6 nm. The emitter is placed at the center of the gap and oriented as shown
in the graph.

Next, we compare the performance of the double-ellipse antenna with the bow-
tie antenna, which has been studied recently (Schuck et al., 2005). To isolate the
role of the antenna shape in its performance, we keep the overall structure area
the same and maintain a constant separation between the emitter and its nearest
metallic surface. As seen from the curves with squares in Figure 4.9, Γr and ηa

are both less favorable than for the double-ellipse geometry at the respective SPP
resonances. However, the situation changes when we elongate the triangles to have
a tip radius of curvature of the order of 1 nm. The curves with the downward-
pointing triangles reveal an enhancement of Γr in excess of 1700 while keeping
ηa = 0.9. This substantial improvement is unfortunately not within reach of the
current technology because of the difficulty in fabricating sharp corners and in
avoiding problems such as tip snipping (Hao and Schatz, 2004). Moreover, very
sharp corners also pose a serious challenge in theoretical studies 5. As a result, in
what follows we identify the double-ellipse structure as the ideal compromise for
obtaining very large emission enhancement.

5Purely electromagnetic calculations are known to become inaccurate at very small distances due
to local field effects so that we do not consider closer emitter-metal separations.
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Nanorods and nanospheroids

Here we present a more detailed study of nanospheroids (Calander and Willander,
2002; Gersten and Nitzan, 1981; Klimov et al., 2002; Liu et al., 2007) and compare
them with gold nanorods (Aizpurua et al., 2005; Liu et al., 2007; Mühlschlegel et al.,
2005; Sönnichsen et al., 2002). We focus on the wavelength range between 600 nm
and 1100 nm, which covers the emission frequency of several molecules (Anger
et al., 2006; Bakker et al., 2008; Kühn et al., 2006; Zhang et al., 2007) and nano-
crystals (Biteen et al., 2005; Farahani et al., 2005; Schietinger et al., 2009). Because
the enhancement is maximum when the emitter is placed at and oriented along the
longitudinal symmetry axis of the nanoparticle, we consider only this situation and
keep in mind that other configurations yield worse results. Furthermore, to treat
a more realistic and experimentally feasible situation, we set the distance between
emitter and nanoparticle to 10 nm, while the nanoparticle aspect ratio and volume
change (see inset of Figure 4.10c). For the case of an optical antenna made of two
nanoparticles, the gap between them is fixed to 20 nm. The antenna dimensions
are chosen such that the SPP resonance is placed in the visible and near-infrared
spectral range.

Figure 4.10a-c shows that the SPP resonance peak red shifts when the nanorod
long axis a increases or the nanorod short axis b decreases. Therefore, by tuning
the aspect ratio b/a one can easily place the SPP resonance at the desired spectral
location (Aizpurua et al., 2005; Liu et al., 2007). The increase of the radiative decay
rate is close to 3000 for wavelengths around 1100 nm. However, when the resonance
shifts towards the visible spectrum, the enhancement drops very rapidly. Moreover,
because the interaction between the two nanorods red shifts the SPP resonance,
obtaining a strong enhancement at wavelengths below 750 nm is quite difficult.

Another important quantity that enters Eq. (4.4) is the antenna efficiency ηa. As
shown in Figure 4.10a-c, ηa increases with the volume of the nanorod, i.e. as b
becomes larger. Unfortunately, the largest enhancements correspond to the lowest
efficiencies because a higher aspect ratio implies a reduced volume. Interestingly,
for this system the antenna ηa is not smaller at the SPP resonance as predicted for
a nanosphere (Thomas et al., 2004) and a SNOM tip (Carminati et al., 2006). In-
stead, by comparison of Figure 4.10a with Figure 4.10c one sees that ηa gets larger
when the resonance moves towards shorter wavelengths. This happens despite
the fact that material losses in the nanoparticle increase in going to higher fre-
quencies (Lide, 2006), showing that the SPP resonance plays a fundamental role in
keeping the antenna efficiency high.

The steep decrease of the enhancement upon reduction of the aspect ratio comes
from the fact that the nanorods ends are flat. We thus replace the nanorods with
nanospheroids. In comparing Figure 4.10a-c with Figure 4.10d-f we identify three
important aspects. First, for high aspect ratios the nanospheroids exhibit smaller
enhancements, while ηa remains almost the same. Second, for low aspect ratios
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Figure 4.10: (a)-(f) Antenna efficiency ηa (dashed curves) and radiative decay
enhancement (solid curves) for an emitter coupled to two gold nanorods for various
aspect ratios and volumes. The insets in (c) and (d) shows the position and orientation
of the emitter with respect to the nanoparticles, whose dimensions a and b are given
in nanometres. The emitter is centered at a fixed distance d = 10 nm from both
nanoparticles. The surrounding medium is glass (refractive index 1.5).

the enhancement decreases more slowly and the SPP resonance is less red-shifted.
Consequently, finding a structure that has a strong enhancement at shorter wave-
lengths is easier. Third, the antenna efficiency reaches its plateau already at wave-
lengths close to 650 nm if the aspect ratio is less than 2. Compared to nanorods
the enhancement is larger at shorter wavelengths because the reduced aspect ratio
is partially compensated by a sharper rounding of the nanoparticle ends. For the
parameters considered here nanospheroids exhibit larger enhancements near the
visible range, whereas nanorods with high aspect ratios work better in the near
infrared (Aizpurua et al., 2005).

In the spectral range between 600 and 1100 nm we have found that
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nanospheroids exhibit a better performance than nanorods in term of radiative
decay enhancement and antenna efficiency ηa. A more detailed comparison of the
two antenna systems can be found in Mohammadi et al. (2008b). These results
highlight the fact that experiments require a great control over the emitter position
and particle shape, especially if large enhancements are desired.

Nanocones

One of the issues that we identify is that the antenna efficiency ηa and the enhance-
ment of spontaneous emission are maximal for different antenna parameters. In
particular, for gold nanorods and nanospheroids increasing ηa involves a rapid de-
crease of the enhancement in the visible and near-infrared range. The question now
is if one can improve the antenna design to increase the enhancement without de-
creasing ηa and loosing control on the spectral position of the resonance. A simple
solution is to use a nanocone, where one end can be sharp to increase the field en-
hancement and the spontaneous emission rate, whereas the other end can be larger
for increasing the volume, which favors a high antenna efficiency. The nanocone
antenna is similar to the (bi-) conical antenna, which is the canonical example of a
broadband antenna for applications in the VHF and UHF frequency bands. How-
ever, for practical reasons such as the antenna weight, it is often realized in the
form of a bow-tie (Balanis, 2005). The latter design has received significant atten-
tion also in the optical domain (Crozier et al., 2003; Farahani et al., 2005; Schuck
et al., 2005).

Finite and semi-infinite metal nanocones are not a new concept in optics, es-
pecially in scanning near-field optical microscopy (Betzig et al., 1991; Hartschuh
et al., 2003a,b; Ichimura et al., 2004; Sánchez et al., 1999) For example, conical
SNOM probes could be exploited to focus SPPs down to a spot size limited only by
the tip curvature (Babadjanyan et al., 2000; Keilmann, 1999; Stockman, 2004; Vogel
and Gramotnev, 2007). Moreover, the field enhancement for semi-infinite (Gon-
charenko et al., 2006b) and finite (Goncharenko et al., 2007, 2006a) silver nanocones
has been studied as a function of the cone angle. In both situations, like for the
bow-tie (Crozier et al., 2003), there exists an optimal angle that maximizes the
enhancement. Moreover, it was pointed out that finite nanocones give rise to a
stronger field than semi-infinite ones because of the SPP resonance effect (Krug II
et al., 2002; Martin et al., 2001). Other groups investigated the modification of the
fluorescence lifetime and the emission pattern by semi-infinite metal tips (Chang
et al., 2006; Issa and Guckenberger, 2007a; Kramer et al., 2002), where coupling to
SPPs leads to quenching. Previous investigations have also concluded that quench-
ing dominates at the SPP resonance of a metal cone (Thomas et al., 2004).

Here we concentrate our attention on finite gold nanocones to demonstrate that
they exhibit very interesting performances in terms of spontaneous emission en-
hancement and antenna efficiency at the SPP resonance wavelength. In particular,
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we discuss the role of ηa in determining the optimal angle for enhancing fluores-
cence. We investigate single and double gold nanocones as a function of cone angle.
Moreover, we explore the effect of adding a supporting substrate and of rounding
the tip (Mohammadi et al., 2010).
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Figure 4.11: Single, (a) and (b), and double, (c) and (d), conical optical antenna in
air (refractive index nb=1.0). Radiative decay enhancement, (b) and (d), and antenna
efficiency ηa, (a) and (c), as a function of the base diameter b. The nanocone is 140
nm long and it has a fixed tip diameter of 20 nm. The optical antenna gap for the
case of two nanocones is 20 nm.

Figure 4.11 displays the radiative decay enhancement and ηa for single and dou-
ble nanocone antennas in air as a function of the nanocone base b and the wave-
length. The nanocone height is 140 nm and the tip end is flat with a fixed diameter
of 20 nm. The black curves correspond to the case of a nanorod (Mohammadi et al.,
2008b). Starting from this structure, the enhancement increases slightly and then
decreases, confirming that there exists an optimal value for b (Goncharenko et al.,
2007, 2006a). This trend is also seen for an optical antenna made of two nanocones.
However, ηa steadily grows with b because the volume of the optical antenna in-
creases. That occurs because radiation is proportional to the volume squared, while
absorption only to the volume (Bohren and Huffman, 1983). If both enhancement
and ηa have to be optimized, one sees that b might be different than the optimal
value found when only the enhancement is taken into account. An important ad-
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vantage with respect to nanorods and nanospheroids is that here the resonance can
be tuned towards the visible spectrum simply by changing the nanocone angle,
without a significant loss of enhancement. Note that the enhancement factor is as
high as 2000 for a single nanocone and 8000 for a double nanocone antenna. Such
large values combined with a very good antenna efficiency and a wide spectral
tunability of the SPP resonance make nanocones ideal systems for enhancing the
radiative properties of solid-state quantum emitters.

An important aspect for the experimental realization of nano-antennas is the
effect of a supporting substrate. The optical antenna is often grown on a dielectric
substrate (Fleischer et al., 2009; Fredriksson et al., 2007; Kim et al., 2008; Stade et al.,
2007) or is attached to the end of a fiber (De Angelis et al., 2008; Fleischer et al., 2008;
Kühn et al., 2006; Zou et al., 2009). Previous works concluded that the presence of
a substrate has a negligible effect on the field enhancement and on the spectral
position of the SPP resonance for nanocones (Goncharenko et al., 2007, 2006a). In
Figure 4.12 we show that adding a glass substrate can shift the resonance by more
than 50 nm. Furthermore, the SPP resonance exhibits a stronger radiative broad-
ening, which decreases the the field enhancement (Meier and Wokaun, 1983), but
increases the antenna efficiency ηa. Note that the shift is smaller for the nanocone
having the largest base diameter.
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Figure 4.12: Effect of a supporting substrate on nanocone optical antennas in air.
Radiative decay enhancement (solid curves) and antenna efficiency ηa (dashed curves)
without (a) and with (b) a glass substrate (refractive index nb = 1.5). The nanocone
is 140 nm long, it has a base diameter of 40, 60 or 80 nm and a fixed tip diameter of
20 nm.

The last important aspect that we would like to address is the effect of the tip
termination. Previous studies on the field enhancement in triangular nanoparti-
cles have shown that changing the tip termination can affect the results (Hao and
Schatz, 2004; Kottmann et al., 2001). Here we compare the case of a flat tip, shown
in Figure 4.13a, with the case of a rounded tip of the same diameter, shown in
Figure 4.13b. We see that the resonance frequency and the antenna efficiency ηa are
almost the same. The only noticeable difference occurs for the enhancement factor,
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which is larger for the case of a flat tip. This holds also if the flat and rounded
ends have a diameter of 10 nm in place of 20 nm. Nevertheless, the difference be-
tween the two situations is not huge. When the emitter is only 6 nm from the metal
surface, the 20 nm rounded tip yields a stronger field enhancement in comparison
to the flat one. These results stem essentially from the complex behavior of the
electric field close to a metal tip (Novotny et al., 1995).
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Figure 4.13: Effect of the tip termination on nanocone optical antennas in air.
Radiative decay enhancement (solid curves) and antenna efficiency ηa (dashed curves)
for a flat (a) and rounded (b) tip. The nanocone is 140 nm long, it has a fixed base
diameter of 60 nm and a tip diameter of 10 or 20 nm. The emitter is at a distance of
6 or 10 nm from the end of the tip.

Another important practical aspect in favor of nanocones is the increased ro-
bustness and stability for the vertical orientation because the base is larger than
for nanorods (De Angelis et al., 2008; Fleischer et al., 2008, 2009; Fredriksson et al.,
2007; Kim et al., 2008; Stade et al., 2007; Zou et al., 2009). For the recent progress in
the fabrication of single and double gold nanocone on substrates (Fleischer et al.,
2009; Fredriksson et al., 2007; Kim et al., 2008; Stade et al., 2007), cantilevers (Zou
et al., 2009), and on the facet of optical fibers (De Angelis et al., 2008; Fleischer et al.,
2008), we anticipate an increasing attention on this kind of antenna system. The
strong fluorescence and field enhancement as well as the electric field localization
at the nanocone tip holds great promise for high-resolution fluorescence, Raman
and other nonlinear nanoscopies (Hartschuh et al., 2003a,b; Ichimura et al., 2004;
Sánchez et al., 1999).

4.2.3 Materials dependence

We have discussed examples where the antenna properties are tuned by changing
its shape and size. While these degrees of freedom offer a wide range of per-
formances, there are situations where other parameters need to be adjusted. For
example, the efficiency of gold nano-antennas is significantly affected by the onset
of strong material absorption in gold when the operating wavelength falls below
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600 nm, as shown in Figure 4.10. Therefore molecules that emit in the blue spec-
tral range cannot be strongly enhanced by a gold nano-antenna. Using a metal
that exhibits lower losses in the wavelength range of interest could be a solution to
this problem. However, since these are often accompanied by different optical con-
stants, the parameters of the antenna need to be redesigned also in terms of shape
and size in order to keep resonance wavelength, enhancement, efficiency and other
relevant properties under control. There are other reasons for choosing different
materials for the antenna. For instance, the surface chemistry could be more easily
adapted to a specific application.

While gold and silver have been the materials of choice for nano-antennas, other
metals may also exhibit interesting opportunities for applications, especially if tech-
nological issues are involved. For instance, recent works have been focusing on the
spectroscopy of copper (Tilaki et al., 2007), aluminum (Chan et al., 2008; Chowd-
hury et al., 2009; Ekinci et al., 2008; Langhammer et al., 2008; Mohammadi et al.,
2009b) and palladium (Pakizeh et al., 2009) nanoparticles. While theoretical studies
have been carried out for the field enhancement in surface-enhanced Raman scat-
tering (Cline et al., 1986; Moskovits, 1985; Zeman and Schatz, 1987), here we focus
on the modification of the spontaneous emission rate and on the antenna efficiency.

We use spheroidal nanoparticles as a model system because they have been ex-
tensively studied for field-enhanced spectroscopy (Cline et al., 1986; Zeman and
Schatz, 1987) and for fluorescence enhancement (Agio et al., 2007; Gersten and
Nitzan, 1981; Mertens et al., 2007; Mertens and Polman, 2009; Mohammadi et al.,
2008b; Rogobete et al., 2007). We discuss nano-antenna designs that cover the spec-
tral range from the ultraviolet to the near-infrared. Even if the SPP resonance can
be easily tuned by changing the spheroid aspect ratio, one has to consider that the
decay rates might not be enhanced as much as desired. Therefore, both geometric
effects and material properties have to be taken into account.

Gold and copper

Figure 4.14a and b show the real and imaginary parts of the dielectric functions
of gold and copper in the visible and near infrared spectral range. The real part
for the two materials is quite similar, whereas the imaginary part for copper is
slightly larger than for gold if the experimental data are taken from Johnson and
Christy (1972). On the other hand, if for gold we consider the experimental val-
ues from Lide (2006), the imaginary part becomes even smaller than for copper.
We choose the optical constants from Lide (2006) for gold and from Johnson and
Christy (1972) for copper.

Figure 4.15a clarifies how the enhancement of the radiative decay rate and the
antenna efficiency ηa depend on the background index for an emitter coupled to a
gold spheroid with semi-axes a = 70 nm and b = 25 nm. Even a small change in the
refractive index shifts the SPP resonance by more than hundred nanometers. At the
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Figure 4.14: Real (dashed curves) and imaginary parts (solid curves) of the dielectric
functions of (a) gold, (b) copper, (c) silver, and (d) aluminum. The experimental data
are compiled from Lide (2006) (CRC), Johnson and Christy (1972) (J&C), and Palik
and Ghosh (1998) (Palik). Details on the fitting parameters used in the FD-TD
simulations can be found in (Mohammadi et al., 2009a,b)

same time, the resonance gets wider because radiative broadening increases with
the refractive index (Wokaun et al., 1982). That also explains the small decrease
in the enhancement. As a consequence of material losses, ηa drops to zero below
600 nm. However, the shift of the SPP resonance towards shorter wavelengths
improves ηa. For instance, it is larger than 70% around 650 nm if the nano-antenna
is embedded in air (refractive index nb = 1).

We now move our attention to copper spheroids. Figure 4.16a shows the ra-
diative decay enhancement and the antenna efficiency ηa for an emitter coupled to
a single spheroid in glass (refractive index nb = 1.5), for a = 60 nm and variable
b. Compared to gold antennas the enhancement is smaller and the resonances are
broader as expected by the fact that the imaginary part of copper is larger. The an-
tenna efficiency is lower, but it shows the same trend as for gold antennas. Namely,
if the SPP resonance shifts to shorter wavelengths the efficiency increases. For an
aspect ratio equal to 2, with a = 60 nm and b = 30 nm, the enhancement is about 75
and the quantum efficiency is close to 70%. If we consider a nano-antenna made of
two copper spheroids, we can improve both enhancement and ηa, but we also red
shift the resonance wavelength, as shown in Figure 4.16b. Note that the antenna
efficiency is now more sensitive to the nanoparticle geometry than in the case of
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Figure 4.15: Radiative decay enhancement (solid curves) and antenna efficiency
(dashed curves) for an emitter coupled to a gold spheroid for d=10 nm (see inset).
Dependence on the background index nb for a=50 nm and b=25 nm.

gold, while the opposite holds for the enhancement. These differences stem from
the imaginary part of the dielectric function, which is larger for copper.
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Figure 4.16: Radiative decay enhancement (solid curves) and antenna efficiency
(dashed curves) for an emitter coupled to a nano-antenna made of (a) one or (b) two
copper spheroids in glass (refractive index nb = 1.5). Dependence on the aspect ratio
for a=60 nm for d=10 nm (see insets).

Silver and aluminum

We now consider nano-antennas made of silver or aluminum. As before, we start
looking at the real and imaginary parts of the dielectric function, presented in
Figure 4.14c. Silver appears to be similar to gold if the experimental data are taken
from Lide (2006) and from Johnson and Christy (1972), respectively. The main
difference is that silver has a higher plasma frequency so that the curves are shifted
towards shorter wavelengths. Therefore, we expect that silver yields results similar
to gold, but in a spectral range closer to the ultraviolet. However, if for silver we
consider the experimental data of Johnson and Christy (1972), the imaginary part
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drops to much lower values. In this case, silver nano-antennas should perform
much better than their gold counterparts. Because nanostructured silver exhibits a
lower optical quality than the bulk, we choose the experimental dielectric function
with the largest imaginary part (Lide, 2006).

Figure 4.14d displays the optical constants of aluminum as given in Palik and
Ghosh (1998). Aluminum has a plasma frequency even higher than silver. Even
if the imaginary part is significantly larger than in the noble metals, in the region
below 600 nm the large and negative real part ensures that the skin depth is suffi-
ciently small to prevent significant Ohmic losses.6 On the other hand, there is an
interband absorption peak located at 800 nm, which creates a dispersive profile in
the real part of the dielectric function and, most importantly, a strong increase in
the imaginary part. This makes aluminum less attractive for nano-antenna appli-
cations in the spectral range around 800 nm.
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Figure 4.17: Radiative decay enhancement (solid curves) and antenna efficiency
(dashed curves) for an emitter coupled to a nano-antenna made of two silver spheroids
in air (refractive index nb=1.0). Dependence on the aspect ratio for a=60 nm for d=10
nm (see inset).

Figure 4.17 shows the antenna efficiency ηa and the radiative decay enhance-
ment for an emitter coupled to a nano-antenna made of two silver spheroids in air.
The general trend agrees with what we have previously discussed for gold and for
copper nano-antennas. Because the plasma frequency of silver is higher than that
of gold and copper, the resonances are shifted by about 200 nm towards shorter
wavelengths. Furthermore, ηa and the enhancement factor are higher. Using the
optical constants of Johnson and Christy (1972) would have yielded even better
results.

The antenna efficiency ηa and the radiative decay enhancement for an emitter
coupled to a nano-antenna made of two aluminum spheroids in air is provided

6In chapter 5 we will show that absorption losses depend on the ratio γ/ωp for a Drude metal,
where ωp and γ are the plasma and damping frequencies, respectively (Ashcroft and Mermin,
1976).
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Figure 4.18: Radiative decay enhancement (solid curves) and antenna efficiency
(dashed curves) for an emitter coupled to a nano-antenna made of two aluminum
spheroids in air (refractive index nb=1.0). Dependence on the aspect ratio for a=60
nm for d=10 nm (see inset).

in Figure 4.18. While ηa decreases when the aspect ratio increases, the SPP res-
onance is not red shifted. The reason for that can be found in the electromag-
netic interaction between the two spheroids. For a single aluminum spheroid,
the SPP resonance exhibits a small red-shift in agreement with the polarizability
theory (Meier and Wokaun, 1983; Zeman and Schatz, 1987). For the case of two
aluminum spheroids separated by a gap 2d = 20 nm, the interaction between
the two SPP modes is weaker for small aspect ratios than for larger ones because
sharper particles have larger but more rapidly decaying near fields at their tips.
This also explains why the enhancement does not drop much when the aspect ra-
tio decreases: the two spheroids act together more effectively to increase the near
field. The enhancements given by the aluminum nano-antennas of Figure 4.18 are
not as large as found for the same system made from other materials. Since ηa is
large the reason for that should be attributed to radiative broadening rather than
to losses (Wokaun et al., 1982). For instance, since the radiative broadening is pro-
portional to 1/λ3, the effect is 8 times stronger at 400 nm than at 800 nm. Indeed
optimizations of the field enhancement have shown that the SPP resonance should
be located around 200-300 nm and the semi-major axis of the spheroid should not
be larger than 40 nm (Zeman and Schatz, 1987). Aluminum nano-antennas are thus
more suitable for applications in the ultraviolet spectral region (Chowdhury et al.,
2009; Ray et al., 2007).

In summary, we have investigated the performances of nano-antennas for im-
proving light emitters by considering different materials, namely gold, copper, sil-
ver and aluminum, aspect ratios and background media. While gold and copper
can both operate in the near infrared spectral range, silver is more suitable for the
visible and aluminum for the ulraviolet range. Moreover, nano-antennas cannot be
simply scaled to operate at different wavelengths and the material properties play
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an important role in determining their performances. The choice of the experimen-
tally determined optical constants from the literature is also a point of concern. In
particular, these data have been obtained for bulk samples, while nano-antennas
are truly nanoscale objects. Even if the volume of a nano-antenna is sufficiently
large to ignore quantum-size effects (Bohren and Huffman, 1983) the fabrication
methods might influence the actual optical properties.

Enhancing the quantum yield of emitters

From the application point of view, a stronger enhancement of Γr compared with
Γnr allows improvement of the quantum efficiency of poor emitters (Lakowicz,
2005) such as silicon nano-crystals (Biteen et al., 2005), nanotubes (O’Connell et al.,
2002) or diamond color centers (Turukhin et al., 1996) and could provide a handle
on the photophysics of emitters in general (Mackowski et al., 2008). Furthermore,
even for emitters with high quantum efficiency ηo a larger emission rate permits
a higher degree of light extraction by postponing saturation to higher intensities.
These phenomena could be exploited for a range of light-emitting devices such as
displays or pigments based on composite material made of a careful combination
of nano-antennas and emitters.

Considering the antenna performances of Figure 4.19, i.e. Γr/Γo
r = 103 and ηa '

0.8, to an initial quantum yield ηo = 0.01 corresponds a 74-fold enhancement and
thus an apparent quantum yield η = 0.74 (see Eq. (4.4)). To assess the sensitivity
of this result we also plot η with respect to the emitter position within the antenna
gap. Note that if the antenna performances are sufficiently large, the tolerances for
obtaining a significant improvement of fluorescence emission are fully compatible
with state-of-the-art experimental techniques. It is also worth to point out the fact
that η is larger if the emitter is not at the center of the antenna gap, but closer
to one of the two nanoparticles. This trend can be explained by considering the
near-field profile along the antenna axis, which has a minimum in the middle of
the gap (Aravind et al., 1981).

4.2.4 Directional optical antennas

We have designed antennas that increase the spontaneous emission rate of quan-
tum emitters by orders of magnitude with very small absorption losses. These
findings and the fact that the optical response of optical antennas is extremely fast
envision a highly efficient coherent optical access to single emitters under condi-
tions where dephasing processes occur at very short time scales. However, for
achieving controllable few-photon interactions it is also crucial that the antenna
directs and receives light with a high throughput in a well-defined optical mode.

Two parameters are commonly used in engineering textbooks to assess the qual-
ity of the antenna radiation pattern. These are the maximal directivity and gain,
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Figure 4.19: (left panel) Normalized radiative decay rates for nano-antennas made
of two prolate gold spheroids (long axis 120 nm, short axes 38 nm). The legend gives
the gap width d in nm. The emitter is placed at the center of the gap and oriented
along the nano-antenna. The inset shows that the emission pattern remains dipolar.
(right panel) Quantum efficiency map calculated assuming ηo = 0.01 for various
emitter positions in the antenna gap.

which read

Dmax =
4π

Pr
max{Pr(θ, ϕ)}, Gmax = ηaDmax, (4.10)

where max{Pr(θ, ϕ)} is the maximal amount of power radiated in a certain direc-
tion and Pr is the total radiated power. The 4π in the numerator is to normalize
the angular distribution with respect to an ideal isotropic radiator (Balanis, 2005).
Dmax and Gmax quantify how much fraction of the radiated energy is channeled
into a certain direction. A high directivity gives rise to improved transmission and
operation at lower power levels. These features are extremely desirable also in
the optical domain. For example, to establish a link between distant nodes of a
quantum network (Kimble, 2008).

To this end there has been an explosion of activities on the design and fabrica-
tion of directive optical antennas. The first attempts have tried to adapt solutions
that are commonly used in radio-wave applications. In particular, the Yagi-Uda an-
tenna has received much attention because it can be readily transferred into optics
using metal nanoparticles as array elements (Hofmann et al., 2007; Li et al., 2007).
However, one should bear in mind that a large antenna gain, i.e. a directional
emission pattern, might not be sufficient for achieving controlled operations with
few-photons. The problem here is to find an antenna that modifies the emission
pattern of a quantum emitter in a way that it matches optical modes that can be
realized in optics and photonics. In the next section we will present strategies that
go in this direction.
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The Yagi-Uda antenna

The Yagi-Uda antenna is an array made of several dipole antenna elements that
under appropriate conditions form a directional emission pattern (Uda, 1927; Yagi,
1928). Typically only one element is active, whereas the other function as reflectors
or directors to control the angular distribution of radiation. To understand this in
more detail we review the underlying theory (Balanis, 2005).

The far field E(r) and Poynting vector S(r) of an array of induced dipoles pi
placed at locations di reads

E(r) =
Zck2

4π

eikr

r ∑
i

e−ikn·di(n× pi)× n, (4.11)

S(r) =
Zc2k4

32π2r2 ∑
i,j

Re
{

e−ikn·(di−dj)
[
pi · p∗j − (n · pi)(n · p∗j )

]}
n, (4.12)

where n = r/r, r = |r| and k = |k|. The dipoles are coupled by the free-space
Green tensor G

G(r) =
eikr

4πεr

[
k2(I− nn) + (3nn− I)

]
. (4.13)

Depending whether there is a driving dipole po or a driving external field Eext, one
obtains the two following system of equations

pi = αi

[
∑
i 6=j

G(ri − rj) · pj + G(r) · po

]
, (4.14)

pi = αi

[
∑
i 6=j

G(ri − rj) · pj + Eext(ri)

]
, (4.15)

where αi are dipole polarizabilities. The solution of Eqs. (4.14) or (4.15) yields the
amplitude and phase of the dipoles pi. These are plugged into Eq. (4.12) to obtain
the radiation pattern. The latter is shaped by tuning various degrees of freedom,
such as the polarizabilities αi and the positions di.

For example, Li et al. (2007) designed a Yagi-Uda optical antenna using
nanoshells as array elements. Figure 4.20 shows amplitude and phase of the
nanoshell polarizability α as a function of the filling ratio b/a, and a layout of the
proposed optical Yagi-Uda array. The nanoshell dipoles can be retarded (reflector)
or advanced (director) with respect to the driving dipole by choosing appropriate
values of b/a, where a and b are the outer and inner radii, respectively.

Other designs of an optical Yagi-Uda antenna construct directors and reflectors
by changing the aspect ratio of metal nanorods (Hofmann et al., 2007; Taminiau
et al., 2008b). Nanorod arrays are more amenable for fabrication than nanoshells,
because their properties can be controlled by standard lithography. Indeed there
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Figure 4.20: The nanoshell Yagi-Uda array proposed by Li et al. (2007) The
nanoparticle has a silica (ε = 2.2) core and a silver (ε = −15.33 + i0.451) shell.
The outer radius a is fixed (a = 0.1λ), and b is varied. The upper graph shows the
polarizability magnitude (red line) and phase (blue lines) in units of π as a function
of b/a for λ = 620 nm.

have been two recent experimental demonstrations of directional emission using
a nanoparticle (Kosako et al., 2010) and even a single quantum emitter (Curto
et al., 2010) as driving elements. Approaches based on one-dimensional arrays
of nanospheres have also been proposed (Koenderink, 2009).

Traveling wave antennas

Since propagating optical modes have the energy flow in a well-defined direction,
it may be convenient to use traveling wave antennas (Balanis, 2005) to modify the
emission patter of quantum emitters. In this respect, metal and dielectric nanowires
are interesting structures because they offer at the same time directionality and
broadband coupling. Moreover, compared to antenna arrays they are much easier
to fabricate and handle.

If Γnw represents the transfer rate of energy from an emitter to a nearby
nanowire, the coupling efficiency is expressed by the β factor, which reads β =
Γnw/(Γnw + Γo), where Γo is the spontaneous emission rate without nanowire. β

depends on many parameters such as the nanowire radius and composition, op-
erating wavelength, emitter position and orientation. In order to achieve efficient
coupling, β has to be as close as possible to 1, meaning that Γnw must be much
larger than Γo. Dielectric nanowires or nanofibers do not exhibit a strong enhance-
ment of the spontaneous emission rate. The strategy to improve their β primarily
relies on a careful choice of the dispersion relation of the guided modes, which
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leads to Γnw a factor of ten larger than Γo (Klimov and Ducloy, 2004) and to cou-
pling efficiencies of the order of 90% distributed in two directions, as shown in
Figure 4.21. Larger β can be achieved using metal nanowires. Here the enhance-
ment of the spontaneous emission rate relies on the existence of SPP modes that
remain tightly confined even for very small nanowire radii. They give rise to en-
hanced near fields that modify light emission very much like the strong near fields
of optical antennas. Unfortunately, metal nanowires suffer from huge propaga-
tion losses and great care has to be taken in order to design a high-performance
light-emitter interface (Chang et al., 2006, 2007b).

Figure 4.21: Dipole emitter coupled to a nanofiber (left panel) and to a metal
nanowire (right panel). The dipole orientation can also be parallel to the nanowire,
but that leads to lower coupling efficiencies.

Similar considerations are valid for emitters coupled to other waveguide de-
signs, such as nanowires with non-cylindrical cross sections (Chen et al., 2010b;
Guzatov and Klimov, 2007), photonic crystal waveguides (Lecamp et al., 2007;
Lund-Hansen et al., 2008) or slot waveguides (Jun et al., 2009; Quan et al., 2009).

Dielectric antennas

Dielectric optical antennas, in contrast to dielectric microcavities (Vahala, 2003),
are weakly resonant nanostructures that do not exhibit a strong change of the
spontaneous emission neither a strong field enhancement. Nonetheless they can
control the radiation pattern to largely improve the collection efficiency. In the
past years these ideas have mostly relied on thin-film technology assisted by solid
immersion lenses and on the modification of the emission pattern near a dielec-
tric interface (Barnes et al., 2002). Recent designs have shown, theoretically and
experimentally, that near unity collection efficiencies are possible (Lee et al., 2011).

Dielectric antennas can be semiconductor nanowires that embed a quantum dot
as single-photon source (Borgström et al., 2005). These nanowire antennas could
have engineered shape, for instance a tapered end (Gregersen et al., 2008), and be
assisted by a metal mirror (Friedler et al., 2008) to further improve the fraction of
light emitted in a preferential direction (Claudon et al., 2010; Friedler et al., 2009).
Similar concepts have been developed to enhance diamond-based single-photon
sources (Babinec et al., 2010).
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Other antenna designs

To achieve more compact directional antenna structures, there have been further in-
vestigations based on nanoparticle pairs, either nanodisks (Pakizeh and Käll, 2009)
or nanospheres (Bonod et al., 2010), or patches (Esteban et al., 2010). Other ap-
proaches concerned hybrid systems made of dielectric and metallic antennas (Dev-
ilez et al., 2010). To overcome the poor enhancement features of dielectric nanopar-
ticles, it has been shown that geometric resonances in nanoparticle arrays lead to
strong modification of spontaneous emission (Pellegrini et al., 2009). These dielec-
tric antenna systems can be tuned in a broad spectral range from the ultraviolet to
the near-infrared without suffering from the absorption losses intrinsic to metallic
antennas.

4.3 Interfacing optical antennas with optics and pho-
tonics

In the previous section we have discussed a few examples on how the radiation
pattern of a quantum emitter gets modified by an optical antenna. Our aim here is
designing mode converters that interface a quantum emitter and light with a high
thoughput and, at the same time, yield a large enhancement of the radiative decay
rate. Matching a well-define optical mode may improve the overall efficiency of
a quantum-optical link and enable few-photon interactions (Schuster et al., 2008;
Stobińska et al., 2009; Zumofen et al., 2008). We show that conical antennas fulfill
these conditions if their aspect ratio is appropriately chosen. In addition, being
fully compatible with scanning probe technology they are promising candidates
for realizing a high-throughput SNOM (Chen et al., 2009, 2010a).

We approach this result in a number of steps that emphasize the various aspects
that one has to take into account in the design of high-performance directional
antennas. First, we revert to the results of the previous chapter and point out
the limitations of high NA objectives in coupling single photons to dipolar optical
antennas (Agio et al., 2009). Second, we consider the problem of converting light
to SPP in metal nanowires using either guided waves or weakly focused beams.
Third, we replace nanowires with nanocones and investigate performances like
throughput and collection efficiency.

4.3.1 Coupling light to a dipolar antenna

The recent years have witnessed increasing attention towards the use of tightly fo-
cused beams for improving and controlling the coupling of light with nanoscale
objects. These efforts primarily concern the detection and spectroscopy of sin-
gle emitters (Gerardot et al., 2007; Tey et al., 2008; Vamivakas et al., 2007; Wrigge
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et al., 2008a), non-fluorescent nanoparticles (Kalkbrenner et al., 2004; Kukura et al.,
2009), and elementary biological entities (Ewers et al., 2007). We have shown that
an ideal dipole placed at the focus has a very strong effect on the transmission of
light. However, quantum emitters in the solid state behave as ideal dipoles only
at cryogenic temperatures (Gerardot et al., 2007; Vamivakas et al., 2007; Wrigge
et al., 2008a), whereas single atoms exhibit other difficulties such as trapping and
alignment in a tight focus (Tey et al., 2008). On the other hand, a silver nanoparti-
cle at room temperature scatters light as an ideal point-like dipole (Mojarad et al.,
2009). This property stems from the SPP resonance, which has a radiative decay
of the order of femtoseconds (Bohren and Huffman, 1983). Such an extremely fast
relaxation ensures that other dephasing and non-radiative processes at room tem-
perature have a small effect on the nanoparticle optical response. Metal nanopar-
ticles are thus ideal systems for conducting experimental studies on the scattering
of focused light by a dipole (Celebrano et al., 2010). Moreover, the strong field en-
hancement and localization combined with the efficient radiation into the far field
make metal nanoparticles promising candidates for building an interface between
photons and single quantum emitters in free space (Anger et al., 2006; Greffet, 2005;
Kühn et al., 2006; Rogobete, 2007).

The coupling of photons to SPPs confined in metal nanowires has been per-
formed by considering the fraction of power transmitted to a nanofiber, and vice
versa, by evanescent (Chang et al., 2006) or butt coupling (Chen et al., 2009). Fur-
thermore, the excitation of SPPs on metal films has been investigated using the
quantum theory of light (Tame et al., 2008). Here, we limit our analysis to classical
electrodynamics and the coupling strength is defined as the ratio of the total power
that has interacted with the metal nanoparticle and the incident power. We point
out that, as for a TLS, maximizing scattering or excitation does not lead to the same
result. In the first case, perfect reflection of photons is achieved when the incident
light is a directional dipole wave and the system is under weak excitation (Zu-
mofen et al., 2008). In the second situation, perfect excitation by a single photon is
obtained using a dipole wave under time reversal (Stobińska et al., 2009; van Enk,
2004).

We thus study the interaction of focused light with metal nanoparticles and
discuss to what extent one can maximize the coupling strength. For this reason,
we include the effect of the entrance pupil, which blocks a fraction of the incident
power in the beam. Furthermore, because we want to investigate parameters that
are meaningful for experimental situations, we choose focused Gaussian beams
(FGBs) and focused radially-polarized beams (FRBs) in aplanatic systems. Both of
them are easily obtainable in the laboratory and represent two significant cases.
FGBs approach a focused plane wave if the beam waist is much larger than the en-
trance pupil (Richards and Wolf, 1959), whereas FRBs resemble a directional dipole
wave (Quabis et al., 2001; van Enk, 2004). To conclude, we consider the reduction
in the metal nanoparticle cross section due the presence of absorption and dis-



4.3 Interfacing optical antennas with optics and photonics 111

cuss how the coupling efficiency can be determined by performing transmission
experiments.
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Figure 4.22: Sketch of an incident beam focused by an aplanatic system, which is
scattered by an ideal electric dipole or a metal nanoparticle placed in the focus. The
red curve at the left represents the electric field profile of a radially-polarized beam. w
is the beam waist and f is the focal length of the lens. α is the focusing semi-angle
and β is the collection semi-angle. The horizontal dashed lines delimit the portion of
the beam that intercepts the lens (entrance pupil). Note that for a FRB the dipole in
the focus must be oriented along the z-axis, while for a FGB along the x-axis.

Incident beam efficiency

We consider the coupling efficiency step by step, starting from the entrance pupil.
It is located at the beam waist w, where the electric field for a Gaussian and a
radially-polarized beams reads, respectively,

E(ρ) = Eo exp
(
− ρ2

2w2

)
x̂, (FGB) (4.16)

E(ρ) = Eo
ρ

w
exp

(
− ρ2

2w2

)
ρ̂, (FRB) (4.17)

where ρ is the distance from the optical axis z, x̂ is the x-axis versor in the Cartesian
coordinates (x, y, z), and ρ̂ is the ρ-axis versor in cylindrical coordinates (ρ, ϕ, z).
The field profile for a radially-polarized beam is sketched in Figure 4.22. Depend-
ing on the beam waist and on the entrance pupil, only a fraction of the incident
power gets focused by the lens. We thus define the incident beam efficiency ηinc as
the ratio of power that is collected by the entrance pupil with respect to the total
power carried by the beam. For an aplanatic system, if f is the lens focal length
and α the focusing angle, the radius of the pupil is f sin α. If we call d = f /w the
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beam parameter, we find that for a FGB and a FRB ηinc reads, respectively,

ηinc(α, d) = 1− exp
(
−d2 sin2 α

)
, (FGB) (4.18)

ηinc(α, d) = 1−
(

1 + d2 sin2 α
)

exp
(
−d2 sin2 α

)
. (FRB) (4.19)

Note that the quantity only depends on the focusing angle α and the beam param-
eter d. In other words, increasing f or decreasing w by the same amount leads
to the same result. Figure 4.23a and b respectively display ηinc for a FGB and a
FRB for different focusing angles and values of d. In both situations, ηinc increases
when d increases, because either the radius of the entrance pupil gets larger, or the
beam waist gets smaller. For focusing angles obtainable using commercial high-NA
lenses, ηinc is above 0.8 if d is close to or larger than 2.
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Figure 4.23: Incident beam efficiency ηinc as a function of the focusing angle α and
the beam parameter d = f /w for a FGB (a) and a FRB (b).

Scattering ratio and focusing efficiency

The fraction of power collected by the entrance pupil is then focused by the lens.
To quantify the strength of the interaction between an ideal dipolar scatterer placed
at the focus and the beam, we have introduced the scattering ratio Kdp.7 Here we
define the focusing efficiency ηfoc as Kdp/2. The total scattered power is propor-
tional to the squared amplitude of the electric field times the cross section, which
for an ideal oscillating dipole on resonance reads σo = 3λ2/(2π) (Jackson, 1999).
The incident power is more easily computed using the field at the entrance pupil
right before the lens, which is given in the Appendix by Eqs. (A.29) and (A.30).

7Kdp stands for Ksca defined in Chapter 2.
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These quantities lead to

ηfoc(α, d) =
3d2I2

0 (α, d)
4
[
1− exp

(
−d2 sin2 α

)] , (FGB) (4.20)

ηfoc(α, d) =
6d4I2

1 (α, d)
1−

(
1 + d2 sin2 α

)
exp

(
−d2 sin2 α

) , (FRB) (4.21)

where I0(α, d) and I1(α, d) are diffraction integrals given in the Appendix by
Eqs. (A.12) and (A.27), respectively. Note that for a FRB the dipole is oriented
along ẑ, whereas for a FGB it is oriented along x̂.
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Figure 4.24: Focusing efficiency ηfoc as a function of the focusing angle α and the
beam parameter d = f /w for a FGB (a) and a FRB (b).

Figures 4.24a and b show that ηfoc increases with the focusing angle α and
decreases for larger values of the parameter d. The latter behavior can be explained
by recalling that a strong focus requires that the incident beam overfills the entrance
pupil. A large field amplitude at the lens edge is thus achieved for d comparable to
or less than 1. In particular, when d tends to 0, the FGB becomes a focused plane
wave (Richards and Wolf, 1959) and the FRB behaves as if the entrance pupil were
an annular aperture (Quabis et al., 2001). For obtaining the same ηfoc a FRB requires
a larger focusing angle than a FGB. Note that a FRB resembles a directional dipole
wave generated by reversing at the lens the field radiated by a dipole placed at
the focus and oriented along the optical axis (Sheppard and Larkin, 1994; van Enk,
2004). Because most of the power propagates along the direction α = 90o, only a
high-NA objective can effectively reverse such wave back to the focal spot. When
d is close to 0 and α = 90o, the maximum value of ηfoc is 0.853 for a FGB and 0.87
for a FRB. The latter is slightly closer to the theoretical maximum of 1 found for a
directional dipole wave. However, these considerations have to be confronted with
the fact that for d less than 2 a significant amount of incident power is lost at the
entrance pupil.
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Total efficiency

When looking at the interaction of nanoscopic objects with single photons, both the
focusing efficiency and the beam efficiency must be taken into consideration. We
thus define total efficiency ηtot = ηincηfoc. To investigate the competitive effects of
ηinc and ηdp, we monitor ηtot as a function of d choosing two realistic values for the
focusing angle, α = 50o and 70o, and the theoretical maximum α = 90o. The result
for a FGB and a FRB is shown in Figure 4.25a and b, respectively. Depending on
the focusing angle, the maximum efficiency is found for different values of d. Note
that the total efficiency of a FRB is smaller than for a FGB.
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Figure 4.25: Total efficiency ηtot as a function of the focusing angle α and the beam
parameter d = f /w for a FGB (a) and a FRB (b).

Application to optical antennas

We now investigate a silver nanosphere using a polarizability α derived from Mie
theory (see Section 4.1.3). Figure 4.26a displays the cross sections for a 90 nm
silver nanoparticle in oil (refractive index nb = 1.47). The resonance is located
around the vacuum wavelength λ = 500 nm. The fact that the scattering (Csca)
and total (Ctot) cross sections 8 are very close to each other confirms that most of
the power is dissipated by radiation, like for an ideal classical oscillating dipole.
However, because some of the power is absorbed, the nanoparticle cross section
is smaller than σ = 3λ2/2π (Jackson, 1999). To account for this effect, we define
the nanoparticle efficiency ηNP as the ratio of the nanoparticle and the dipole cross
sections,

ηNP =
Ctot

σ
=

k3Im(α)
6π

≤ 1. (4.22)

8The total cross section must be read as the sum of the scattering and absorption cross sections.
The total power that has interacted with the nanoparticle corresponds to the interference term in the
Poynting vector and it is often referred to as extinction (Bohren and Huffman, 1983). See Mojarad
et al. (2009) for a detailed discussion.
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The overall efficiency is thus ηtot = ηincηfocηNP. If ηNP is close to 1, such as for
silver nanoparticles, the curves given in Figures 4.25a and b can be assumed to be
valid also for this situation.
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Figure 4.26: (a) Total Ctot, scattering Csca and absorption Cabs cross sections for a
90 nm silver nanoparticle in oil (refractive index nb = 1.47). (b) transmission T and
reflection R for a FGB (α = β = 70o and d = 1) as a function of the nanoparticle
displacement in the focal plane. The result for β = 90o is also shown.

Measuring the coupling efficiency

We have derived expressions for the transmission T and reflection R of focused
light in the presence of an ideal dipole or a metal nanoparticle using the scattering
and absorption ratios (Mojarad et al., 2009; Zumofen et al., 2008). However, be-
cause the incident and the transmitted light encounter the same optics in the way
through the detector, we would like to formulate the coupling efficiency only as
a function of T. While this is trivial for an ideal dipole (Zumofen et al., 2008), a
metal nanoparticle requires some care due to absorption (Mojarad et al., 2009). The
scattering efficiency ηsca accounts for the fraction of power that is scattered with
respect to the total power that has interacted with the nanoparticle (Buchler et al.,
2005),

ηsca =
Csca

Ctot
=

k3|α|2
6πIm(α)

≤ 1. (4.23)

There is a second aspect that we need to consider. Assuming that the collection
angle β is equal or larger than the focusing angle α, the transmission will fully
capture the power Pint associated with interference, because its angular spread
equals that of the incident power in the forward direction. However, the power
scattered by a dipolar radiator flows in both directions with the same strength with
an angular spread of 90o. If X(β) is the fraction of the scattered power collected
in the forward direction (see Section 3.4.2), the transmission formula of Eq. (3.40)
becomes

T = 1−Ktot +KscaX(β), (β ≥ α) (4.24)
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where Ktot and Ksca are respectively the power ratios for the metal nanoparticle.
We now express these quantities as a function of Kdp, ηNP and ηsca, finding Ktot =
KdpηNP and Ksca = KdpηNPηsca. Substituting them in Eq. (4.24), a few algebraic
steps lead to

ηfoc =
Kdp

2
=

1− T
2ηNP

(1− ηscaX(β))−1. (4.25)

As an example, we consider the silver nanosphere of Figure 4.26a in the focus
of a FGB with α = 70o, d = 1 and λ = 500 nm. The silver nanoparticle is displaced
in the focal plane and the reflected and transmitted powers are collected using
β = 70o. The result is shown in Figure 4.26b, including the case for β = 90o.
When the collection angle increases from 70o to 90o, T decreases and R increases,
in accordance with Eq. (4.24) and the fact that R = KscaX(β). A comparison of the
reflection peak for β = 90o, which amounts to ηfocηNPηsca, with the corresponding
curve in Figure 4.24a confirms that the silver nanoparticle has both ηNP and ηsca

close to unity. In other terms, a single SPP resonance could be coupled to a free-
space single photon with an overall efficiency close to ηincηfoc, as illustrated in
Figure 4.25. Note that a stronger transmission deep or a larger reflection peak do
not necessarily correspond to a better coupling efficiency ηtot, because these two
quantities also depend on the collection angle β, as shown in Figure 4.26b.

These results have been derived within the classical electromagnetic theory and
they require a deeper analysis from the quantum optical point of view. Neverthe-
less, they suggest that single photons could interact with single SPP resonance very
effectively simply by focusing light and working at room temperature. The reason
is that the cross section of silver nanospheres is close to that of an ideal dipole. In
terms of quantum optics with SPPs these findings show that the coupling to sin-
gle photons is smaller than for other configurations based on guided SPPs (Chang
et al., 2006; Chen et al., 2009; Tame et al., 2008). However, this scheme presents
some practical advantages for experiments when the coupling between the SPP
and a quantum emitter is also considered (Akimov et al., 2007; Anger et al., 2006;
Kühn et al., 2006; Rogobete, 2007).

4.3.2 Coupling to a nanofiber

Practical device proposals require a rapid and efficient conversion of SPPs into
guided photons. In case of SPPs at planar interfaces, evanescent wave and grating
couplers are very effective (Raether, 1988). Thus, researchers have extended these
schemes to guided modes of dielectric nanofibers (NF) and metallic nanowires
(NW) in a side by side arrangement (Chang et al., 2006; Lee et al., 2008), via ta-
pers (Bouhelier et al., 2003; Ding et al., 2007; Janunts et al., 2005; Keilmann, 1999),
or by etching a grating on a tapered NW (Ropers et al., 2007).

Here we investigate the most straightforward and practical way of interfacing
guided SPPs and photons between a NW and a NF (Tong et al., 2003) in an axially-
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symmetric butt-coupling scheme. We investigate the conversion process of photons
to SPPs as a function of wavelength and material, identifying the moulding of SPPs
at the coupling interface as the condition for reaching efficiencies above 95% in the
visible and close to 100% in the near-infrared range.
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Figure 4.27: (a) and (b) Layout of the coupling geometry. The vertical red line in-
dicates the separation between the total-field (TF) and the scattered-field (SF) region,
and the position of the source. (c) and (d) are the magnetic field patterns of the modes
in the NF and NW, respectively. (e) and (f) Snapshots of the magnetic field for the
two propagating directions. The vertical dashed lines in (e) mark the area shown in
Figure 4.28a. The radii of the silica NF and silver NW are 342 nm and 164 nm,
respectively, and the wavelength was set to λ=633 nm.

We performed BOR-FD-TD calculations to trace the propagation of the optical
signal along the guides in a rigorous and computationally efficient manner, and
to acquire an intuitive understanding of the mode conversion. Figure 4.27a and b
sketch the geometrical arrangements for interfacing SPPs on a silver (Lide, 2006)
NW to guided photons in a silica NF and vice versa for a vacuum surrounding.
In each case, a steady-state SPP or a TM01 mode is launched from the left-hand
side using the total-field/scatter-field technique (Taflove and Hagness, 2005). Fig-
ure 4.27c and d depict the time-averaged transverse magnetic field profiles of the
radially-polarized modes at the vacuum wavelength of λ = 633 nm in the NF and
NW with radii of 342 nm and 164 nm, respectively. The snapshots of the magnetic
field in Figure 4.27e and f illustrate how SPPs travel on the surface of the NW and
are converted to photons in the TM01 mode of the NF.

To determine the conversion efficiency η, we computed the ratio between the
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transmitted power in the guided mode right after the NW-NF interface and the in-
cident power at the position right before it. The latter was separately calculated for
an infinitely long NW or NF using the same source. In the example of Figure 4.27e,
the NW and NF yielded η ' 95%. Likewise, we computed the reflectivity R into
the incident guided mode and the fraction of power S scattered into free space. We
find that the power dissipated at the NW-NF interface, given by 1− (η + R + S),
can be negligible. Figure 4.27f shows the reverse situation where light originates in
the silica NF and is converted to SPPs of the silver NW with the same efficiency as
in the previous case. The great advantage of the butt-coupling scheme is that the
conversion between SPPs and guided photons takes place across an interface. This
feature minimizes the impact of propagation losses, which significantly increase as
wavelength and NW radius decrease (Novotny and Hafner, 1994). For instance,
the NW at the wavelength considered in Figure 4.27 would yield losses as high as
0.72 dB/µm.

Mode matching and tolerance

To explore the underlying coupling mechanism, in Figure 4.28a we plot the time-
averaged magnetic field for the region between the dashed lines in Figure 4.27e.
We find that the SPP moulds around the end of the NW in such a way that the
magnetic field assumes a maximum value at a certain distance from the axis on
the NW-NF interface. Here, we tuned the radii of the two guides to obtain an SPP
field profile that optimizes its coupling to the TM01 mode of the NF. Our FD-TD
analysis yielded η ' 95%, R ' 1.5% and S ' 2.5%.

Figure 4.28b displays another example of the field distribution for larger NW
and NF radii of 600 nm and 800 nm, respectively. Here, the SPP magnetic field
has three maxima, which clearly shows that the SPPs interfere and form a standing
wave at the interface. In this case, 18.5% and 42.5% of the incident power are
respectively converted into the TM01 and the higher-order TM0k modes of the NF,
while R ' 3% and S ' 36%. We have verified that R can also become large
when the NW radius is not optimized for supporting an SPP standing wave at the
NW-NF interface. Thus, a simple analysis based on mode-matching of the two
guides (Snyder and Love, 1983) of Figure 4.27a only predicts η ' 87% because it
fails to account for the behavior of SPPs.

Conversion efficiency

Next, we investigate the application of aluminum (Palik and Ghosh, 1998), silver
and gold (Lide, 2006) NWs for operation at various wavelengths of interest in the
ultraviolet, visible, and near infrared spectral regimes. We first found the radii
by maximizing η for a given wavelength using a mode-matching approach (Sny-
der and Love, 1983) and then applied the FD-TD technique to optimize them in a
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Figure 4.28: (a) and (b) Time-averaged magnetic field of a silver NW coupled to a
silica NF for two different sets of radii (see text for details). The wavelength is set to
λ=633 nm.

rigorous manner, by scanning the radii around the previously estimated values.
Figure 4.29a summarizes the results for an aluminum NW with emphasis on the

ultraviolet region, where a rapid conversion of SPPs and photons becomes more
critical due to the very short SPP propagation length. The bottom panel plots the
values of the NW and silica-NF radii corresponding to each optimized case. We
find that even at a wavelength as short as λ = 266 nm, η can reach 89% if the
NF and NW radii are respectively chosen to be 158 nm and 68 nm, for which
the SPP propagation loss in the NW amounts to 3.62 dB/µm. Figure 4.29b shows
that for the case of silver NW, η increases from 91% to 98%, while reflection R
decreases from 2.1% to 0.4% as the wavelength grows over a spectral range greater
than 500 nm. If silver is replaced by gold, η, R and the corresponding radii yield
similar values and trends. We note that around the telecommunication wavelength
of λ =1550 nm, a gold NW transmits nearly 100% of the power to the NF. The
results for the opposite propagation direction are very similar (not shown).

Scaling with the refractive index

Variation of the NF material can be used to engineer the coupling device for match-
ing the confined SPP modes on thin NWs. As inferred from Figure 4.28 the opti-
mal radius of the NW can be reduced by a high-refractive-index NF also because
the SPP standing wave on the coupling interface gets compressed by the larger
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Figure 4.29: Conversion efficiency η, reflectivity R and optimal radii of the NW
and NF as a function of wavelength. (a) aluminum, (b) silver, and (c) gold NW.

wavenumber. Figure 4.30a shows the mode conversion properties for a gold NW
at λ=1550 nm as a function of the refractive index of the NF. The optimal radii
of the NW and NF decrease and converge to nearly the same value for larger NF
refractive indices, while in each case η can be optimized beyond 99%.
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Figure 4.30: (a) η and optimal radii of a gold NW and NF as a function of the NF
refractive index at λ=1550 nm. (b) η for a silver NW of radius 164 nm, coupled to a
silica NF of radius 342 nm. (c) η for a gold NW of radius 180 nm coupled to a silicon
NF of radius 208 nm.

Bandwidth

As a last important property of concern, we examined the bandwidth of η for a set
of fixed NW and NF radii. Figure 4.30b and c display η for a silver and a gold NW
coupled to a silica NF in the visible and in the near-infrared range, respectively.
These results demonstrate that bandwidths greater than 150 nm are fully within
reach for over 90% conversion of SPPs to photons and vice versa.

In summary we have shown that confined SPPs of a NW can be converted
into guided photons of a dielectric nanofiber with a very high efficiency and large
bandwidth using a simple butt-coupling scheme. For a given wavelength between
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the visible and the near infrared spectral range, one can always obtain η larger than
95% by an appropriate choice of radius and material of the NW and NF. We have
found that moulding of SPPs at the NW-NF interface plays a fundamental role in
achieving these performances.

4.3.3 Coupling to a focused beam

Interfacing optical antennas with focused light is also very important. The main
reason is that free-space beams are more suitable than optical fibers for propagating
ultrashort pulses. Furthermore, the optical alignment is easier because it does not
require physical contact with the antenna. Here we want to replace the dipole
antenna discussed in Sec. 4.3.1 with a directional one.

Reflection and Directional Emission

We first consider the reflection and radiation of TM0 SPPs when they reach the end
of a semi-infinite metal NW. In contrary to butt-coupling with a dielectric nanofiber
and free-space coupling (Gordon, 2009; Li et al., 2009), here we placed a semi-
infinite dielectric at the NW termination. Besides holding the NW, the substrate
changes the reflection and radiation properties of SPPs. Figure 4.31a sketches the
situation for a gold (Lide, 2006) NW on a glass substrate (refractive index n=1.5)
together with the simulation layout. Our calculations were carried out using the
BOR-FD-TD method. We chose a wavelength of λ = 633 nm, keeping in mind that
these results are generally valid over a broad spectral range if the NW radius is
properly scaled (Chen et al., 2009; Gordon, 2009).
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Figure 4.31: (a) Layout of a semi-infinite gold NW in air on a glass substrate.
(b) Reflection as a function of the NW radius for different metals and substrates. In
(b) the vacuum wavelength is 633 nm. In (a) the solid red line indicates the source
position.

A SPP is launched on the gold NW and when it reaches the NW end it can be
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reflected into the same SPP mode as well as scattered in the forward or backward
directions. Figure 4.31b displays the amount of reflection for different metals and
substrates, showing that it is minimized for certain values of the NW radius. Fig-
ures 4.32a and b plot the time-averaged magnetic field at two reflection minima
corresponding to a gold NW on glass with radii of 160 nm and 340 nm, respec-
tively. It turns out that the NW facet supports a standing wave (Chen et al., 2009),
which leads to a directional radiation pattern with a profile determined by the field
near the NW facet. There is no radiated power along the z-axis, a result that sim-
ply stems from the spatial symmetry and polarization of TM0 SPPs. Figure 4.31b
also shows that when gold is replaced by silver (Lide, 2006) the NW reflection and
emission are almost the same.

We then investigated the effect of changing the dielectric substrate. For example,
when the refractive index is set to nb = 2, reflections increase and the minima shift
towards shorter NW radii. This is a further indication that the standing wave on the
NW facet plays an important role in lowering reflection, as we found for the case
of butt-coupling with a dielectric nanofiber. We have also considered the amount
of reflection that is not channeled into SPPs and found that it can be negligible.

In summary, when SPPs reach the NW end they radiate in the forward direction
with a very high efficiency if, for a given wavelength, the NW radius is appropri-
ately chosen. Furthermore, the radius can be reduced by increasing the refractive
index of the supporting substrate, but at the cost of increasing reflection.
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Figure 4.32: Time-averaged magnetic field for a gold NW on glass (refractive index
nb = 1.5) with radii of (a) 160 nm and (b) 340 nm. The vacuum wavelength is 633
nm and the solid red lines indicate the source position.

Optimizing the beam parameters

Here we are interested in the conversion of focused beams into SPPs of metal NWs.
Reciprocity tells us that if the out-coupling efficiency is high, the same holds for
the opposite direction. However, one has to clarify what beam profile should be
used to perform this task. We thus considered the near field obtained from the
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BOR-FD-TD calculations and transformed it to the far field. In the far region the
field is a spherical transverse wave polarized along θ since the ϕ component must
be zero by symmetry considerations.

f
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reference
plane

Figure 4.33: Matching the NW radiation pattern with a FRB. A radially-polarized
beam RB is focused by an aplanatic lens onto the NW. The filled red curves sketch
the intensity profile of a RB and the reference plane represents the integration domain
used for the near-to-far-field transformation of the field radiated by the SPPs.

In the spherical coordinates (r, θ, ϕ) we consider the Gaussian reference sphere
GRS to interface the NW with the optical focusing system, as sketched in Fig-
ure 4.33. The polarization and spatial properties of the field on the GRS suggest
that a good candidate for coupling optical energy in the NW would be a radially-
polarized beam (Quabis et al., 2001). Its electric-field profile at the beam waist is
given in Eq. (4.17). Figure 4.33 depicts how this enters the optical system to reach
the GRS with a transformed field

E(d, θ) = Eo exp(−d2 sin2 θ/2)d sin θ
√

cos θθ̂, (4.26)

where d = f /w, θ̂ is the unit vector, and
√

cos θ is the apodization function for an
aplanatic system (Richards and Wolf, 1959). f is the lens focal length, which corre-
sponds to the radius of the GRS, and w is the beam waist. The idea is to optimize
the beam parameter d such that the FRB matches the SPPs radiation pattern, whose
far field is given by Eq. (B.14) in Appendix B.1.5.

Figures 4.34a-d illustrate the calculated far field for different NWs and sub-
strates at λ = 633 nm. In Figure 4.34a the field of a gold NW on glass is maximum
at about θ = 18o when the radius is 160 nm, showing that the FRB does not need
to be tightly focused. Indeed, good overlap between the two fields is empirically
obtained by setting d = 3.1, a value that leads to moderate focusing even with
high-NA lenses (Quabis et al., 2001) and that exhibits a large ηinc (see Figure 4.23b).
Interestingly, the radiation pattern does not depend very much on the refractive in-
dex of the substrate if one tunes the NW radius to minimize reflections, as seen by
comparison of Figure 4.34a with b. An intuitive explanation is found if the NW
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is considered as an aperture of radius r. A larger nb increases the wavevector in

the forward direction kz =
√

(2π/λ)2n2
br − k2

ρ, but a smaller aperture increases the
span of the transverse wavevector kρ ∈ [0, 2π/r]. These effects compensate each
others and lead to a small change in the radiation pattern.
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Figure 4.34: Matching the field radiated by a NW with FRBs on the Gaussian
reference sphere. FRB (black solid curves) and the NW (red dots) on the GRS are
displayed for different parameters. The vacuum wavelength is λ = 633 nm, f = 1.8
mm and α = 90o.

As shown in Figure 4.34c, more directionality can be obtained by working with
higher-order standing waves (see Figure 4.31d). The peak of the radiation pattern
is now close to θ = 12o and its width is significantly narrower, but the radiation
pattern exhibits a secondary lobe. As one last representative case, Figure 4.34d
displays the SPPs radiation pattern for a silver NW on glass for a radius of 160
nm. The curve is very close to that of Figure 4.34a, as expected if one notes that
the reflection minima in Figure 4.31b occur for nearly the same NW radii. While
in Figure 4.34a the beam parameter d is set to overlap the NW and the FRB electric
fields for both small and large angles, in Figure 4.34d the optimization targets only
small angles. In the next section we will investigate how this affects the excitation
of SPPs in the NW.
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Conversion efficiency and bandwidth

Having found that a FRB can match the radiation pattern of SPPs in semi-infinite
metal NWs, we now assess the coupling efficiency in a more quantitative manner.
To this end, we computed the electromagnetic field of a FRB in the focal region (Mo-
jarad and Agio, 2009) and used it as a source for the BOR-FD-TD simulations.

Figure 4.35a shows the time-averaged magnetic field of a FRB in an infinite glass
background for d = 3.1 and NA=nb. Next, we performed BOR-FD-TD simulations
for gold and silver NWs on glass, varying d and the position of the focal spot with
respect to the NW facet. The conversion efficiency was calculated by taking the
ratio of the powers coupled in the SPP and in the incident FRB. To give more insight
on the conversion process, Figure 4.35b displays the time-averaged magnetic field
for the case of a FRB impinging on a gold NW on glass for a radius of 160 nm,
d = 3.1, and the focal spot is 100 nm before the NW end facet. The beam is
partially reflected, but the color scale shows that most of the energy is coupled into
the SPP mode. Moreover, the field pattern confirms that the excitation of a standing
wave on the NW facet plays a very important role in the conversion of photons into
SPPs.
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Figure 4.35: (a) Time-averaged magnetic field for a FRB in an infinite glass back-
ground (d = 3.1, refractive index nb = 1.5). (b) BOR-FD-TD simulation for a FRB
incident on a gold NW on glass with r = 160 nm. The beam parameter is d = 3.1
and the focal spot is 100 nm before the NW facet. The white lines sketch the posi-
tion of the substrate and the NW for the coupling problem. The z coordinate is with
respect to the focal spot and the vertical red lines indicate the source position.
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Tolerance and bandwidth

Figure 4.36a shows that for both gold and silver NWs the efficiency is about 90%
if the NW end is close to the focal spot and it remains larger than 60% even 400
nm away from the optimal position. The maximum does not occur exactly when
the NW facet is in focus because the glass-air interface changes the properties of a
focused beam (Ling and Lee, 1984). Choosing d = 3.6 yields similar performances
to the case for d = 3.1, suggesting that the FRB has to be optimized in the peak re-
gion. Therefore, lenses with a lower NA shall not affect these results. For example,
in Figure 4.34c the field amplitude of the FRB at θ = 45o is about 10% of the max-
imum (1% for the intensity), meaning that an NA of 0.7 in air would be enough
to couple most of the beam energy into the SPP. Figure 4.36b confirms that NW
radius and operating wavelength are not independent from each others since the
coupling efficiency drops when the radius departs from the value that minimizes
reflections (see Figure 4.31b). Nonetheless, this analysis indicates a bandwidth of
more than 50 nm if the coupling efficiency has to be larger than 80%.
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Figure 4.36: (a) Coupling efficiency as a function of the NW position with respect
to the focal spot. (b) Coupling efficiency as a function of the NW radius, when the
NW position is 100 nm.

4.3.4 High-throughput SNOM

We now discuss an immediate consequence of efficient and broad-band SPP-photon
conversion between a NW and a NF from both directions. Over the last decade,
several reports have pointed out that SPPs can be focused tightly to nanoscopic
regions at metallic tips (Babadjanyan et al., 2000; Keilmann, 1999; Stockman, 2004).
This phenomenon can indeed revolutionize high-resolution scanning near-field op-
tical microscopy, which has suffered from a very low transmission through small
apertures (Novotny et al., 1995). However, so far there has been no viable approach
for feeding optical energy into the SPP mode of the NW with a high efficiency. The
device concept sketched in Figure 4.37 provides an ideal solution for simultane-
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ous intense and localized illumination as well as efficient collection. Furthermore,
it is fully compatible with both state-of-the-art nanofabrication (De Angelis et al.,
2008) and scanning implementations of fluorescence, Raman, or other nonlinear
nanoscopies (Ichimura et al., 2004; Sánchez et al., 1999).
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Figure 4.37: Schemes of a (a) fiber and (b) cantilever-based high-throughput
SNOM.

The efficient excitation of SPPs in NWs by a focused radially polarized beam
can also be immediately transferred to nanocones. Figure 4.37b sketches a possible
implementation of a cantilever-based high-throughput SNOM. The radially polar-
ized beam is focused by a lens onto the nanocone base. The dielectric interface
between the lens and the cantilever has a small effect on the beam profile, which
if necessary can be compensated by placing a solid-immersion lens. The energy is
then converted into SPPs and nanofocused. Since the tip apex is out of focus, the
direct light of the FRB is almost negligible in the scanning region. The device can
also be operated in the collection mode, where SPPs generated by a local source
near the nanocone tip propagate along the nanocone and radiate with a directional
pattern towards the collection optics. The weak resonant character of the stand-
ing wave adds the important advantage of large operation bandwidths, which are
sufficient for collecting and launching fs pulses in the device.

Nanofocusing

Nanofocusing refers to the concentration of optical energy carried by a SPP wave
while it propagates along a tapered metal NW (Babadjanyan et al., 2000; Gon-
charenko et al., 2007, 2006a,b; Issa and Guckenberger, 2007b; Keilmann, 1999; Stock-
man, 2004; Vogel and Gramotnev, 2007). Since the NW does not have a cutoff for
the SPP wave, the latter can travel towards the tip even when the nanocone radius
has become much smaller than the wavelength. Large field enhancements can be
achieved if the cone apex is sufficiently sharp (Babadjanyan et al., 2000; Stockman,
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2004), as shown in Figure 4.39. However, since nanocones suffer from propagation
losses, a rapid and efficient conversion of SPPs into photons and vice versa is re-
quired. We thus exploit the previous findings to replace semi-infinite cones with
truncated ones.

Throughput and resolution

Here we focus the attention on the field enhancement and the spatial resolution
of the SNOM device. To this purpose we consider the normalized energy density
W/WBL, where WBL = Pinck2/(3πc) is the maximum achievable by far-field focus-
ing for a given incident power Pinc and wavevector k (Bassett, 1986). Since in our
model the FRB is propagating from a glass substrate, we set WBL for a homoge-
neous medium with a refractive index equal to 1.5.

We then chose a gold nanocone with a base radius of 160 nm and a tapering
angle of 8o illuminated by a FRB with d = 3.1. The tip apex was a paraboloid
(z = ρ2/(3.2 nm)) and the cantilever was modeled as a semi-infinite glass sub-
strate. Figure 4.38a plots W/WBL at a distance z = 1115 nm from the cantilever,
which corresponds to a plane 5 nm away from the cone tip. A zoom of W/WBL

is shown in Figure 4.38b, where the contributions associated with the longitudinal
Ez and transverse (Eρ) electric field components are also indicated. The FWHM
for W/WBL is of the order of 10 nm and it is primarily due to Ez. The maximum
value of W/WBL reveals that for the same Pinc the nanocone allows energy concen-
trations that are nearly 1000 times larger than what can be achieved by far-field
focusing. Furthermore, the total energy at the observation plane is about 65% of
that near the focus of the FRB, proving that a large fraction of optical energy can
be transported to the nanoscale. Recent experiments on SPP excitation in NWs by
adiabatic compressors have indeed found similar efficiencies in the near-infrared
spectral range (Verhagen et al., 2009).

At last it is interesting to note how the features of a FRB can be exploited to
minimize background illumination. To this aim, Figure 4.38b displays W/WBL

obtained without gold cone at different distances from the cantilever and for the
same incident FRB. We found that near the cone tip (z = 1100 nm) W/WBL is more
than two orders of magnitude smaller than in the focal region (z = 20 nm). This
corresponds to a strong background suppression compared to illuminations where
the incident beam is focused on the cone tip.

Collection efficiency

As a concrete example, we considered illumination at λ=730 nm and fluorescence
collection at λ =780 nm from an emitter with a transition dipole moment oriented
along the tip axis and embedded 5 nm below surface of a sample with a refractive
index of 1.7. The excitation light was launched from a NF of 410 nm radius, coupled



4.3 Interfacing optical antennas with optics and photonics 129

-1000 -500 0 500 1000
Lateral Position (nm)

200

400

600

800

1000
No

rm
ali

ze
d 

En
er

gy
 D

en
sit

y

z=1115 nm
(cone)
z=1100 nm
z=400 nm
z=20 nm

x 2000

(a)

-30 -20 -10 0 10 20 30
Lateral Position (nm)

200

400

600

800

1000

No
rm

ali
ze

d 
En

er
gy

 D
en

sit
y

W/WBL
WEz
WEρ

(b)

Figure 4.38: (a) Normalized energy density W/WBL in a plane located at z = 1115
nm from the cantilever when a gold cone is illuminated by a FRB under the same
conditions of Figure 4.36b (see text for details). The plane is 5 nm from the cone tip.
The graph shows also W/WBL for various z when the cone is not present. (b) Zoom of
(a) for the case where a gold cone is present. The contributions to W/WBL due to the
two electric field components Ez and Eρ are indicated as WEz and WEρ, respectively.

to a gold nanocone with an initial radius of 200 nm, and an opening angle of 14o,
which was terminated by a paraboloid. The tip was kept at a separation of 5 nm
from the substrate. In Figure 4.39b we plot the electric field intensity normalized
to that of the source in the NF on a logarithmic scale for a zoom of a small region
around the tip. The intensity is enhanced by more than 5 orders of magnitude and
exhibits strong localization. Figure 4.39c illustrates the emission process. We find
that the radiated power is funneled in the SPP and is then converted into the TM01

mode of the NF with an overall collection efficiency of about 70%, which is only
limited by propagation losses and radiation along the nanocone.

We demonstrated two highly efficient schemes for converting free-space pho-
tons into SPPs in NWs, and combined it with nanofocusing to concentrate optical
energy below the diffraction limit with a high throughput. Our approach relies on
the directional radiation and low reflection of SPPs at the NW end, which occur if
the NW radius is chosen according to the operation wavelength and the supporting
substrate. These properties are associated with the formation of a standing wave at
the NW facet (Chen et al., 2009). Furthermore, by analyzing the radiation pattern
and polarization in the far region we identified weakly-focused radially-polarized
beams as the best way to excite SPPs from the NW facet (Chen et al., 2010a). We
showed indeed that conversion efficiencies of 90% can be reached by optimizing
the beam parameters and the position of the NW in the focal region.

In contrast to previous works on metal nanocones and radially-polarized light,
which do not focus the beam on the nanocone base (Antosiewicz et al., 2009; Baida
and Belkhir, 2009; Descrovi et al., 2005; Fleischer et al., 2008), our scheme yields
a better conversion efficiency and lower background noise caused by direct illu-
mination of the sample. These results were presented for λ = 633 nm, but any
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Figure 4.39: (a) Normalized distribution (logarithmic scale) of the electric field
intensity near a substrate when photons are launched from the NF into the NW
cone. (b) Time-averaged magnetic field radiated by a single emitter embedded in the
substrate (see text for details).

wavelength from the ultraviolet to the near-infrared range would work by adjust-
ing the NW radius and composition (Chen et al., 2009).

For the huge intensity that can be achieved at the nanocone tip and the large
operation bandwidth, we envision not only better implementations of fluores-
cence, Raman and other nonlinear (time-resolved) nanoscopies (Hartschuh, 2008;
Ichimura et al., 2004; Sánchez et al., 1999), but also applications in all areas that
would benefit from high-throughput concentration of optical energy in nanoscale
spots and fs time scales (Zavelani-Rossi et al., 2008). Efficient, broad-band and low-
loss conversion of confined SPPs to guided photons is also key for a range of other
applications such as high-resolution color imaging (Kawata et al., 2008), on-chip
manipulation and processing of quantum optical signals (Chang et al., 2006, 2007b;
Domokos et al., 2002), and actuation or sensing of physical, chemical, or biological
processes at the molecular level (Zheng et al., 2009).



Chapter 5

Towards nanoscale cavities

In the previous chapters we have discussed the importance of light confinement
for improving light-matter interactions and for enhancing quantum effects like the
modification of the spontaneous emission rate (Purcell, 1946). For optical antennas
we found that fluorescence can be increased by orders of magnitude and that the
dipolar radiation pattern of a single molecule can be converted into a well-defined
optical mode. In the past decades these phenomena have been extensively inves-
tigated and applied in the framework of optical resonators (Benisty et al., 1999;
Vahala, 2003). In particular, in the late ’90s progress in nanotechnology has en-
abled the fabrication of miniaturized cavities with mode volumes of the order of
one cubic wavelength and very large quality factors (Akahane et al., 2003; Painter
et al., 1999; Song et al., 2005).

Obtaining resonators with even smaller dimensions is however very difficult
without degrading their performances. The problem is that dielectric mirrors
require several Bragg layers to achieve a high reflectivity. On the other hand,
metal mirrors exhibit large absorption losses at optical frequencies. Nonethe-
less, nanoscale metallic cavities are being explored for the realization of ultrasmall
lasers (Hill et al., 2007; Kroekenstoel et al., 2009; Nezhad et al., 2010; Noginov et al.,
2009; Oulton et al., 2009), and for controlling single-photon sources (Maksymov
et al., 2010). These designs, however, insist on using metals as reflective mirrors to
trap light, like in a standard Fabry-Pérot cavity. In parallel, theoretical works have
discussed the enhancement of light-matter interaction by a metal nanocavity using
the mode-volume picture and the Purcell factor (Koenderink, 2010; Kuttge et al.,
2010; Maier, 2006; Oulton et al., 2008). They somewhat disagree on the definition of
a mode volume because a dissipative environment does not have normalizable true
modes (Dutra and Nienhuis, 2000), but they all point out that a nanoscale mode
volume can compensate the low quality factor caused by absorption losses. These
settings are indeed very attractive for the realization of nanoscale devices for light
generation and signal amplification (Bergman and Stockman, 2003; Noginov et al.,
2009; Protsenko et al., 2005; Stockman, 2010)

Motivated by these developments, in this chapter we make a connection be-
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tween field-enhanced spectroscopy, antenna theory and cavity quantum electro-
dynamics. Our aim is to derive simplified antenna models to express figures of
merit and scaling laws that can be compared with the common parameters of a
resonator, i.e. quality factor, mode volume, device footprint, and Purcell factor.
Furthermore, we pay attention to the antenna efficiency and study how it affects
the other performances.

5.1 From antenna theory to nanoscale resonators

In this section we briefly review the formulation of cavity quantum electrodynam-
ics in the perturbative regime. Next, we discuss the relationship between the Pur-
cell factor and the modification of the spontaneous emission rate by optical anten-
nas, with emphasis on the local density of photonic states. We then establish a
connection between the field enhancement and the near-field zone of a radio-wave
antenna.

5.1.1 Cavity quantum electrodynamics

The radiative properties of an atom are not intrinsic, but they also depend on
the electromagnetic environment and on its coupling with the atom. These two
parameters can be strongly modified by a high-finesse cavity, where the contin-
uous of electromagnetic modes is redistributed in frequency and space. Under
these circumstances a number of phenomena associated with the quantum nature
of light can be observed. These include, for example, the enhancement or inhibi-
tion of spontaneous emission, vacuum Rabi splitting, and quantum collapse and
revivals (see Haroche and Kleppner, 1989, for an introductory review).

Here we only consider the situation where light-matter interaction can be
treated in the perturbative regime, which is the same level of theory used in the pre-
vious chapter for optical antennas. Furthermore, the cavity has well defined modes
that lead to the canonical formulation of cavity QED. In what follows we will not
discuss the technical issue of the field quantization in the presence of absorptive
and dispersive media (Knöll et al., 2001; Wylie, 1986).

Modification of the spontaneous emission rate

Purcell (1946) was the first to recognize that the spontaneous emission rate of an
excited TLS can be significantly enhanced when the transition is on resonance with
the mode of an optical cavity. For a TLS the transition rate from the excited |2〉 to
the ground |1〉 state is given by the Fermi golden rule (Loudon, 2000)

Γo =
2π

h̄ ∑
µ

|〈1, µ|d · E(ro)|2, 0〉|2 δ(h̄ω − h̄ωµ), (5.1)
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where µ represents a photon mode of energy h̄ωµ, d is the dipole moment, E(ro) is
the electric field at the TLS location and h̄ω is the transition energy of the TLS. In
free space the quantized electromagnetic field is expressed by

E(r) = i ∑
µ

√
h̄ωµ

2ε0V
eµ

(
âµeikr − h.c.

)
, (5.2)

where h.c. means Hermitian conjugation of the preceding term. V is the quanti-
zation volume, eµ is the polarization versor and âµ is the destruction operator for
one photon in the mode µ (Loudon, 2000). Using Eq. (5.2) in Eq. (5.1) we obtain

Γo =
2π

h̄ ∑
µ

h̄ωµ

2ε0V
|d · eµ|2δ(h̄ω − h̄ωµ) =

2π

3ε0
ωd2go(ω) =

d2ω3

3πε0h̄c3 . (5.3)

go(ω) is the density of photonic states (DOS) in vacuo for one polarization and it
is given by go(ω) = ω2/(2π2h̄c3).

When the TLS is inside a resonator Eq. (5.2) needs to be replaced by (Haroche,
1992)

E(r) = i ∑
µ

√
h̄ωµ

2ε0

(
âµαµ(r)− h.c.

)
, (5.4)

where αµ(r) is the mode field profile. With Eq. (5.4) the spontaneous emission rate
becomes

Γ =
2π

h̄ ∑
µ

h̄ωµ

2ε0
|d · αµ(ro)|2δ(h̄ω − h̄ωµ). (5.5)

This expression is the basis for the calculation of spontaneous emission rates in a
microcavity.

Purcell factor, mode volume and Q factor

We now assume that the transition frequency is resonant with only one mode αµ(r)
and that the dipole moment is parallel to the electric field. Next, the atomic line is
much narrower than the cavity mode and the latter has a Lorentzian profile with a
FWHM γµ. Under these circumstances the DOS reads

gµ(ωµ) =
2

πh̄γµ
=

2Qµ

πh̄ωµ
, (5.6)

where Qµ = ωµ/γµ is the quality factor. The mode volume for the position ro is
defined as Vµ = |αµ(ro)|−2 and Eq. (5.5) can be expressed in the form

Γµ =
2d2Qµ

ε0h̄Vµ
= FΓo, (5.7)
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where F is the Purcell factor

F =
3

4π2 λ3 Qµ

Vµ
. (5.8)

The condition for having a large Purcell factor, hence a strong enhancement of
the spontaneous emission rate, is that the cavity has a high Q factor and a small
mode volume. In place of the Purcell factor one can define the local DOS (LDOS)
ρµ(ro, ω) = gµ(ω)|αµ(ro)|2 and express the modification of the spontaneous emis-
sion rate as

Γµ =
πd2ω

ε0
ρµ(ro, ω) =

ρµ(ro, ω)
ρo(ro, ω)

Γo, (5.9)

where ρo(ro, ω) is the LDOS in vacuo. Note that the mode volume is often ex-
pressed in units of the cubic wavelength. We do so in the following sections and
write Vm = (λ/nb)3Vµ, where the refractive index nb is added to generalize the
formula to dielectric media.

5.1.2 Field-enhanced spectroscopy

The theoretical models used for field-enhanced spectroscopy are often based on
the semi-classical theory of light-matter interaction (Metiu, 1984; Moskovits, 1985).
Moreover, optical resonators are replaced by interfaces and metal nanoparticles.
These are systems that cannot be easily described with the standard toolbox of cav-
ity QED, despite some recent attempts (Savasta et al., 2010; Trügler and Hohenester,
2008).

Modification of the spontaneous emission rate

First, we want to show the connection between the formalism of Fermi golden
rule, the modification of the LDOS and the formulae used in Chapter 4. In Ap-
pendix B.2.2 we have discussed the calculation of the spontaneous emission rate
using the expression

Pt = −1
2

∫
V

Re {j∗(r, ω) · E(r, ω)}dV, (5.10)

where Pt is the total power dissipated by the current density j(r, ω). For an in-
finitesimal oscillating dipole p located at ro one writes j(r, ω) = −iωpδ(r− ro) and
the previous equation takes the form

Pt =
ω

2
Im {p∗ · E(ro)} . (5.11)

To make the connection with the modification of the LDOS we recall that the electric
field radiated by a dipole source at ro is related to the Green tensor G by (Jackson,
1999)

E(r) =
1
ε0

ω2

c2 G(r, ro; ω) · p (5.12)
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and that (Chance et al., 1978)

ρ(ro, ω) =
6ω

πc2

[
np · Im {G(ro, ro; ω)} · np

]
, (5.13)

where np represents the dipole orientation. By comparing Eqs. (5.11) and (5.13) we
obtain

Pt =
πω2

12ε0
|p|2ρ(ro, ω), and

Pt

Po
r

=
ρ(ro, ω)
ρo(ro, ω)

, (5.14)

where Po
r and ρo(ro, ω) are the radiated power and the LDOS without antenna,

respectively. Note that the change in the LDOS affects the total decay rate. The
radiative one is obtained by multiplying Γt by the antenna efficiency.

Field enhancement

For an antenna that preserves the dipolar radiation pattern of the emitter the mod-
ification of the radiative decay rate can be related to the field intensity enhance-
ment (Taminiau et al., 2008b). For an incident amplitude Eo, the electric field near
the antenna tip reads (Wokaun et al., 1982)

Etip = ξEdip + Eo ' (1− L)χEo, (5.15)

where ξ represents the so-called lighting rod effect and Edip is the near field caused
by the electric dipole induced in the antenna Moskovits (1985). The expression
can be reformulated using χ, the antenna susceptibility, and L, a geometrical factor
related to the lighting rod effect. Therefore, the change in the spontaneous emission
rate can be written as

Pt

Po
r

=
∣∣∣∣Etip

Eo

∣∣∣∣2 1
ηa

, (5.16)

where ηa is the antenna efficiency (see Eq. (4.9)).

5.1.3 Antenna theory

Now that we have established a relationship between the perturbative regime of
cavity QED and the modification of the spontaneous emission rate by optical an-
tennas, we wish to investigate the connection between the field enhancement and
conventional antenna theory.

Infinitesimal dipole antenna

Let us consider an infinitesimal dipole with length l � λ driven by a current
Io. In the spherical coordinates (r, ϕ, θ) the electric field radiated by the antenna
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reads (Balanis, 2005; Jackson, 1999)

Er = Z
Iolk2 cos θ

2π(kr)2

(
1− 1

ikr

)
eikr (5.17)

Eθ = −iZ
Iolk2 sin θ

4πkr

(
1− 1

ikr
− 1

(kr)2

)
eikr (5.18)

Eϕ = 0, (5.19)

where Z ' 376 Ohms is the impedance of free space.

Near-field and radiation zones

The electric field contains terms that are inversely proportional to kr and others
that decay more rapidly. In antenna theory one defines the complex Poynting
vector (Balanis, 2005)

S =
1
2

E×H∗. (5.20)

Next we consider a spherical surface of radius r and compute the power flow

P =
1
2

∫
4π

S · n r2 dΩ = Pr + iPi. (5.21)

Pr is the power radiated by the antenna, whereas iPi is purely imaginary and there
is no time-average power flow associated with it. It is in fact called reactive power
and it stands for the electromagnetic energy stored near the antenna. From Poynt-
ing theorem one can write

Pi = 2ω(We −Wm), (5.22)

where We and Wm are the electric and magnetic energy densities in the radial
direction, respectively. The relationship between Pi and the field enhancement near
an optical antenna can be understood by considering the two quantities in Eq. (5.21)
for an infinitesimal dipole antenna, which read (Balanis, 2005)

Pr = Z
π

3

∣∣∣∣ Iol
λ

∣∣∣∣2 , Pi = Z
π

3

∣∣∣∣ Iol
λ

∣∣∣∣2 1
(kr)3 . (5.23)

Pi decreases with (kr)3 and vanishes in the far field, whereas Pr is constant. The
reactive part of the antenna radiation field can be associated with the field enhance-
ments exhibited by metal nanoparticles. Since these have dimensions smaller than
the wavelength, it turns out that near the metal surface Pi � Pr. By reciprocity,
we can argue that the incoming radiation becomes reactive in the proximity of the
nanoparticle and it gives rise to a concentration of electromagnetic energy.
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5.2 Electrically small antennas

We now discuss some features of optical antennas starting from electrically small
antennas. Their name stems from the fact that the characteristic dimensions are
much smaller than the wavelength of the field they radiate. Since antennas are
devices conceived to couple to free space waves, one expects limitations upon size
reduction. These have been extensively studied since the end of World War II, when
the miniaturization of radar systems emerged as a strategic warfare technology. In
what follows we introduce these limits and discuss their role in determining the
performances of optical antennas.

5.2.1 Fundamental limitations

The theory of electrically small antennas has been developed by several authors.
Here we go after the works of Chu (1948), Hansen (1981) and McLean (1996) and
focus on the relationship between the quality factor and the reactive energy as a
function of the antenna dimensions.

Quality factor

Chu was the first to use the Q factor as a figure of merit to asses the performance
limitations of electrically small antennas. For an antenna the Q factor is defined as

Q = 2ω
max{We, Wm}

Pr
, (5.24)

where We and Wm are the time-averaged electric and magnetic energies associated
with the non-propagating part of the electromagnetic field generated by the an-
tenna. For electrically small antennas it turns out that We is much larger than Wm,
as expected for an oscillating electric dipole (Jackson, 1999).

Chu considered an antenna enclosed in virtual sphere of radius kr and com-
puted the minimum Q factor that it could have. The calculation can be conveniently
carried out by a multipole expansion of the electromagnetic field, where the stored
energy refers to the non-propagating power external to the sphere. For a linearly
polarized antenna the theoretical minimum is given by (McLean, 1996)

Q ' ηa

(
1

(kr)3 +
1
kr

)
. (5.25)

We have added the antenna efficiency ηa to facilitate the comparison with optical
antennas. For radio-wave antennas ηa can be assumed close to unity. It is found that
the Q factor goes to infinity when kr approaches the value of zero, meaning that
an antenna cannot be made indefinitely small without compromising its radiation
and bandwidth performances. Note that for an infinitesimal dipole antenna with
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length 2r much larger than its cross section 2a, the Q factor,

Q ' 6 log(r/a)− 1
(kr)2 tan(kr)

, (5.26)

is larger than that of Eq. (5.25). In fact, the dipole antenna exhibits worse perfor-
mances because it does not fully exploit the volume of the virtual sphere (Hansen,
1981). When an electrically small antenna approaches dimensions where kr � 1,
the Q factor gets very large and the system behaves as a subwavelength resonator.
It is worth pointing out that in a microcavity the electromagnetic energy is pre-
vented from escaping into free space by high-reflectivity mirrors, while here it is
stored because the antenna becomes a very inefficient radiator.

Near-field zone

Interestingly, the increase in the Q factor corresponds to a decrease in the antenna
volume. The latter is also associated with the field enhancement, as discussed in
Section 5.1.3. We thus conclude that an electrically small antenna wins regarding
another important feature of an optical resonator, namely its mode volume. This
can indeed be related to the field enhancement, as pointed out by Maier (2006)
and other authors. We therefore anticipate that the limitations of electrically small
antennas become advantageous for enhancing the radiation properties of nearby
quantum emitters.

5.2.2 Figures of merit for optical antennas

In Chapter 4 we have presented antenna designs that could significantly improve
light-matter interaction. In place of rigorous electrodynamic calculations, it is use-
ful to present an approximate but general model that can be used to gain insight
on these concepts and to make the connection with antenna theory and quantum
electrodynamics in the perturbative regime.

The model

We consider a prolate spheroidal nanoparticle with long a and short b semi-axes,
whose physical volume is given by Vph = 4πab2/3. The antenna is made from a
Drude metal with dielectric function

ε(ω) = εb −
ω2

p

ω(ω + iγ)
, (5.27)

where it is convenient to choose εb equal to that of the surrounding medium.
ωp and γ are the plasma and damping frequencies, respectively (Ashcroft and
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Mermin, 1976). The optical properties of the antenna can be worked out starting
from a polarizability model with radiative corrections (Wokaun et al., 1982).

α ' 2πab2

3L
ωo

ωo −ω − i
(

γ

2
+ k3 ab2

9L
ωo

) , (5.28)

where ωo = ωp
√

L/εb and γ + 2k3ab2ωo/9L = Γa are the antenna resonance fre-
quency and linewidth, respectively. Note that Γa has two contributions. The first
term represents absorption by the Drude metal and the second one radiation by
the antenna. In Eq. (5.28) we have introduced the geometrical factor L (Bohren and
Huffman, 1983), which for a prolate spheroid reads

L(e) =
1− e2

e2

(
−1 +

1
2e

log
(

1 + e
1− e

))
, (5.29)

where the eccentricity e reads e2 = 1− (b/a)2 and AR=a/b is the aspect ratio. The
geometrical factor and the aspect ratio will be present in several of the following
expressions. Figure 5.1 plots L as a function of AR. For a sphere AR=1 and L
becomes equal to 1/3. For a prolate spheroid AR > 1 and the geometrical factor
tends to 0 when AR � 1.
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Figure 5.1: Geometrical factor L as a function of the aspect ratio AR. For a sphere
AR=1 and L takes the value of 1/3.

Figure 5.2 illustrates our antenna model and the coupling to a single molecule.
The latter has the resonance frequency equal to that of the antenna, but the emitter
linewidth Γm is assumed to be much smaller than Γa. Furthermore, the interac-
tion between the electromagnetic field associated with the optical antenna and the
molecule is parametrized by the vacuum Rabi frequency Ω (Cohen-Tannoudji et al.,
2004).

Antenna efficiency

We now derive the relevant antenna parameters starting from the efficiency ηa.
As discussed in Chapter 4, ηa depends on the antenna as well as on the position
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Ω

Γa Γm

Vph

Figure 5.2: A single molecule coupled to an optical antenna in the cavity QED
picture. Vph is the physical volume and it reads 4πab2/3 for a prolate spheroid, where
a and b are the long and short semi-axes, respectively. Γa and Γm are the antenna
and the emitter linewidths, respectively. The interaction strength is represented by
the Rabi frequency Ω.

and orientation of the emitter. To avoid these details a good approximation for
ηa is the ratio between the scattering Csca and the extinction Cext cross sections
of the antenna. This definition should not be considered a crude approximation,
but rather an upper bound that is very close to the realistic values obtained for
high-performance antennas (Mohammadi et al., 2009a). By using Eq. (5.28) into
Eqs. (2.24) we arrive at

ηa =
1

1 +
γ

ωp

9
√

εbL AR2

2(ka)3

. (5.30)

This formula shows that ηa decreases quite rapidly with the antenna volume,
whereas the dependence on material losses enters through the quantity

γ

ωp
' 1

160

√
4πa3

o
3

nρ, (5.31)

where ao is the Bohr radius, n is the electron density, and ρ is the resistiv-
ity (Ashcroft and Mermin, 1976). Figure 5.3 displays this parameter for selected
metals. Note, however, that these values are often given for a static electric field.
At optical frequencies the resistivity ρ can be quite different and the onset of inter-
band transitions may significantly affect the optical properties of the metal.

Figure 5.4 plots ηa as a function of the aspect ratio for different values of ka. For
a resonance wavelength of 600 nm ka = 0.5 corresponds to an optical antenna with
linear dimensions of the order of 100 nm. Moreover, we choose γ/ωp = 0.005 and
εb = 1 to approximate the performances of the antennas presented in Chapter 4. As
expected, ηa decreases with the aspect ratio and with ka. Nonetheless, for ka ' 0.5
the antenna efficiency is very large for a broad range of aspect ratios.
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Material T=273 K T=77 K 
Au 0.0024 0.0006 
Ag 0.0018 0.00036 
Al 0.0051 0.00063 
Cu 0.0022 0.00029 

Figure 5.3: Tabulated values of γ/ωp for selected metals (Ashcroft and Mermin,
1976). Lowering the temperature reduces the absorption losses by an amount that is
different for each metal.
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Figure 5.4: Antenna efficiency as a function of the aspect ratio plotted for three
different values of ka: 0.5 (blue), 0.4 (amaranth), 0.3 (sepia). γ/ωp = 0.005 for all
curves.

Quality factor

The Q factor can be easily obtained from the formula Q = ωo/Γa (Jackson, 1999).
Introducing the antenna efficiency leads to

Q = ηa
9L AR2

2(ka)3 . (5.32)

Figure 5.5 displays the Q factor as a function of the aspect ratio and ka. Note the
competition between the decrease of ηa in Figure 5.4 and the increase of the Q
factor with the aspect ratio. For ka � 1 absorption losses dominate and the Q
factor saturates to the value Q = (ωp/γ)

√
L/εb.

Field enhancement

For the calculation of the field enhancement we consider the position at one of the
two spheroid sharp ends. We start from Eq. (5.15) and replace ξ and Edip with
the values obtained through Eq. (5.28). In particular, the lighting-rod effect reads
ξ = 3AR2(1− L)/2 and Edip = 2αEo/a3. A few algebraic operations lead to the
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Figure 5.5: Quality factor as a function of the aspect ratio plotted for three different
values of ka: 0.5 (blue), 0.4 (amaranth), 0.3 (sepia). γ/ωp = 0.005 for all curves.

intensity enhancement

K =

(
9
2

ηa
AR2

(ka)3

)2

(1− L)2. (5.33)

Note that the (ka)6 dependence is compensated by the drop in the antenna effi-
ciency ηa. In fact, when ka approaches zero, K saturates to the value

Kka→0 =
(

ωp

γ

)2 (1− L)2

εbL
, (5.34)

which only depends on the material losses and the geometrical factor. Indeed
Figure 5.6 indicates that the intensity enhancement drops very rapidly when γ/ωp

increases and it becomes less dependent on the aspect ratio.
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Figure 5.6: Intensity enhancement as a function of the aspect ratio plotted for
different values of ka and γ/ωp: ka = 0.5 (blue), ka = 0.4 (amaranth), ka = 0.4
and γ/ωp = 0.05 (sepia). γ/ωp = 0.005 for all curves if not otherwise stated.
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Optical antennas are electrically small

We now compare the performances of optical antennas with the fundamental limi-
tations of electrically small antennas. The inset in Figure 5.7 depicts a nanospheroid
and an infinitesimal dipole antenna enclosed in the virtual radiating sphere of ra-
dius r. We also consider a nanosphere and an ideal electrically small antenna that
fulfills the Chu theory. The Q factor for these radiating systems is plotted in Fig-
ure 5.7 as a function of kr. As expected, the infinitesimal dipole exhibits worse
performances, because it does not exploit all the available volume to radiate en-
ergy. According to the Chu theory a metal nanosphere should be a more efficient
electrically small antenna, because it can fill the volume of the virtual sphere. In-
deed the Q factor of a nanosphere agrees very well with the result of Eq. (5.25)
when kr < 1. However, for kr � 1 the curve saturates to ωp/(

√
3γ).1 When the

nanosphere is replaced by a nanospheroid the Q factor increases. The reason is
that the available radiating volume is not fully exploited.
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Figure 5.7: Quality factor as a function of the radius of the radiating sphere for
an ideal electrically small antenna (black solid line), an infinitesimal dipole (red solid
line), and optical antennas (dashed lines). The latter are a nanosphere (black) and
a nanospheroid (red). We choose γ/ωp = 0.003 for the nanosphere, AR=3 and
γ/ωp = 0.05 for the nanospheroid, and r/a = 50 for the infinitesimal dipole
(see Eqs. (5.26) and (5.32)). The inset shows an infinitesimal dipole (brown) and
a nanospheroid (yellow) enclosed in the radiating sphere.

In summary, metal nanoparticles are electrically small optical antennas, agree
1ωp/

√
3 is known as the Fröhlich frequency and it represents the SPP resonance of a nanosphere

in the electrostatic picture (Bohren and Huffman, 1983).
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with the Chu theory and share the resulting limitations. These turn out to be very
important for optical antennas, because the fact that the Q factor and the reactive
energy increase when the antenna volume decreases may be exploited to enhance
light-matter interactions.

5.3 Optical antennas as nanoscale cavities

We have combined the theory of electrically small antennas with a polarizability
model of metal nanoparticles to derive figures of merit. Now we want to compare
them with those of optical microcavities. For our purpose we choose the following
cavity parameters: radiation efficiency, Q factor, mode volume Vm and footprint.
The latter represents the actual device volume Vph. Note that for a microresonator
Vph is typically much larger than the mode volume. Literature values for these
quantities are indicated in Figure 5.8 for the corresponding resonator models (Song
et al., 2005; Vahala, 2003). In what follows we consider the figures of merit for a
micropillar, a microsphere, a microtoroid, and two photonic crystals nanocavities.
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Figure 5.8: Figures of merit for optical resonators: Q factor, mode volume Vm and
physical volume Vph. Vm and Vph are both in units of the cubic wavelength (λ/nb)3,
where nb is the refractive index in the dielectric medium (adapted from Song et al.,
2005; Vahala, 2003).

Quantum efficiency

For a more direct comparison with optical resonators, we replace kr and the aspect
ratio with the physical volume Vph and obtain

ηa =
1

1 +
γ

ωp

3
4π2

√
εbL

Vph

. (5.35)
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Figure 5.9: Antenna efficiency as a function of the device footprint (physical volume
in units of the cubic wavelength). The curves refer to our antenna model for different
parameters: AR=1, γ/ωp = 0.005 (blue), AR=10, γ/ωp = 0.005 (sepia), AR=1,
γ/ωp = 0.0005 (amaranth). The filled circles refer to optical antennas, resonators
and a molecule. The colors indicate different antenna designs: single nanospheroids
(green), nanorods (amaranth), and nanorod pairs (sepia).

The curves plotted in Figure 5.9 correspond to different values of γ/ωp and of
the aspect ratio (see the figure caption for details). It is shown that ηa drops when
Vph is smaller than about 10−4 cubic wavelengths, a value that strongly depends
on γ/ωp. On top of these curves the filled circles refer to the antenna designs dis-
cussed in Section 4.2.2, namely single nanospheroids (green), nanorods (amaranth)
and nanorod pairs (sepia). Their ηa is obtained from FD-TD electrodynamic simu-
lations that excite the antenna using a dipole source. The data agree very well with
our model. The dependence of ηa on the antenna volume illustrates the competi-
tion between absorption and radiation losses and anticipates the conflict with the
enhancement of light-matter interaction, which requires an optical antenna with a
strong reactive behavior. For the sake of comparison we also indicate Vph and ηa

for optical resonators and a quantum emitter.

Quality factor

The Q factor is inversely proportional to the physical volume, but it is also affected
by the antenna efficiency, which takes into account the role of the absorption losses
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through γ/ωp.

Q = ηa
3

4π2
L

Vph
(5.36)
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Figure 5.10: Quality factor as a function of the device footprint (physical volume
in units of the cubic wavelength). The curves refer to our antenna model for different
parameters: AR=1, γ/ωp = 0.005 (blue), AR=10, γ/ωp = 0.005 (sepia), AR=1,
γ/ωp = 0.0005 (amaranth). The filled circles refer to optical antennas, resonators
and one molecule. The colors indicate different antenna designs: single nanospheroids
(green), nanorods (amaranth), and nanorod pairs (sepia).

Figure 5.10 compares the result of Eq. (5.36) with the antenna designs of Sec-
tion 4.2.2, as well as with our selection of optical resonators and a single molecule.
The Q factor of optical antennas is much smaller than the other systems and for
very small values of Vph it is determined by the absorption losses in the metal.
Since the response time is proportional to the Q factor, optical antennas might rep-
resent a unique opportunity for enhancing light-matter interaction and, at the same
time, meet the requirements of ultrafast optics. For example, a single molecule or
a ultrahigh-Q cavity like a microsphere have response times of the order of a few
nanoseconds. Resonators with a very small mode volume like photonic crystal
cavities can cope with picosecond pulses. Optical antennas offer the possibility of
working with a few femtosecond pulses. In this respect the next important point
of concern is whether antennas could increase light-matter interaction as much as
optical resonators.
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Spontaneous emission enhancement

The enhancement of the spontaneous emission rate is obtained from Eq. (5.16) upon
replacing the intensity enhancement with the expression given in Eq. (5.33). A few
more algebraic steps lead to

Γt

Γo
= ηa

9
16π4

(1− L)2

V2
ph

. (5.37)
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Figure 5.11: Enhancement of the spontaneous emission rate as a function of the
device footprint (physical volume in units of the cubic wavelength). The curves refer
to our antenna model for different parameters: AR=1, γ/ωp = 0.005 (blue), AR=10,
γ/ωp = 0.005 (sepia), AR=1, γ/ωp = 0.0005 (amaranth). The filled circles refer to
optical antennas and resonators. The colors indicate different antenna designs: single
nanospheroids (green), nanorods (amaranth), and nanorod pairs (sepia).

Figure 5.11 demonstrates that the Purcell factor of optical resonators and the
modification of the spontaneous emission rate by optical antennas can be of the
same order of magnitude. Furthermore, it is shown that the designs discussed in
Section 4.2.2 can compete with the performances of high-Q photonic-crystal cavities

Mode volume

The last topic to be discussed is the mode volume Vm. At the beginning of this
chapter we pointed out that the mode volume is not a well defined quantity for
optical antennas and that there is still disagreement on its definition (Koenderink,
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2010; Kuttge et al., 2010; Maier, 2006; Oulton et al., 2008). Since we are more in-
terested in presenting figures of merit and scaling laws, we are satisfied with a
definition of the mode volume based on Eq. (5.8). We thus assume that the antenna
supports only one SPP mode and write

Vm =
3

4π2 Q
(

Γt

Γo

)−1

. (5.38)

We then replace the Q factor and the enhancement of the spontaneous emission
rate using Eqs. (5.36) and (5.37), respectively, and arrive at

Vm =
L

(1− L)2 Vph. (5.39)
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Figure 5.12: Mode volume as a function of the device footprint both in units of the
cubic wavelength. The curves refer to our antenna model for different parameters:
AR=1, γ/ωp = 0.005 (blue), AR=10, γ/ωp = 0.005 (sepia), AR=1, γ/ωp =
0.0005 (amaranth). The filled circles refer to optical antennas and resonators. The
colors indicate different antenna designs: single nanospheroids (green), nanorods
(amaranth), and nanorod pairs (sepia). The black dashed line represents the case
where mode volume and physical volume are equal.

Figure 5.12 compares the result of Eq. (5.39) with the mode volume of optical
resonators. Note the huge difference between these two systems. In fact, even
the smallest photonic-crystal cavities exhibit a mode volume that is about three
orders of magnitude larger than that of optical antennas. Furthermore, for optical
antennas Vm is comparable to Vph if the aspect ratio is small. On the other hand,
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for achieving a high Q factor microcavities require a physical volume that is much
larger than the mode volume.

An alternative way to derive the mode volume of an optical antenna utilizes
the vacuum Rabi frequency Ω. The latter can be obtained from a Green-function
formulation of QED (Knöll et al., 2001; Wylie, 1986). If the antenna leads to a strong
modification of the spontaneous emission rate (Γt/Γo � 1), one can ignore the free-
space radiation modes and approximate the imaginary part of the Green function
with a Lorentzian of width Γa, which is the linewidth of the antenna resonance. It
can be shown that the Rabi frequency is related to Γt and Γa through the formula

Ω =

√
ΓtΓa

4
. (5.40)

From Eqs. (5.28) and (5.37) we find

Ω =
1− L√

L
1√
Vph

, (5.41)

Note that the above expression is given in units of ω2d/(4
√

ε0h̄π3c3). Since Ω =√
ωod2/(2ε0h̄Vµ), where Vµ is the mode volume in dimensional units, one obtains

the same result of Eq. (5.39).
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Figure 5.13: Comparison of the device footprint for a photonic-crystal nanocav-
ity (adapted from Hennessy et al., 2007) and an optical antenna. Optical antennas
offer similar performances, but they have a device size that is orders of magnitude
smaller than state-of-the-art optical resonators.

Final considerations

We conclude our analysis by discussing once more the competition between the
antenna efficiency and the enhancement of light-matter interaction. Figure 5.14
plots these two quantities as a function of Vph. The dashed lines refer to ηa, which
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for a dielectric resonator is equal to one and it is therefore not indicated. While
ηa drops very rapidly when the antenna dimensions become smaller than a certain
value that depends on the parameter γ/ωp, the enhancement of the spontaneous
emission rate increases and, despite the low Q factor, it reaches values that compete
with those of state-of-the-art optical cavities. Within these opposite trends there is a
parameter window where optical antennas could function as nanoscale resonators
with a tiny device footprint (see Figure 5.13), manageable absorption losses and
ultrafast operation.
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Figure 5.14: Enhancement (solid curves) and antenna efficiency (dashed curves)
versus device footprint (physical volume in units of the cubic wavelength) for optical
antennas and selected resonators (circles). The curves refer to our antenna model for
different parameters: AR=1, γ/ωp = 0.005 (blue), AR=3, γ/ωp = 0.005 (sepia),
AR=1, γ/ωp = 0.0005 (amaranth).

These settings make optical antennas very attractive for meeting the targeted
performances of integrated photonic devices (Miller, 2009). In fact, the stringent
requirements on photon management that we have explored for quantum optical
applications might turn out to be extremely useful also for classical information
processing. In both cases we have to fight the mismatch between light and mat-
ter to achieve strong and controllable interactions. We need to process very small
optical signals, ideally down to single photons. Moreover, we have to look at nan-
otechnology and material science, which give us new opportunities and challenges.
These considerations fuel research on the miniaturization of optical logic functions,
which are based on nonlinearities (Gibbs, 1985). These have been extensively stud-
ied in photonic crystals, where much research is going on for all-optical switches
and modulators (Leuthold et al., 2010; Matsuo et al., 2010). As to integrated light
sources, the most aggressive designs are based on quantum dots in photonic-crystal
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cavities (Gong et al., 2010; Hostein et al., 2010, and references therein). These func-
tionalities (switching, lasing, etc. . . ) could also be explored using active media
coupled to nanoscale resonators/antennas. Studying the physics and engineering
of these devices may thus pave the way to the next generation of nanophotonics
systems.
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Chapter 6

Conclusions and outlook

We investigated the optical response of a single dye molecule under strongly con-
fined optical fields. For the sake of simplicity, but also to extend our results to a
broader range of single quantum emitters (Brouri et al., 2000; Diedrich and Walther,
1987; Kimble et al., 1977; Kurtsiefer et al., 2000; Michler et al., 2000), we treated the
molecule as a weakly-excited TLS. This is in fact a good approximation if we con-
sider weak resonant excitation and systems that exhibit large Franck-Condon and
Debye-Waller factors (Boiron et al., 1996; Jelezko et al., 1997; Lettow et al., 2007).

We used scattering theory to generalize the Beer-Lambert-Bouguer law to the
situation of a point-like oscillating dipole under focused illumination. Until re-
cently, it was commonly believed that an emitter had a small effect on a light
beam. We demonstrated that, in fact, a TLS can strongly attenuate a tightly fo-
cused wave and that perfect reflection occurs if the incident field corresponds to
a directional dipole wave (Zumofen et al., 2008). The latter is fully extinguished
because it matches the radiation pattern of an oscillating dipole in the forward di-
rection. Moreover, even for conditions that are more accessible in the laboratory,
such as a focused plane wave, the transmission dip turns out to be only a few per-
cents smaller. An alternative argument for explaining these findings considers the
effective area A associated with the electric field intensity that can be obtained in
the focal spot for a given incident power. When A is equal to one half the cross sec-
tion, the incident beam is perfectly reflected. Interestingly, this value corresponds
to the upper limit for the concentration of electromagnetic energy by passive op-
tical systems (Bassett, 1986). The relationship between the strength of light-matter
interaction and this limit stems from the dipole-wave content of a focused beam
and from the fact that at the focus only the electric dipole wave contributes to the
electric field intensity.

Our results have immediate implications for the detection and spectroscopy of
single quantum emitters and non-fluorescent nano-objects at cryogenic (Alén et al.,
2006; Bakr et al., 2009; Guest et al., 2002; Karrai and Warburton, 2003) and at am-
bient conditions (Arbouet et al., 2004; Boyer et al., 2002; Celebrano et al., 2011;
Kukura et al., 2009, 2010; Lindfors et al., 2004). Moreover, extending these studies
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to circularly polarized light may lead to improved single-spin measurements based
on the Faraday rotation (Atatüre et al., 2007; Buckley et al., 2010). Note that these
findings readily hold for the whole electromagnetic spectrum, and we expect inter-
esting applications also in the detection and spectroscopy of subwavelength objects
in the infrared, terahertz and radio-wave domains (Brehm et al., 2006; Huber et al.,
2008).

We anticipate that an efficient coupling between a single photon and a single
quantum system can be realized in a directional focal system without the need
for high-finesse cavities. Such an arrangement would open new doors for quan-
tum information processing using photons as information carriers. For example,
a number of proposals of quantum information science that are based on cavity-
assisted interactions (Boozer et al., 2007; Cirac et al., 1997; Duan and Kimble, 2004;
Turchette et al., 1995; van Loock et al., 2006; Waks and Vuckovic, 2006; Wilk et al.,
2007) could be explored using tightly focused beams. To this end we have also
computed the phase shift that a TLS impresses on a beam incident on it. For a di-
rectional dipole wave the shift can be as large as 90 degrees and it reduces to a few
tens of degrees for focusing conditions accessible to experiments. These values ap-
pear very promising for encoding and exchanging quantum information through
dispersive interactions (Fushman et al., 2008; Savage et al., 1990; Turchette et al.,
1995; van Loock et al., 2006, 2008).

Efficient coupling in free space is also relevant for the experimental investiga-
tion of quantum-optical links, where a quantum emitter is driven with the single
photon emitted by another quantum system (Carmichael, 1993; Gardiner, 1993; Rist
et al., 2008). Single-atom absorption using heralded single photons generated by
spontaneous parametric down conversion has in fact been experimentally demon-
strated with our arrangement (Piro et al., 2011). This “communication” regime
poses a number of fundamental and practical questions on light-matter interac-
tion and quantum optics as well. First, extending our analysis beyond the weak
excitation limit would require a full quantum treatment of the interaction prob-
lem (Domokos et al., 2002; Dorner and Zoller, 2002; Kochan and Carmichael, 1994;
Rist et al., 2008), because these strong coupling efficiencies make a TLS a single-
photon turnstile device, where the response to an incident photon is dynamically
regulated by the presence of another photon (Birnbaum et al., 2005; Chang et al.,
2007a; Dayan et al., 2008; Faraon et al., 2008; Schuster et al., 2008). Furthermore, it
would be interesting to investigate photon correlations, since photon bunching or
antibunching is generally expected when there is respectively destructive or con-
structive interference (van Enk and Kimble, 2000, 2001), and to extend previous
works dealing with optical resonators (Foster et al., 2000; Hennrich et al., 2005).

Next, we investigated the enhancement of molecular fluorescence by optical an-
tennas. These are metal nanoparticles that can boost the absorption and radiation
of optical energy by an atom like conventional antennas do at radio frequencies
for electronic circuits. However, previous work indicated that at optical wave-
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lengths losses by real metals could quench light emission. We established that this
is not a fundamental constraint and showed that the interaction could be enhanced
by more than three orders of magnitude without substantial quenching (Rogob-
ete et al., 2007). Furthermore, we took advantage of computational nano-optics
to explore antenna structures that enhance emitters in the ultraviolet to the near-
infrared spectral range (Mohammadi et al., 2010, 2008b). Because metals cannot be
considered perfect conductors at optical frequencies, it is shown that the antenna’s
composition plays an important role in finding the optimal designs (Mohammadi
et al., 2009b).

Moreover, we explored the possibility of controlling the emission pattern of a
TLS by means of an optical antenna. In particular, we addressed the issue of inter-
facing antennas with optics and photonics to funnel light in a well-defined optical
mode. That is desirable for increasing the signal-to-noise ratio in spectroscopy and
sensing (Hartschuh, 2008; Hartschuh et al., 2004), and it becomes crucial for achiev-
ing controllable few-photon interactions for quantum information science (Englund
et al., 2009; Faraon et al., 2008). We found that truncated metal cones behave as
monolithic directional antennas that can efficiently convert strongly localized opti-
cal energy into a guided mode (Chen et al., 2009) or a weakly-focused beam (Chen
et al., 2010a). In practice, the antenna acts as a 4π focusing system that may func-
tion as a mode converter towards the perfect excitation of a TLS (Stobińska et al.,
2009). Furthermore, these are fully compatible with scanning probe technology
and state-of-the-art nanofabrication (De Angelis et al., 2010). We thus envision the
immediate possibility of testing these ideas experimentally.

Since dephasing is often the mechanism that reduces the interaction cross sec-
tion (Allen and Eberly, 1975), increasing the radiative decay rate by orders of mag-
nitude could be a simple and effective strategy for improving the coupling strength.
That would enable the efficiencies demonstrated for a TLS under focused illumina-
tion. Moreover, a faster single-photon emitter would allow us to generate, process
and detect optical signals at much higher rates, with benefits for the signal-to-noise
ratio and the throughput (Babinec et al., 2010; Schietinger et al., 2009). These set-
tings could also enable the spectroscopy of new systems that suffer from weak
optical transitions, such as rare-earth ions (Macfarlane and Shelby, 1987). Note
also that quantum information protocols require sources of indistinguishable sin-
gle photons with a high fidelity and rate (Knill et al., 2001). Since dephasing limits
indistinguishability (Kiraz et al., 2004) and processes like stimulated Raman adi-
abatic passage are experimentally more challenging (Kuhn et al., 2002), optical
antennas represent an interesting opportunity for improving the performances of
single-photon sources also from this point of view.

An important theme of our research has been the exploration of novel methods
to improve light-matter interaction towards levels comparable with those achiev-
able with optical resonators. While focused light is relevant only for free-space
arrangements, optical antennas are more versatile and may hold promise for dense



156 Conclusions and outlook

photonics integration (Kirchain and Kimerling, 2007; Miller, 2009). To this purpose
we analyzed their figure of merits using antenna theory (Hansen, 1981) and com-
pared them to common resonator designs (Vahala, 2003). Despite absorption losses
we found that optical antennas exhibit performances compatible with optical res-
onators, but with a much smaller device footprint. Moreover, having a low quality
factor, antennas do not suffer from the bandwidth and speed limitations that are
common to high-finesse cavities.

Altogether, these settings hold great promise for interfacing photons to a quan-
tum system beyond the framework of cavity QED (Haroche and Kleppner, 1989)
and urge further thorough theoretical and experimental investigations. These in-
clude studying the quantum optical phenomena that take place when an optical
antenna mediates the interaction between photons and single quantum emitters in
the full quantum picture and beyond continuous wave weak excitation. Moreover,
combining ultrafast spectroscopy, field-enhanced spectroscopy and quantum optics
could push forward the possibility of the coherent optical access of a quantum emit-
ter above cryogenic temperatures and achieve nonlinearities at the single-photon
level with antennas and solid-state emitters.

Quantum optics & Cavity-QED 

Field-enhanced 
spectroscopy 

Ultrafast spectroscopy 
Coherent control 

Nonlinear optics 

Quantum coherence between light and matter 
Short light pulses control 
quantum coherence 
in matter 

Design SPPs and 
the coupling 

Couple light with light 

Figure 6.1: Research areas that were previously disconnected can now find overlaps
in optical antennas.

The effect of optical antennas on light emitters has been treated in the weak-
coupling perturbative regime, which leads to the calculation of spontaneous emis-
sion rates, antenna efficiencies and energy shifts (Klimov et al., 2002). A few groups
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have started to go beyond this picture, but so far their treatments have been limited
by various approximations. For instance, semi-classical descriptions that neglect
photon correlations and quantum fluctuations, electrostatic approximations that ig-
nore radiation and other dynamical effects, quantum treatments that assume scalar
fields and disregard absorption losses (Chang et al., 2006; Lopata and Neuhauser,
2009; Ridolfo et al., 2010; Zhang et al., 2006). Indeed, a quantum-optical descrip-
tion of light with optical antennas imposes several challenges and the treatment
of radiation quanta in complex electromagnetic environments with material losses
and dispersion has received little attention so far. Nevertheless, an accurate study
is important to gain a deeper understanding and to make possible a better use
of these interactions. This line of research could give fundamental contributions
not only to the development of novel light-matter quantum interfaces but also to
the realization of, for instance, single-photon sources with completely engineered
properties.

Single-photon nonlinearities play an important role in quantum photonics tech-
nologies (Faraon et al., 2008, and references therein). In this context, recent work
indicates that optical antennas could be exploited to enhance quantum nonlin-
ear processes. For instance, a single-photon transistor could be attained based
on the efficient coupling between a quantum emitter and a SPP in tapered metal
nanowires (Chang et al., 2007a). Various groups are indeed planning to couple
metal nanowires with quantum emitters at low temperatures to demonstrate these
proposals. However, the configuration looks challenging to achieve experimentally.
First, SPPs need to be converted very rapidly into lossless photons in order to en-
able efficient and controlled interactions between single photons. Second, metal
nanowires should be tapered down to 10 nm in diameter for achieving strong
coherent coupling with the emitter and, at the same time, the emitter should be
placed only a few nanometers away. One could perform experiments based on
the recently proposed high-throughput SNOMs (Chen et al., 2009, 2010a). Our ap-
proach not only aims at solving these experimental issues, but it also represents
a platform to pursue further investigations on nanoscale and ultrafast quantum-
optical and nonlinear phenomena per se.

Under continuous weak excitation it is well established that fluorescence is pro-
portional to the excitation field intensity and to the quantum yield. The latter
accounts for the competition between the radiative and non-radiative decay rates,
which are strongly modified by the presence of metals (Metiu, 1984). Time-resolved
techniques, such as pump-probe spectroscopy (Zewail, 2001), quantum coherent
control (Press et al., 2008) and triggered single-photon sources (Brunel et al., 1999),
to mention a few, rely on (ultrafast) pulsed excitation. Here an important aspect,
beside the coupling strength, is coherence. In quantum information science coher-
ence enables the exchange of information between a photon and an atom (Monroe,
2002). In ultrafast spectroscopy and coherent control, it allows monitoring and ma-
nipulating the quantum dynamics of matter (Bandrauk et al., 2002; Rabitz et al.,
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2000). Very recently, it has become possible to perform this kind of experiments on
a single molecule at room temperature using focused femtosecond pulses (Brinks
et al., 2010; Hildner et al., 2011). On the other hand, several groups are studying
the behavior of optical pulses in metal nanostructures to control the localization
of electromagnetic energy in space and time (Aeschlimann et al., 2007; Stockman,
2008). The immediate question that arises is thus how an optical antenna affects the
response of an emitter under laser pulses of various widths, at room and cryogenic
temperatures. Here the important points of concern are the competition between
decay times, dephasing and pulse width, the increased interaction strength due
to field enhancements, and the dispersion occurring when the pulse duration be-
comes comparable with the lifetime of the SPP resonance. These considerations
lead us to combine atomic, molecular and optical physics (AMO) and ultrafast
techniques with quantum optics to explore the possibilities of manipulating single
quantum emitters and monitor coherent energy transfer under conditions where
dephasing processes occur at very short time scales (Engel et al., 2007; Lee et al.,
2007; Panitchayangkoon et al., 2010; Press et al., 2008, 2010; Reim et al., 2010).

In conclusion, we investigated schemes that improve light-matter interaction
starting from concepts and techniques of spectroscopy and sensing. We found that
the coupling strength can be made so large that even a single photon may have
a large probability to interact with a single quantum emitter, a regime that so far
belonged to the framework of cavity QED. Furthermore, these approaches do not
exhibit the bandwidth limitations of high-finesse cavities. While these settings are
very interesting for advancing spectroscopy and sensing, we believe that the major
implications concern quantum and classical information science (Miller, 1989; Mon-
roe, 2002). Let us think for instance that a solid-state quantum emitter be enhanced
by an optical antenna to approach the response of an ideal TLS with an excited-
state lifetime of the order of a picosecond (ps). The quantum nonlinearity of the
TLS could switch an optical signal with energies near 1 aJ and times of 1 ps. These
performances are more than two orders of magnitude more efficient and more than
one order of magnitude faster than the current record obtained with semiconduc-
tor nonlinearities and photonic-crystal nanocavities (Nozaki et al., 2010). Note that
lowering the switching energy by increasing the Q factor of the cavity would re-
duce the operation speed and vice versa. Our findings break this barrier and pave
the way to signal processing at the energy scale of molecular electronics (Joachim
and Ratner, 2005), but at rates that belong to the THz regime.



Appendix A

Strongly focused beams

We introduce the formalism to describe the electromagnetic field in the focal region
of a tightly focused beam. We choose two equivalent approaches, namely Debye
diffraction integrals and the multipole expansion. The latter offers more insight
on the focusing process and on the choice of the focused beam, whereas Debye
diffraction leads to analytical expressions that are more suitable for computing the
scattering ratio.

A.1 Debye diffraction integrals

An established approach for calculating the field in the focal area is provided by the
Debye diffraction integrals. It was initiated by Debye using Greens theorem (De-
bye, 1909) and was extended by Wolf using the method of stationary phase (Wolf,
1959). For an incident plane wave the method was extensively applied by Richards
and Wolf (Richards and Wolf, 1959). These integrals describe the evolution of the
wavefront of an electromagnetic beam as it propagates in the focal region by a
superposition of plane waves

E(r) = − ik
2π

∫
Ωa

A(θ, ϕ)eikŝ·rdΩ, E(r) = − ik
2π

∫
Ωa

ŝ×A(θ, ϕ)eikŝ·rdΩ, (A.1)

where k is the vacuum wave number, c is the speed of light in vacuum, Ωa repre-
sents the solid angle associated with the aperture’s boundaries, ŝ is the unit vector
along the propagation direction of each plane wave, and A(θ, ϕ) is the vectorial
angular spectrum of the incident field, which is essentially the Fourier transform
of the wavefront (Stamnes and Dhayalan, 1996). The physical interpretation of the
Debye diffraction integrals is that the secondary waves of the wavefront right after
the aperture can be taken as plane waves tangential to it with complex amplitudes.
This is very similar to the Fresnel-Huygens principle where the secondary waves
are spherical waves from point sources (Wolf, 1959). This formalism is only valid
under the following conditions (Wolf and Li, 1981). The physical dimensions of
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the aperture have to be much larger than the wavelength, i.e. large Fresnel number.
The fields are calculated many wavelengths away from the aperture. No evanescent
waves contribute to the beam.
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Figure A.1: A beam is focused by an aplanatic system. The field at the entrance
pupil is transformed by the lens into a spherical wave front at the Gaussian refer-
ence sphere (GRS). f is the lens focal length, whereas α and β are the focusing and
collection semi-angles, respectively.

The procedure for obtaining the field in the focal region is made of two steps.
First, the electric field right after the lens, i.e. at the Gaussian reference sphere
(GRS), is obtained by a geometrical transformation of the incident wave. Second,
the Debye diffraction integrals of the angular spectrum at the GRS yield the field
in the image space (Richards and Wolf, 1959). The GRS is an imaginary sphere that
includes the wavefront of the beam after passing through the lens, as illustrated
in Figure A.1. The lens is assumed to be aplanatic (axially stigmatic), so that the
wavefronts in the image space are spherical and converging to a geometrical focus
at the origin of the coordinate system. Each ray of the plane wave is traced through
the lens and its amplitude and polarization is obtained on the GRS. The conserva-
tion of energy in an aplanatic system implies the amplitude of each ray passing the
lens to be weighted by a factor of a(θ) =

√
cos θ, called the apodization function.

The angle between the polarization of each ray and the meridional plane, which is
the plane containing the ray and the optical axis, is left unchanged after refraction
by the lens (Richards and Wolf, 1959). If one is only interested in knowing the field
at the focus, the expression for the electric field simplifies to

E(O) = − ik
2π

∫
Ωa

A(θ, ϕ)dΩ. (A.2)

A.1.1 Focused plane wave

In the case of a linearly polarized incident plane wave, the field E(r) at the GRS is
given by

E( f , θ, ϕ) = E0
√

cos θ(0, cos ϕ,− sin ϕ), (A.3)



A.1 Debye diffraction integrals 161

in the spherical coordinates (r, θ, ϕ). Here we assume that the GRS has a radius
equal to the lens focal length f . The vectorial angular spectrum A(θ, ϕ) is related
to the electric field as

A(θ, ϕ) = f eik f E0
√

cos θ(0, cos ϕ,− sin ϕ). (A.4)

The term exp(ik f ) is responsible for a global phase shift of the field and it can be
set equal to one. The diffraction integrals of Eq. (A.1) yield (Richards and Wolf,
1959)

Ex(ρ, φ, z) = −iA0(I0(ρ, z; α) + I2(ρ, z; α) cos 2φ), (A.5)

Ey(ρ, φ, z) = −iA0I2(ρ, z; α) sin 2φ, (A.6)

Ez(ρ, φ, z) = −2I1(ρ, z; α) cos φ, (A.7)

where (ρ, φ, z) are cylindrical coordinates with respect to the focal spot and A0 =
E0 f k/2. Similar expressions hold for the magnetic field in the focal region. The
diffraction integrals I0, I1 and I2 depend on the focusing semi-angle α, which is
related to the numerical aperture NA= sin α in vacuo. Their expressions contain
the Bessel functions Jn (Abramowitz and Stegun, 1972) and read

I0(ρ, z; α) =
∫ α

0

√
cos θ sin θ(1 + cos θ)J0(kρ sin θ)eikz cos θdθ, (A.8)

I1(ρ, z; α) =
∫ α

0

√
cos θ sin2 θ J1(kρ sin θ)eikz cos θdθ, (A.9)

I2(ρ, z; α) =
∫ α

0

√
cos θ sin θ(1− cos θ)J2(kρ sin θ)eikz cos θdθ. (A.10)

Focused Gaussian Beam

For an incident Gaussian beam polarized along the x-axis, see Eq. (4.16), the vecto-
rial angular spectrum A(θ, ϕ) reads

A(θ, ϕ) = f Eo
√

cos θ exp

(
−d2 sin2 θ

2

)
{[

cos θ + sin2 φ(1− cos θ)
]

x̂ + (cos θ − 1) cos φ sin φ ŷ− sin θ cos φ ẑ
}

,

(A.11)

where x̂, ŷ and ẑ are the axes versors of the Cartesian coordinates. We remark that
the angular spectrum is equal to that of a FPW (see Eq. (A.4)), except for the fact
that the field amplitude has a Gaussian profile that depends on d (see Eq. (4.16)).
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Using Eq. (A.11) in Eq. (A.2) yields E(O) = −iA0I0(α, d)x̂, where A0 = Eo f k/2
and

I0(α, d) =
∫ α

0
sin θ

√
cos θ(1 + cos θ) exp

(
−d2 sin2 θ

2

)
dθ. (A.12)

A.1.2 Directional dipole wave px

We follow the method of Stamnes and Dhayalan (1996) and define the field on the
GRS as resulting from the radiation of a dipole oriented along the x-axis and placed
at the focal spot. Moreover, we assume zero phase at the GRS, so that E(r) reads

E( f , θ, ϕ) = E0(0, cos θ cos φ,− sin φ). (A.13)

The electric field in the focal region is

Ex(ρ, φ, z) = −iA0(I0(ρ, z; α) + I2(ρ, z; α) cos 2φ), (A.14)

Ey(ρ, φ, z) = −iA0I2(ρ, z; α) sin 2φ, (A.15)

Ez(ρ, φ, z) = −2A0I1(ρ, z; α) cos φ, (A.16)

where the diffraction integrals are (Stamnes and Dhayalan, 1996)

I0(ρ, z; α) =
∫ α

0
sin θ

(
1 + cos2 θ

)
J0(kρ sin θ)eikz cos θdθ, (A.17)

I1(ρ, z; α) =
∫ α

0
sin2 θ cos θ J1(kρ sin θ)eikz cos θdθ, (A.18)

I2(ρ, z; α) =
∫ α

0
sin3 θ J2(kρ sin θ)eikz cos θdθ. (A.19)

A.1.3 Combined electric and magnetic dipole waves

As in the preceding Section, for combined electric and magnetic dipoles oriented
along the x- and y-axis, respectively we write (Dhayalan and Stamnes, 1997; Shep-
pard and Larkin, 1994)

E( f , θ, ϕ) = E0 (1 + cos θ) (0, cos ϕ,− sin ϕ). (A.20)

This equation turns out to be identical to Eq. (A.3), when the apodization func-
tion 1 + cos θ is replaced by

√
cos θ. Therefore we make use of the derivations

in Section A.1.1. We find that the field in the focal region has the same form of
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Eqs. (A.5)-(A.7), where the diffraction integrals are given by

I0(ρ, z; α) =
∫ α

0
sin θ(1 + cos θ)2 J0(kρ sin θ)eikz cos θdθ, (A.21)

I1(ρ, z; α) =
∫ α

0
sin2 θ(1 + cos θ)J1(kρ sin θ)eikz cos θdθ, (A.22)

I2(ρ, z; α) =
∫ α

0

√
cos θ sin θ(1− cos2 θ)J2(kρ sin θ)eikz cos θdθ. (A.23)

A.1.4 Directional dipole wave pz

We determine the field at the GRS according to a dipole oriented along the z-
axis (Sheppard and Larkin, 1994). In this case

E( f , θ, ϕ) = −E0(0, sin θ, 0). (A.24)

Without details, the only diffraction integral of relevance for knowing the electric
field at the focal spot is

I0(ρ, z; α) =
∫ α

0
sin3 θ J0(kρ sin θ)eikz cos θdθ. (A.25)

Focused Radially-Polarized Beam

For an incident radially-polarized beam, see Eq. (4.17), the vectorial angular spec-
trum A(θ, ϕ) reads (Quabis et al., 2001)

A(θ, ϕ) = f Eo
√

cos θd sin θ exp

(
−d2 sin2 θ

2

)
(cos θ cos φ x̂ + cos θ sin φ ŷ + sin θ ẑ) .

(A.26)
Using Eq. (A.26) in Eq. (A.2) yields E(O) = −iA1I1(α, d)ẑ, where A1 = Eo f kd and

I1(α, d) =
∫ α

0
sin3 θ

√
cos θ exp

(
−d2 sin2 θ

2

)
dθ. (A.27)

A.1.5 Incident power

For an axially symmetric beam the incident power Pinc is more conveniently com-
puted considering the field right before the entrance pupil, which is given by

Pinc =
π

Z

∫ f sin α

0
dρ|E(ρ)|2ρ, (A.28)

where Z is the impedance of the medium in which the beam propagates and f sin α

is the pupil radius. Using Eqs. (4.16) and (4.17) in Eq. (A.28), Pinc for a Gaussian
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beam and a radially-polarized beam reads, respectively,

Pinc =
π

2Z
E2

o w2
[
1− exp

(
−d2 sin2 α

)]
, (FGB) (A.29)

Pinc =
π

2Z
E2

o w2
[
1−

(
1 + d2 sin2 α

)
exp

(
−d2 sin2 α

)]
. (FRB) (A.30)

An alternative way of calculating Pinc is to consider the energy flow in the focal
plane (Zumofen et al., 2008).

A.2 Multipole expansion

Another convenient approach for the description of focused fields is the multipole
expansion (Borghi, 2004; Mojarad et al., 2008; Sheppard and Török, 1997a; van Enk,
2004). Adopting the notation of (Bohren and Huffman, 1983) we write for the
electric field in the most general form

E(r) = ∑
l

l

∑
m=0

(Be,m,lMe,m,l(r) + Ae,m,lNe,m,l(r) + Bo,m,lMo,m,l(r) + Ao,m,lNo,m,l(r)),

(A.31)
where Mo

e
,m,l(r) and No

e
,m,l(r) denote complete sets of magnetic and electric multi-

poles. Bo
e
,m,l and Ao

e
,m,l are the corresponding coefficients.

Assuming a linearly-polarized field in front of the lens and aligning the x-axis
to the incident field polarization the expansion in Eq. (A.31) can be restricted to
Mo,1,l(r) and Ne,1,l(r) multipoles for the electric field, and Me,1,l(r) and No,1,l(r)
for the magnetic field, respectively. Instead, for a radially or azimuthally polarized
field the expansion in Eq. (A.31) contains only Mo,0,l(r) and Ne,0,l(r) multipoles for
the electric field, and Me,0,l(r) and No,0,l(r) for the magnetic field, respectively.

A.2.1 Vector spherical harmonics

To understand more clearly the indices in the above equation we review the origins
of Mo

e
,m,l and No

e
,m,l. The scalar fields ψ(r, θ, ϕ) that satisfy Helmholtz equation and

generate the multipoles are

ψ
(p)
e,m,l(r, θ, ϕ) = cos(mϕ)Pm

l (cos θ)z(p)
l (kr), (A.32)

ψ
(p)
o,m,l(r, θ, ϕ) = sin(mϕ)Pm

l (cos θ)z(p)
l (kr). (A.33)

The subscripts e and o represent the even and odd parity of the scalar potential.
Pm

l (cos θ) is the associated Legendre functions with indices m and l. z(p)
l (kr) de-

notes spherical Bessel or Hankel functions (Abramowitz and Stegun, 1972).
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Hankel functions of the first type h(1)
l (kr) represent outgoing waves, whereas

Hankel functions of the second type h(2)
l (kr) represent incoming waves. These

are complex conjugates of h(1)
l (kr). The spherical Bessel functions of the first type

are real functions given by jl(kr) = (h(1)
l (kr) + h(2)

l (kr))/2. The second type of

spherical Bessel functions corresponds to yl(kr) = (h(1)
l (kr)− h(2)

l (kr))/2. The con-
tribution of either of these functions is directly related to the boundary condition.
For instance h(1)

l (kr) cannot be used for expanding the incident field because they
are singular at the origin.

The spherical vector harmonics are generated according to (Bohren and Huff-
man, 1983)

Mo
e
,m,l(r) = ∇× (r ψo

e
,m,l(r)), No

e
,m,l(r) =

∇×Mo
e
,m,l(r)

k
. (A.34)

The calculation of the coefficients Bo
e
,m,l and Ao

e
,m,l requires some atten-

tion (Nieminen et al., 2003). The source-free field mode may be considered as a sum
of the converging incoming and diverging outgoing fields. Because the outgoing
mode is purely a consequence of the incoming mode, only the latter is needed for
a unique determination of the coefficients. This concept was applied for instance
by Sheppard and Török, where the multipoles of the expansion were associated
with spherical Hankel functions. The direct expansion in terms of multipoles for
the source-free field is also possible. However, in this case the converging field at
the entrance and the diverging field at the exit of the GRS have to be taken into
account. For this purpose the field symmetry on the GRS has to be considered (Col-
lett and Wolf, 1980; Wolf, 1980), which can be derived from the Debye scattering
integrals in Eq. (A.1) when assuming positions diametral with respect to the origin

E(−r) = − ik
2π

∫
Ωa

A(θ, ϕ)e−ikŝ·rdΩ =
(

ik
2π

∫
Ωa

A(θ, ϕ)eikŝ·rdΩ
)∗

= −E∗(r),

(A.35)
which means that the field is anti-Hermitian for diametral positions on the GRS.
The corresponding relationship of the fields phase φ reads

φ(x, y, z) = −φ(−x,−y,−z)− π, mod 2π. (A.36)

The phase shift of −π demonstrates the phase anomaly in the neighborhood of the
focal spot and it is equal to the Gouy phase acquired when the beam traverses the
focus (Born and Wolf, 1999; Gouy, 1890a,b; Linfoot and Wolf, 1956).

Here we will follow the approach of Sheppard and Török (1997a). The converg-
ing focused beam is expanded by incoming waves matched over the GRS at the exit
pupil side and the multipole coefficients are determined accordingly. Then outgo-
ing multipoles are added with the same weight of the incoming ones to remove the
singularity at the origin.
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A.2.2 Focused plane wave

Consider an x-polarized plane wave E(z) = Eo exp(−ikz)x̂ focused by an aplanatic
system. In such case the multipole expansion of Eq. (A.31) reads

E(r) = ∑
l
(Ae,1,lNe,1,l(r) + Bo,1,lMo,1,l(r)). (A.37)

The expansion coefficients are obtained by enforcing the boundary condition set
by Eq. (A.3) on the GRS for outgoing multipoles. Using the asymptotic expression
h(2)

l (kr) ' exp(−i(kr− lπ/2))/ρ we find the conditions Bo,1,l = −iAe,1,l and

∑
l

il Ae,1,l

[
P1

l (cos θ)
sin θ

+
dP1

l (cos θ)
dθ

]
= k f Eo

√
cos θ. (A.38)

Exploiting the orthogonality of the angular dependent functions τl(θ) =
dP1

l (cos θ)/dθ and πl(θ) = P1
l (cos θ)/ sin θ (Bohren and Huffman, 1983) we arrive

to

Ae,1,l = E0k f
(−i)l(2l + 1)

2l2(l + 1)2

∫ α

0

√
cos θ [πl(θ) + τl(θ)] sin θ dθ. (A.39)

The regularity of the electromagnetic field at the focus requires that Eq. (A.37)
also contains outgoing multipoles represented by the spherical Hankel function of
the first kind with the same amplitude of the incoming ones, i.e., no sources at the
origin. That implies h(1)

l + h(2)
l = 2jl and we use the notations N(1)

e,1,l and M(1)
o,1,l for

multipoles with jl and include the factor 2 into Ae,1,l to eliminate it from Eq. (A.37).
An important advantage of using this formalism is that the field is decomposed

into modes that have known electromagnetic properties, such as directivity, con-
finement, etc. The multipole strength, defined as |Ae,1,l/Ae,1,1| provides us with
a good measure of the relative contribution of different modes. Figure A.2 shows
this figure of merit for three different focusing angles. For plane-wave illumination
(α = 0o), modes up to l = 10 have a significant contribution in the field. As the
beam gets focused more tightly higher order modes become less important. In the
case of α = 60o, effectively only the first three multipole orders contribute to the
beam forming. In conclusion, the tighter the focusing the less is the contribution of
higher order modes (Mojarad et al., 2008; van Enk, 2004).

A.2.3 Directional dipole wave px

We have mentioned that a directional dipole wave px or pz is respectively generated
by reversing the field created by a dipole placed at the focal spot and oriented
along x̂ or ẑ. Here we focus our attention on a px wave and represent it using a
multipole expansion (Zumofen et al., 2009). Once more, instead of considering the
angular spectrum (Borghi, 2004; Borghi et al., 2005), we use the electric field on the
GRS (see Eq. (A.13)) as a boundary condition for the multipole coefficients. With
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Figure A.2: Relative strength of the multipole coefficients for the expansion of a
plane wave and of a focused plane wave with α = 60o.

respect to diffraction integrals, this approach offers more insight on the scattering
problem and gives guidelines for engineering the radiation pattern to maximize
light-matter interaction. Following Sheppard and Török (1997a), and Stamnes and
Dhayalan (1996) the electric field E(r) for a px wave reads

E(r) = ∑
l

(
Ae,1,lN

(1)
e,1,l − iBo,1,lM

(1)
o,1,l

)
, (A.40)

where the multipole coefficients are

Ae,1,l = 2(−i)lEok f
2l + 1

2l2(l + 1)2

∫ α

0
[πl(θ) cos θ + τl(θ)] sin θdθ, (A.41)

Bo,1,l = 2(−i)lEok f
2l + 1

2l2(l + 1)2

∫ α

0
[πl(θ) + τl(θ) cos θ] sin θdθ. (A.42)

In Figure A.3 we depict the coefficients Ae,1,l and Bo,1,l of a px wave for α = 60o.
The fact that coefficients with l > 1 do not vanish for a directional dipole wave
is somewhat surprising. However, these are required to maintain the propagation
characteristics of a directional wave and to guarantee power conservation through-
out the space on the basis of a source-free focused field. We remark that even for
α = 90o Ae,1,l differs from zero for even l except for l = 1, while the Bo,1,l coeffi-
cients differ from zero exclusively for odd l. Obviously the expansion for a FPW
and px wave must be truncated. It is found that quite a few terms are required
for a decent reproduction of the fields for α = 90o and even more terms must be
included for α < 90o (Zumofen et al., 2009).

A.2.4 Focused radially polarized beam

Radially-polarized doughnut beams are constructed by superposing the Gauss-
Hermite modes with normal polarizations (Oron et al., 2000). The effect of the
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Figure A.3: Relative strength of the multipole coefficients (A) |Ae,1,l/Ae,1,1| and
(B) |Bo,1,l/Bo,1,1| for the expansion of a px wave with α = 60o.

lens is identified by two parameters, the focusing semi-angle α and the d factor
defined as f /w (van Enk, 2004), where f is the focal length of the lens and w is the
beam waist (see Figure 4.33). Using the Richards and Wolf (1959) formalism for an
aplanatic system and adapting it to radially-polarized illumination, the field E(d, θ)
right after passing the lens is given by Eq. (4.26) (Quabis et al., 2001; Youngworth
and Brown, 2000). Note that it depends only on d and θ.

The electric field in the image space can now be found by the multipole ex-
pansion, where the weight coefficient of each multipole is determined by matching
the field at the lens boundary. Since the electric field has only the θ component
in the far field, the azimuthal number is m = 0, and the symmetry around the z
axis implies that transverse electric multipoles have no contribution. The multipole
expansion of the focused beam is

E(r) = ∑
l

Be,0,lNe,0,l, (A.43)

and its coefficients read

Be,0,l = 2k f (−i)l 2l + 1
2l(l + 1)

∫ α

0
|E(d, θ)|dPl(cos θ)

dθ
sin θdθ, (A.44)

where Pl(cos θ) are Legendre polynomials (Abramowitz and Stegun, 1972). This
expansion is a special case of tightly focused spirally-polarized beams (Borghi et al.,
2005).

The relative strength |Be,0,l/Be,0,1| in Figure A.4 shows how many multipoles
contribute to the field in comparison to the dipole wave (l = 1). A tightly focused
beam (α = 90o and d = 2) mainly consists of a dipole and a quadrupole. Changing
the focusing strength α and the beam parameter d can give rise to a situation where
the dipole wave has a smaller weight. In summary, the general trend is as follows:
by increasing α, i.e. focusing more tightly, higher-order modes are suppressed
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Figure A.4: Relative strength |Be,0,l/Be,0,1| of the multipoles that form a focused
radially polarized beam for two different values of α and d.

and by increasing the value of d, i.e. longer focal length or smaller beam waist,
higher-order modes get stronger. This additional degree of freedom can be used
to farther control light-matter interactions (Mojarad and Agio, 2009). Note indeed
that for a focused plane wave or a Gaussian beam higher-order modes can only be
suppressed with respect to a plane wave (Lock et al., 1995; Mojarad et al., 2008).
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Appendix B

Modeling light-matter interactions
near metal nanostructures

Many of the results presented in Chapters 3 and 4 require a numerical solution of
Maxwell’s equations. For example, the modification of the radiative decay rates
by optical antennas and the response of a single molecule illuminated by a SNOM
probe. These problems cannot be solved using commercial Maxwell solvers, which
are typically designed for dealing with engineering problems. Therefore, we de-
veloped a customized software based on the FD-TD algorithm that allowed us to
tackle the various computational tasks. In what follows we dicuss the main features
of the FD-TD algorithm, with emphasis on our implementation tuned for studying
nano-optical problems. Next, we explain in detail the model for the calculation
of molecular scattering near a SNOM tip and the settings for the computation of
the decay rates near optical antennas. In the last section we test the FD-TD al-
gorithm and pay special attention on the effects that may compromise the use of
this method in nano-optics. These are the mesh discretization in the near field, the
excitation of SPPs and the staircasing approximation.

B.1 The FD-TD algorithm

The FD-TD method has been extensively applied for solving electromagnetic prob-
lems in electrical engineering, such as antennas, radar systems and high-speed
electronic circuits (Taflove and Hagness, 2005). The use of FD-TD algorithms for
studying the behaviour of light in complex electromagnetic environments became
very popular with the advent of photonic crystals (John, 1987; Yablonovitch, 1987).
However, its application to near-field problems took more time (Girard and Dereux,
1996) due to the need for very fine discretizations and high-performance absorbing
boundary conditions for the near field. The latter were proposed only recently (Ro-
den and Gedney, 2000), while the continuous improvement of computers made
possible working with finer computational meshes. After a brief introduction of
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the basic algorithm we discuss the main aspects that one needs to consider in nano-
optics. In particular, we present some advanced FD-TD schemes that we developed
for improving the accuracy of the method.

B.1.1 Governing equations

The FD-TD method, also known as the Yee algorithm (Yee, 1966) from the name
of its inventor, is based on the space and time discretization of the Maxwell curl
equations

∂H
∂t

= − 1
µ
∇× E, (B.1)

∂E
∂t

=
1
ε
∇×H− 1

ε
Jsrc, (B.2)

where we consider isotropic, linear, and non-magnetic media. The structure of
Equations (B.1) and (B.2) suggests that the substitution of the space and time
derivatives with finite central differences can be implemented using a staggered
mesh where electric and magnetic field components are located at different po-
sitions as depicted in Figure B.1. The same holds for the time derivative, where
electric and magnetic fields are arranged in the so-called leapfrog scheme. In this
way, the space derivatives on the right of Equations (B.1) and (B.2) are computed
at the same time and position as the time derivatives on the left side. If the FD-TD
mesh has steps ∆x, ∆y and ∆z (all equal to ∆), and ∆t for the time, rearranging
the discretized forms of Equations (B.1) and (B.2) leads to update equations that
march the electromagnetic field in space and time. As an example, we write here
the FD-TD update equation for the x component of the electric field (Taflove and
Hagness, 2005)

Ex|n+1
i+1/2,j,k = Ex|ni+1/2,j,k +

∆t
εi+1/2,j,k

·
{

Hz|n+1/2
i+1/2,j+1/2,k − Hz|n+1/2

i+1/2,j−1/2,k

∆y
− (B.3)

Hy|n+1/2
i+1/2,j,k+1/2 − Hy|n+1/2

i+1/2,j,k−1/2

∆z
−

Jx,src|n+1/2
i+1/2,j,k

}
,

where i, j, k, n are integers running on the space-time mesh and the terms ±1/2
represent the fact that the field components are staggered. Note the simplicity of
the algorithm and its flexibility in handling arbitrary structures as that information
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enters only via the space discretization of the dielectric function ε. Moreover, a
source for the electromagnetic field can be implemented by defining the desired
orientation, space and time profile of the current Jsrc. Another advantage of FD-
TD is the time-resolved nature of the algorithm, which allows the computation of
a broad range of frequencies in a single run as well as the analysis of transient
regimes.

 SUBROUTINE march_h 
! Use Yee algorithm without a Source 
! 
!       Magnetic Field Components 
! 
        m=1_i1b ! For non-magnetic media 
! 
        DO k=1,n3-1 ; DO j=1,n2-1 ; DO i=1,n1 
!       m=material(i,j,k) 
        h1(i,j,k)=h1 (i,j,k)+ & 
                  coeff_h1(2,m)*(e_2(i,j    ,k+1)-e_2(i,j,k))- & 
                  coeff_h1(3,m)*(e_3(i,j+1,k    )-e_3(i,j,k)) 
        ENDDO ; ENDDO ; ENDDO 
… 
RETURN 
END SUBROUTINE march_h 

Figure B.1: (left panel) The Yee cell. (right panel) The FD-TD time-marching
algorithm for the Hx magnetic field component.

B.1.2 Boundary conditions

The FD-TD mesh has to be limited to a finite region of space to store the field
variables and the auxiliary quantities in the computer memory. On the other hand,
an artificial boundary creates non-physical reflections and will therefore lead to
a wrong result. To reduce this problem an absorbing medium is positioned as a
buffer between the simulation domain and the mesh boundary. In an ideal case
it is designed to absorb any field that is incident on it without reflection. Because
the modeling of nanostructures requires fine meshes to resolve the geometrical
features, to save memory and CPU time it is convenient to reduce the simulation
domain as much as possible. An efficient absorber that fulfills these requirements is
the so-called Convolutional Perfectly Matched Layer (CPML) (Roden and Gedney,
2000), which we have chosen for our FD-TD implementation. We employ at least 20
CPML layers in our simulations with the conductivity increasing as the power of
three towards the mesh boundary (Taflove and Hagness, 2005). In our tests we did
not find a noticeable change for thicker layers. Figure B.2 illustrates two situations
where CPML are crucial for the FD-TD simulation of nano-optical systems.
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Figure B.2: Two examples where CMPL boundary conditions are necessary in the
FD-TD simulation of nano-optical systems. The gray frame represents the region
where the absorbing boundary conditions are implemented. (left panel) Modeling an
object much smaller than the wavelength may require a much larger mesh to ensure
that the near field has decayed at the boundaries. (right panel) Semi-infinite metallic
object must be terminated in the boundary conditions to avoid spurious resonances
due to truncation.

B.1.3 Metals at optical frequencies

Since we study metal nanostructures at optical wavelengths, where the perfect
conductor approximation is not valid, we have to account for a dispersive nega-
tive dielectric function. Unfortunately, in the time domain the constitutive relation
D(ω) = ε(ω)E(ω) becomes a convolution

D(t) = ε∞E(t) +
∫ t

0
χ(t− t′)E(t′) dt′, (B.4)

where ε∞ is the high frequency limit and χ(t) is the susceptibility. There are several
ways to include Equation (B.4) in the FD-TD method (Taflove and Hagness, 2005).
All of them though are limited by the fact that an analytical expression for χ(t)
is required. Consequently, the modeling of real metals is performed by fitting
the optical constants with dispersion models that can be handled by FD-TD. As
discussed by Vial et al. (2005), the dielectric function of noble metals can be well
fitted in the optical and near-infrared domain using the combination of Drude and
Lorentz dispersion.

ε(ω) = ε∞ −
ω2

p

ω(ω + iγ)
+

∆ε Ω2

Ω2 −ω2 − 2iδω
, (B.5)

where the free parameters are ωp, γ, ∆ε, Ω and δ. Figure B.3 shows a comparison
between the optical constants of gold (Lide, 2006) and the fit using Equation (B.5).
The agreement is excellent for the real part and quite good for the imaginary part.
The fit has been performed over a wavelength range from 500 nm to 1100 nm.

When the Drude-Lorentz model of Equation (B.5) is expressed in the time do-
main, the convolution in Equation (B.4) must be solved for the Drude χD and
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Lorentz χL susceptibilities

χD(t) =
ω2

p

γ
(1− e−γt)Θ(t), (B.6)

χL(t) =
∆ε Ω2

√
Ω2 − δ2

e−δt sin(
√

Ω2 − δ2)Θ(t), (B.7)

where Θ(t) is the step function. Our FD-TD implementation of Equation (B.4)
is based on a recursive convolution method (Sakoda et al., 2001). Referring to
Equation (B.3) the Yee algorithm is modified as follows

Ex|n+1
i+1/2,j,k = Ex|ni+1/2,j,k +

∆t
εi+1/2,j,k

·
{

. . .
}
−

∆t
εi+1/2,j,k

(
ω2

pFx|n+1/2
i+1/2,j,k −

∆εΩ2
√

Ω2 − δ2
Im
[

Gx|n+1/2
i+1/2,j,k

])
, (B.8)

where the term {. . .} represents the braced quantity in Equation (B.3) and ε stands
for ε∞ in Equation (B.5). The recursion accumulators Fx and Gx obey the following
update equations

Fx|n+1/2
i+1/2,j,k = ∆te−γ∆t/2Ex|ni+1/2,j,k + e−γ∆tFx|n−1/2

i+1/2,j,k, (B.9)

Gx|n+1/2
i+1/2,j,k = ∆t(−δ + i

√
Ω2 − δ2)e(−δ+i

√
Ω2−δ2)∆t/2Ex|ni+1/2,j,k +

e(−δ+i
√

Ω2−δ2)∆tGx|n−1/2
i+1/2,j,k. (B.10)

Similar equations hold for the other field components. Notice that Gx is a complex
quantity, which is necessary for having a recursive convolution, and that also the
quantities ωp, γ, ∆ε, Ω and δ are functions of i, j and k like ε to account for
position-dependent material properties.

B.1.4 Advanced FD-TD approaches

Staircasing, as illustrated in the inset of Fig. B.4a, refers to the approximate repre-
sentation of actual body shapes in a Cartesian FD-TD mesh. Since optical antennas
and metallic waveguides feature geometries with very small radii of curvatures and
dimensions compared to the working wavelength, great attention must be payed
to spurious effects and slow convergence issues associated with staircasing.

For instance, a FD-TD calculation of the scattering cross section of a 10 nm
gold sphere exhibits two peaks in the spectrum. If the calculation is repeated
with another mesh discretization, it is found that one peak changes position, as
shown in Figure B.4a. In fact, while the SPP resonance is almost equal for the two
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Figure B.3: Fit of the dielectric function ε of gold for wavelengths between 500 and
1100 nm (Lide, 2006). The experimental data are represented by a continuous line.

meshes and agrees well with Mie theory (Mie, 1908), the one that changes position
represents a spurious peak originating from the sharp edges caused by staircasing.
These can be made very small by reducing the mesh pitch, but at the expense of
a significantly higher computational cost. Spurious peaks are a typical issue in
the FD-TD modeling of metals and it has already been reported twenty years ago
for perfect conductors (Cangellaris and Wright, 1991). Our tests show that this
phenomenon exists also for real metals and that it is particularly problematic for
structures with a small radius of curvature.

Effective permittivities

A possible solution to staircasing is to depart from the simple Cartesian mesh pic-
ture and use non-orthogonal grids or curvilinear coordinates that follow exactly
the shape of the objects (Fusco, 1990; Harms et al., 1992; Holland, 1983; Madsen
and Ziolkowski, 1990; Mei et al., 1984; Shankar et al., 1990). However, while im-
proving the accuracy, the approach not only considerably increases the complexity
of the algorithm, but it may also cause numerical artifacts due to a highly irregular
grid, like time instability, velocity dispersion and spurious wave reflection (Railton
et al., 1995). Better is to exploit a Cartesian mesh as much as possible and intro-
duce distorted cells only when necessary. For the special cells, a Contour Path
(CP) FD-TD algorithm can be obtained directly from Maxwell’s equations in inte-
gral form (Jurgens and Taflove, 1993; Jurgens et al., 1992). The CP-FD-TD method
can still contain cells that potentially generate instability because of non-reciprocal
nearest neighbor borrowing steps (Railton et al., 1995). Moreover, the introduction
of auxiliary field components and update equations slightly increases memory and
CPU time. There have been improvements to CP-FD-TD that solve the instability
issue (Hao and Railton, 1998; Kosmanis and Tsiboukis, 2003; Railton et al., 1995).
Another possible way for reducing the staircasing error is refining the Cartesian
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Figure B.4: (a) Scattering cross section for a gold nanosphere of radius 5 nm
computed for two different discretizations (1 nm and 0.5 nm). The spurious peak is
identified by its strong dependence on the FD-TD mesh pitch. The inset illustrates
how a nanosphere is approximated by staircasing. (b) Layout of the FD-TD mesh on
the metal-dielectric interface (metal at the left). The integration paths for Ey and Ex

are marked by thick lines. (c) Dispersion relation for a SPP at a glass/copper interface.
Frequencies and wavevectors are expressed in units of ωs = ωp/

√
εd + ε∞ and

ks = ωs
√

εd/c (λs = 2π/ks ' 450 nm). The discretization corresponds to ∆ = 5
nm. Inset: simulation scheme (see Mohammadi and Agio, 2006, for details).

mesh in proximity of the interfaces, the so-called subgridding method (Kim and
Hoefer, 1990; Zivanovic et al., 1991). However, this scheme implies modifications at
the fields-marching level, making the algorithm more complicated to implement,
besides other numerical issues like spurious wave reflection.

A different approach specific to dielectrics relies on effective permittivities (EPs)
for the partially filled cells, without any distortion of the Cartesian grid. The ques-
tion is, what value for the permittivity has to be chosen in order to get the best
approximation of the dielectric interface? An early attempt in this direction has
been made for modeling thin material sheets (Maloney and Smith, 1992), even
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though there is still usage of auxiliary terms for field components normal to the in-
terface and the procedure is limited to rectangular objects aligned with the mesh. A
few years later, Kaneda et al. (1997) proposed a phenomenological formula for the
EP applicable to any kind of interface geometry, including curved surfaces. Their
expression matches the rigorous result that can be obtained when the field compo-
nent is perpendicular or parallel to the interface (Hirono et al., 2000; Hwang and
Cangellaris, 2001). These EPs improve the accuracy of the FD-TD method, while
keeping the same stability and simple structure of the original algorithm. However,
there is no guarantee that the formula fulfills the proper boundary conditions at a
curved interface or simply at a flat interface tilted with respect to the mesh axes.
There are several works presenting other kinds of EPs: a volume average (Dey and
Mittra, 1999), a first-neighbor average (Yang et al., 2004; Yu et al., 2000), Maxwell-
Garnett, inverted Maxwell-Garnett and Bruggeman formulae (Yang et al., 2000),
and other phenomenological derivations (Yu and Mittra, 2001). Some of them have
been tested together for the purpose of comparison (Sun and Fu, 2000). These
proposals are not fundamentally more accurate than Kaneda’s approach.

The main problem with the formulation of EPs resides in the vectorial nature
of the electromagnetic field. In fact, the same discontinuity can lead to quite dif-
ferent EP values depending on the orientation of the electric field with respect to
the interface (Hirono et al., 2000; Hwang and Cangellaris, 2001). Therefore, it is
crucial that in the derivation of the EP, not only the geometry, but also the proper
boundary conditions are taken into account. Along this line a non-diagonal EP-
tensor can be obtained via the homogenization of a partially filled cell (Lee and
Myung, 1999; Nadobny et al., 2003). However, its implementation requires the us-
age of both E and D, implying more storage and CPU time. Moreover, because in
the FD-TD method the field components are not defined in the same position, a
nearest-neighbor average is required for linking E with D. Such average, can wash
out the fulfillment of the boundary conditions at the interface. Recently, there
have been other original ideas that improve the accuracy of the FD-TD method
under a rigorous treatment of the electromagnetic field at the dielectric interface,
even though they considerably increase the complexity of the algorithm (Ditkowski
et al., 2001; Dridi et al., 2001; Farjadpour et al., 2006; Fujii et al., 2003; Xiao and Liu,
2004).

We have developed a novel contour path approach to obtain EPs starting from
Maxwell’s equations in integral form. These permittivities account for the bound-
ary conditions for the electromagnetic field at a dielectric interface and, at the same
time, they do not require any modification of the FD-TD algorithm (Mohammadi
et al., 2005). Moreover, our method has been generalized to handle metal-dielectric
interfaces of arbitrary shape. We named this approach dispersive contour-path
(DCP) FD-TD (Mohammadi et al., 2008a). By carrying out the implementation of
dispersion using the Z-transform (Sullivan, 1996) we have also shown that for flat
interfaces the method reduces to that of Mohammadi and Agio (2006).
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To give an example of the DCP-FD-TD method in Figure B.4 we consider
SPP propagating along the interface between two semi-infinite isotropic and non-
magnetic media, with dielectric functions εd and εm(ω) = ε∞ − ω2

p/(ω(ω + iγ)),
respectively. The constitutive relations for the electromagnetic field must be ex-
pressed in time domain to be compatible with the FD-TD paradigm. Here we used
the Z-transform as a suitable transformation to replace discrete convolutions with
multiplications. To properly account for the electromagnetic boundary conditions,
we derive the FD-TD algorithm starting from the Maxwell’s equations in integral
form. As depicted in Figure B.4b, because we are dealing with a flat interface we
refer to a 2D mesh with TM polarized light (non-zero field components Ex, Ey, Hz).
The details of the derivation can be found in Mohammadi and Agio (2006).

In order to compare the accuracy of the CP method with respect to staircasing
and investigate how well FD-TD can model SPPs, we use the 2D-FD-TD method
to compute the dispersion relation ω(k) of SPPs propagating along the metal-
dielectric interface. For a metal-dielectric interface, the dispersion relation of SPPs
is given by (Raether, 1988)

k =
ω

c

√
εdεm(ω)

εd + εm(ω)
. (B.11)

The calculation scheme is shown in the inset to Figure B.4c. The FD-TD mesh has
Bloch boundary conditions (Chan et al., 1995) at the terminations perpendicular
to the interface and PML (Ramadan and Oztoprak, 2003) boundary conditions at
the remaining sides. A dipole placed in the proximity of the interface excites the
SPP. Because of the Bloch boundary conditions, only the energies corresponding
to the imposed wavevector survive as time evolves. By Fourier transforming the
recorded time series, one obtains frequency peaks, which yield the SPP dispersion
relation when considering all wavevectors. We choose glass (εd=2.25) and copper
(ε∞=1.0, ωp = 5.0× 1015 rad/s and γ = 0.01ωp) (Ashcroft and Mermin, 1976). The
dispersion relation computed using staircasing, the CP method and the analytical
solutions is plotted in Figure B.4c. While in the region where the SPP has a high
group velocity both methods agree very well with the analytical curve, as the group
velocity decreases staircasing exhibits a much larger error. Indeed, this is the case
where the SPP is tightly localized at the interface and thus a proper treatment of
the electromagnetic boundary conditions becomes important.

B.1.5 Body of revolution

Since the onset of large electric fields at the nanoparticle surface and the nanoscale
geometry require fine meshes for getting accurate results (Kaminski et al., 2007;
Oubre and Nordlander, 2004), even if the overall size of the system is small the com-
putational burden becomes considerable. When the optical antenna and the source
exhibit rotational symmetry we can exploit the body of revolution (BOR) technique
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in the FD-TD method (Taflove and Hagness, 2005) to reduce the original three-
dimensional (3D) problem to a two-dimensional (2D) one (see Figure B.5). When
we deal with very fine mesh, the BOR-FD-TD method can significantly decrease the
required memory and computation time. This approach has been used in various
applications such as modeling wave propagation through optical lenses (Davidson
and Ziolkowski, 1994), resonant cavities (Chen et al., 1996), and the calculation of
spontaneous emission lifetime in a microcavity (Xu et al., 1999).

For a rotationally symmetric problem, the electric and magnetic fields in cylin-
drical coordinates can be expressed as an infinite Fourier-series expansion of the
form

E(ρ, φ, z) =
∞

∑
m=0

(Ee,m(ρ, z) cos mφ + Eo,m(ρ, z) sin mφ), (B.12)

H(ρ, φ, z) =
∞

∑
m=0

(He,m(ρ, z) cos mφ + Ho,m(ρ, z) sin mφ), (B.13)

where m is the mode number. For isotropic materials, these modes are uncoupled
from each other, and their number depends on the excitation symmetry. In our
case, where a dipole is located at and directed along the z-axis, only the zeroth-
order mode is necessary (m = 0). Furthermore, only three electromagnetic-field
components are required (Eρ,e,0, Ez,e,0 and Hφ,e,0), corresponding to a transverse
magnetic mode. As shown in Figure B.5, we employ PML absorbing boundary
conditions to truncate the computational domain without introducing spurious re-
flections (Prather and Shi, 1999). Although the model is limited to emitters located
and oriented such that the system preserves cylindrical symmetry, BOR-FD-TD al-
lows the study of several cases with the computational burden and speed of a 2D
FD-TD calculation.

z

ρ

φ Ptot
Prad

z

PML
ρ

Figure B.5: A single emitter coupled to an optical antenna. (left panel) The antenna
and the emitter are such that the system forms a body of revolution. (right panel) In
the BOR-FD-TD approach the 3D problem can be reduced to a 2D one by considering
only a plane containing the z-axis. The total and radiated powers are computed using
Poynting theorem (red lines). The mesh is truncated using PML absorbing boundary
conditions (blue line).

.
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Near-to-Far-Field Transformation

A near-to-far field transformation can be performed starting from the electromag-
netic field obtained by BOR-FD-TD calculations. For instance, on the reference
plane shown in Figure 4.33, one defines equivalent electric and magnetic surface
current densities, which respectively are Js = −n × E and Ms = n × H, where n
is the unit vector normal to the surface. Each current element radiates to the far
field as a dipolar source. By integrating the contribution of these elements over that
plane, one obtains the electromagnetic field in the far region (Taflove and Hagness,
2005). Symmetry considerations imply that on the GRS the electric field has only
the θ component in spherical coordinates (r, θ, ϕ), which reads

E(r, θ) = −ke−ikr

2r
eikzo cos θ

∫ ρmax

0
dρρJ1(kρ sin θ)

(
Eρ(ρ, zo) + ZHφ(ρ, zo) cos θ

)
θ̂.

(B.14)
J1 is the Bessel function of the first kind (Abramowitz and Stegun, 1972), zo is where
the reference plane intercepts the z-axis, Z is the medium impedance and k is the
wavevector. ρmax should be large enough to make the contribution of the excluded
field negligible.

B.2 Modeling interactions

We used the FD-TD method to model two phenomena associated with light-matter
interaction at the single-molecule level. First, we developed a model to investigate
the extinction signal due to a single molecule excited by a subwavelength aperture
created in a SNOM probe (see Section 3.3). Second, we computed the modification
of the spontaneous emission rate when a molecule is in the near-field of an optical
antenna (see Sections 4.2 and 4.3). Here we provide technical details on how we
tackled these problems.

B.2.1 Molecular scattering

The molecule is modeled as an anisotropic Lorentz medium that occupies only
one FD-TD cell. In practice, the dielectric function ε is dispersive only along x
and it is equal to that of the background medium along y and z. We now derive
an expression that relates the induced molecular dipole moment p to the incident
field Etip via the polarizability α. The dispersive part of ε reads

εx(ω) = ε∞ +
∆εω2

o
ω2

o −ω2 − 2iγω
, (B.15)

where ε∞ corresponds to the dielectric function of the background medium, ∆ε

parametrizes the oscillator strength, ωo is the resonance frequency, and 2γ is the
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radiative linewidth. The associated polarizability α can be derived starting from a
Clausius-Mossotti relation

αx ∝
εx(ω)− ε∞

εx(ω) + 2ε∞
=

∆εω2
o

3ε∞

[
ω2

o

(
1 +

∆ε

3ε∞

)
−ω2 − 2iγω

] . (B.16)

Writing ω′
o = ωo[1 + ∆ε/(3ε∞)] and assuming γ � ω′

o lead to

αx = −1
2

∆εω′
o

3ε∞ + ∆ε

ω −ω′
o − iγ

(ω −ω′
o)2 + γ2 . (B.17)

This corresponds to the expression in Eq. (3.24), where

A =
π

γ

(
∆εω′

o
3ε∞ + ∆ε

)
. (B.18)

B.2.2 Decay rates

In Section 4.1.1 we stated that the decay rates can be obtained by computing the
power radiated by a classical dipole placed near a metal nanostructure. The dipole
source is implemented in the FD-TD method by letting Jsrc be zero everywhere
except at the FD-TD cell corresponding to the position of the emitter. The dipole
orientation is determined by the components of Jsrc. According to Poynting theo-
rem (Jackson, 1999)

Pt = −1
2

∫
V

Re[j∗(r, ω) · E(r, ω)] dV (B.19)

is the total power dissipated by the dipole, which goes into radiation and absorp-
tion due to the Ohmic losses in the metal nanostructure. Note that Pt is computed
using a volume integral because in FD-TD the dipole source has a finite extension
determined by the cell volume V = ∆3. The radiated power is instead given by

Pr =
∫

Σ
S · n r2 ds, (B.20)

where S is the Poynting vector and n is the normal to a closed spherical surface Σ
of radius r that encloses both dipole and nanostructure.

To compute Pt and Pr with FD-TD two detectors are needed, as shown in Fig-
ure B.6. The large one, used for Pr, is a closed surface on which the flux of the
Poynting vector S is calculated. The small one takes only the FD-TD cell of the
dipole source and it implements the calculation of Pt. The detectors perform an
on-the-fly discrete Fourier transform to obtain the fields in frequency domain. This
allows the calculation of decay rates over the desired spectral range. It is worth
to mention a couple of technical issues related to the calculation of Pr and Pt. For
a lossless system, energy conservation implies that Pr = Pt. This equality is valid
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Figure B.6: Schematics of the calculation for the decay rates with the FD-TD
method.

also in FD-TD only if the Poynting theorem is properly reformulated by taking
into account the mesh discretization and the staggered position of the field compo-
nents (De Moerloose and De Zutter, 1995). Moreover, the expression for Pt contains
Re[J∗ · E], which represents a small difference of two large numbers. As a result,
any numerical noise present in the simulation will be amplified in Pt. Such noise is
primarily due to the Fourier transform and to the absorbing boundary conditions.

B.3 Numerical tests

The FD-TD method has been extensively tested and applied to the calculation of
decay rates in a dielectric environment (Hermann and Hess, 2002; Xu et al., 2000).
However, when one considers metal nanostructures two new effects have to be
taken into account with respect to dielectrics: SPPs and Ohmic losses. Because SPPs
strongly depend on the shape of the object and the FD-TD method approximates
a curved surface with a segmented profile, the so-called staircasing approximation
(see Appendix B.1.4), it is important to understand what are the consequences
on the accuracy of the calculation. Secondly, because a certain portion of the ra-
diated power will be absorbed by the metal, one has to compute both radiative
and non-radiative decays to completely assess the performance of a nanostructure.
Moreover, since the strongest effects are obtained when the emitter is very close
to the metal surface, it is also important to evaluate how the near-field coupling
is modeled. For these reasons, we test the FD-TD method on systems for which
an analytical solution exists, so that a direct comparison is possible. Furthermore,
we choose examples that allow us to understand the different sources of error that
occur in a simulation.

We consider a perfect mirror to study only the error on the near field of a
dipole source. Because we are interested in the near-field coupling of emitters to
nanostructures, it is important to understand if the commonly used discretization
∆ = λ/20 (Taflove and Hagness, 2005) is also valid in the near field, where high
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wavevector components are not negligible. Furthermore, because the system is
lossless, we use it to check that Pt and Pr give the same result in FD-TD (De Moer-
loose and De Zutter, 1995). We then move to the case of a real metal mirror, defined
by a simple Drude dispersion model. In this case we focus on the evaluation of the
non radiative decay rate, which is known to increase very rapidly as the dipole ap-
proaches the interface (Chance et al., 1978). In this situation we want to understand
how well the penetration of the field in the metal and the coupling to non-radiative
SPPs are modeled. At last, we study the staircasing effect by considering a gold
sphere. The stepwise discretization of the curved boundary introduces an error
on the optical properties of the nanoparticle (Oubre and Nordlander, 2004), and,
consequently, an error on the decay rates. We present two situations, one where the
cell size is much smaller than the radius of the sphere, and one where the cell size
is comparable to it. In both cases the discretization is fine enough for modeling the
near field and the skin depth so that we expect that the error be primarily caused
by staircasing.

B.3.1 Perfect mirror

A dipole, with two possible orientations, is positioned at a certain distance z from
a perfect mirror, as shown in the inset to Figure B.7. The perfect conductor is
implemented by simply imposing that the field must be zero inside the metal.
Because the system does not have a length scale nor dispersion, it is equivalent to
scan the distance from the mirror or scan the dipole wavelength λ and express the
decay rates as a function of the dimensionless quantity kz, where k = 2π/λ. In FD-
TD calculations we find convenient to define a characteristic length a that allows to
write the wavelength and the structure parameters as dimensionless quantities that
are close to unity. This is advantageous both for the floating point operations and
for the handling of data. Therefore, we use dimensionless wavelengths λo = λ/a,
lengths do = d/a and frequencies νo = a/λ. The decay rates are calculated by
scanning νo for a fixed distance zo, which is equivalent to changing kz = 2πνozo.
This is computationally more efficient than running several simulations at different
distances and has the additional benefit that the wavelength sampling, for a given
discretization ∆ = a/N, where N is an integer number, is inversely proportional to
kz, thus making the calculation of the near-field coupling more accurate.

A Gaussian pulse centered at the frequency νo and bandwidth σo is launched at
the dipole position using a current Jsrc perpendicular or orthogonal to the interface.
Note that a smaller frequency corresponds to a smaller kz, since z is constant. The
normalized decay rates are compared to the analytical solutions (Chance et al.,
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Figure B.7: Normalized radiative and total decay rates for a dipole in front of a
perfectly conducting flat metal surface as a function of kz obtained by scanning the
wavelength (left panel) or the distance (right panel). Inset: layout of the FD-TD
simulation with the two possible dipole orientations. The distance is changed along
the red dotted line, while the black dashed line indicates the radiation detector.

1978)
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where ⊥ and ‖ refer to dipole orientations perpendicular and parallel to the inter-
face, respectively. The left panel of Figure B.7 displays the FD-TD result and the
analytical solution for both dipole orientations. The kz scan is achieved by concate-
nating two FD-TD simulations, one with νo = 0.1425, σo = 0.02 and the other one
with νo = 0.6, σo = 0.1. The dipole is at a distance zo = 1.0 and the number of cells
per characteristic length a is N = 40. The agreement with the exact result is quite
good over the whole range of kz thanks to the fact that we used a fine discretization
and that the wavelength sampling increases as kz decreases. If we keep the wave-
length fixed at νo = 0.6 and perform a distance scan, shown in the right panel of
Figure B.7, we find an increasing error as kz approaches to zero, especially for the
dipole perpendicular to the interface, for which the near-field coupling is stronger.
This confirms that the λ/20 criterion does not apply in the near field and that as
the dipole approaches the nanostructure one needs to use finer discretizations.

The data presented in Figure B.7 confirm that for a lossless system total and
radiative decays are equal, to within a small numerical error. To investigate the
different accuracy in the calculation of Pt and Pr we have computed them up to
several σo from the central frequency. We found that Pr is correct over a larger
bandwidth than Pt (Kaminski et al., 2007). This confirms that the quantity Re[J∗E]
is more sensitive to numerical noise than the flux of the Poynting vector. For this
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reasons, great care must be taken when analyzing the FD-TD data. In general, we
have found that the usable bandwidth for Pt decreases with νo and that it is always
narrower than that for Pr.

B.3.2 Metal mirror

For the case of a real metal mirror we replace the perfect conductor with a Drude
metal. The parameters of Drude dispersion are chosen to be ωp = 1.0, γ = 0.05 and
ε∞ = 1.0, where ωp and γ are expressed in dimensionless units like νo for a=100
nm. Because of Ohmic losses the radiative and total decay rates are no longer
equal. As sketched in the inset to Figure B.8 the dipole excites also a SPP wave
at the metal-vacuum interface that propagates outside the simulation domain. The
energy stored in the SPP is collected by the detector for Pr before being completely
dissipated in the metal. Therefore, Pr is always overestimated and only the total
decay rate is correctly computed. Nevertheless, since the non-radiative decay is
predominant in the near field, the total decay is sufficient for testing how FD-TD
accounts for the Ohmic losses. The total decay rates, computed for dipole orien-
tations parallel and perpendicular to the interface are compared to the analytical
solution (Chance et al., 1978)

Γ⊥
Γo

r
= 1− 3

2
Im
[∫ ∞

0
R‖e−2lkz u3

l
du
]

, (B.23)

Γ‖
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3
4

Im
[∫ ∞

0
[(1− u2)R‖ + R⊥]e−2lkz u

l
du
]

, (B.24)

where u is the normalized wavevector along the interface u = kx/k and l = −i(1−
u2)1/2, with k = 2π/λ. R⊥ and R‖ are the Fresnel reflection coefficients of the
interface.

Due to the dispersive dielectric function, the decay rate is not only a function
of kz, but also of the wavelength itself. For this reason, distance and wavelength
scans are not equivalent any more. Choosing a dipole wavelength λ=600 nm and
a characteristic length a=100 nm give νo ' 0.167 and a is divided into N = 40 cells
(mesh’s pitch ∆=2.5 nm). Alternatively, a characteristic length a=300 nm implies
νo = 0.5 and, for the same N, a coarser mesh (∆=7.5 nm). In other terms, one can
improve the accuracy either by increasing N or by decreasing a for the same wave-
length. As mentioned in the previous section, the fact that the available bandwidth
depends on νo, the two approaches are not equivalent. The distance of the dipole
from the metal surface is only up to 300 nm because we are interested only in the
near-field effects. Figure B.8 compares the FD-TD result with the exact ones for
different discretizations. Above 150 nm the agreement is very good for all meshes,
while for smaller distances it is necessary to use the finer one, which yields a rea-
sonable result up to a distance of about 20 nm. Both dipole orientations show the
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Figure B.8: Normalized total decay rate for a dipole in front of a flat real metal
surface as a function of distance. The dipole is oriented parallel (left panel) and
perpendicular (right panel) to the interface. The curves are obtained using different
discretizations. Inset: sketch of an excited SPP passing through the radiation detector,
which leads to an incorrect estimate of the radiative decay rate.

correct (kz)−3 behavior due to the non-radiative contribution (Chance et al., 1978)
only for the finest mesh, suggesting that the discretization strongly affects the en-
ergy dissipation into the metal. Indeed, for the given Drude parameters, at λ=600
nm the attenuation length for a plane wave in the metal corresponds to 16 nm. The
mesh must be chosen accordingly to ensure that the field is approximately constant
over an FD-TD cell.

B.3.3 Gold nanosphere

Having understood how the FD-TD method models the near-field coupling and
the Ohmic losses, we consider the case of a dipole in the vicinity of a gold sphere
as shown in the inset to Figure B.9. The staircasing issue can be negligible for rela-
tively large spheres, but it is important when the sphere radius is comparable to the
cell size. Moreover, since the aim is to enhance decay rates using SPPs, the artificial
surface roughness induced by staircasing could lead to inaccurate results (Oubre
and Nordlander, 2004).

For a finite structure we can compute both total and radiative decays for dipole
orientations perpendicular and parallel to the surface of the sphere. These are
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Figure B.9: Normalized decay rates for a dipole oriented parallel (left panel) and
perpendicular (right panel) to a gold sphere of radius 50 nm as a function of the
distance from the sphere surface. Insets: layout of the simulation and zoom to close
distances for total and non-radiative decays.

compared to the analytical formulae (Ruppin, 1982)
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where jn and hn are the spherical Bessel and Hankel functions, respec-
tively (Abramowitz and Stegun, 1972). r is the distance of the dipole from the
center of the sphere and am

n , bm
n are the Mie coefficients (Bohren and Huffman,

1983; Ruppin, 1982). The analytical expression for the total decay rate reads in-
stead (Klimov et al., 1996)
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The coefficients pn and qn can be written as functions of the spherical Bessel and
Hankel functions (see Klimov et al., 1996). ψ is the angle of the dipole relative to
the sphere, with ψ = 0◦ corresponding to the perpendicular case and ψ = 90◦ to
the parallel case.
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First we consider a dipole at the fixed wavelength λ=580 nm, corresponding
to the emission wavelength of a terrylene molecule in para-terphenyl (Kühn et al.,
2006) at different distances from a gold sphere of radius 50 nm embedded in a
homogeneous background with index n = 1.7, typical of immersion oils and trans-
parent oxides. The mesh cell size is chosen to be ∆=2 nm. Figure B.9 compares
the FD-TD results with the analytical theory for a dipole parallel or perpendicu-
lar to the sphere. The agreement for the radiative decay rate is very good for all
distances, even down to 5 nm. However, the total decay rate is correct up to a
distance of about 40 nm. The accuracy for the non-radiative decay is analogous
since it is evaluated by taking the difference of the total and radiative rates. For the
perpendicular dipole orientation the results match the analytical values up to 20
nm. Therefore, for ∆=2 nm the staircasing effect does not affect the accuracy of the
calculation. The deviation from the exact solution for very small distances is rather
attributed to the difficulty in modeling the near field of the dipole, as discussed in
the section on the perfect mirror.
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Figure B.10: Normalized total (left panel) and radiative (right panel) decay rates for
a dipole with perpendicular orientation placed 12 nm away from a gold sphere with
radius 5 nm. A spurious peak appears at about λ=750 nm for both decay rates.

In a second test a dipole with perpendicular orientation is fixed at a distance
of 12 nm away from a gold sphere with radius 5 nm, again embedded in a back-
ground medium with n = 1.7. The decay rates are calculated as a function of the
excitation wavelength, which covers the range from 500 nm to 1100 nm. Because of
the very small dimensions of the scatterer and the close distance, the FD-TD mesh
was refined to ∆=1 nm. The purpose of scanning the wavelength is to investigate
the accuracy across the SPP resonance, where the enhancement of the decay rates
is expected to be stronger. The FD-TD results are compared to the analytical solu-
tion in Figure B.10. The data shown in the graphs are obtained by concatenating
two FD-TD simulations (νo = 0.11 and νo = 0.16) to overcome the problem of the
bandwidth for Pt. Good agreement with theory is found for the total rate (left
panel), in spite of an unidentified peak at approximately λ=750 nm. The curve for
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the radiative rate (right panel) shows the same peak which does not have a corre-
spondence with the exact result. Nevertheless, the peak due to the SPP resonance
around λ=550 nm is well reproduced even though the radiative decay rate looks
slightly less accurate. A comparison with Figure B.4 indicates that the spurious
peak is essentially due to staircasing and not to near-field interactions with the
dipole source.
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T. Basché, 1995: Pump-probe experiments with a single molecule: ac-stark effect
and nonlinear optical response. Phys. Rev. Lett., 75 (8), 1514–1517.

Tamarat, P., A. Maali, B. Lounis, and M. Orrit, 2000: Ten years of single-molecule
spectroscopy. J. Phys. Chem. A, 104 (1), 1–16.

Tame, M. S., C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S.
Kim, 2008: Single-photon excitation of surface plasmon polaritons. Phys. Rev.
Lett., 101 (19), 190504.

Taminiau, T. H., F. D. Stefani, F. B. Segerink, and N. F. van Hulst, 2008a: Optical
antennas direct single-molecule emission. Nat. Photon., 2 (4), 234–237.

Taminiau, T. H., F. D. Stefani, and N. F. van Hulst, 2008b: Enhanced directional
excitation and emission of single emitters by a nano-optical yagi-uda antenna.
Opt. Express, 16 (14), 10 858–10 866.

Tey, M. K., Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurt-
siefer, 2008: Strong interaction between light and a single trapped atom without
the need for a cavity. Nat. Phys., 4 (12), 924–927.

Thomas, M., J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, 2004: Single-
molecule spontaneous emission close to absorbing nanostructures. Appl. Phys.
Lett., 85 (17), 3863–3865.

Tilaki, R., A. Iraji zad, and S. Mahdavi, 2007: Size, composition and optical proper-
ties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A,
88, 415–419.



226 BIBLIOGRAPHY

Tong, L., R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and
E. Mazur, 2003: Subwavelength-diameter silica wires for low-loss optical wave
guiding. Nature, 426 (6968), 816–819.

Toninelli, C., K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, 2010:
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