Statistics and Spectroscopy

Through correlation function we are looking at one single oscillator!

• The average is done on the n states of the oscillator at thermal equilibrium

What if do we want to extend that statistics over all oscillators present in a condensed phase? How to take care about their interactions?

Introduction to the density matrix operator $\widehat{ ho}$

Pure state

 $\psi(q,t)$

The wavefunction is a complex function that completely describes in terms of position q and time t the electrons of a molecular system.

 $\psi^{*}\psi=<\psi|\psi>=\psi^{2}$ scalar

 ψ^2 is real and defines the probability of finding an electron with coordinates (q,t) in a dV of the space.

 $\frac{1}{V} \int_{V} \psi^{*} \psi = 1 \qquad \text{norm}$

normalization

 $\psi_1\psi_2=0$

Orthogonal waves in a same system

The ensemble

$$\rho = |\psi > < \psi|$$

$$\langle \psi | = bra$$
 Row vector (c.c.part)*
 $|\psi \rangle = ket$ Column vector

$$\begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} a & b \end{pmatrix} = \begin{pmatrix} a^2 & ab \\ ba & b^2 \end{pmatrix}$$
 matrix

All pure states along the diagonal and all possible interactions term out of the diagonal.

 $\rho =$ "density" of quantic states

Properties of density operator:

- ρ is Hermitian: $\rho_{mn} = \rho_{nm}^*$
- $\rho_{nn} \ge 0$ is the probability of the pure state n
- $Tr\{\rho\} = 1$ normalization
- $Tr\{\rho^2\} \le 1$; it is 1 only for a pure state
- $Tr{\rho A} = \langle A \rangle$ value of expectation (average on n states of ψ) on N molecules

Pure state resulting from a superposition of two states

Statistic average of two possible states in an ensemble

 $Tr\{\rho^2\}$

$$\rho = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

$$Tr\{\rho^2\} = 1$$
Before measure

$$\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$Tr\{\rho^2\} = 1/2$$
After measure

Free evolution of $\widehat{\rho}(t)$

$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial t} (|\psi\rangle \langle \psi|) = -\frac{i}{\hbar} \widehat{H} |\psi\rangle \langle \psi| + \frac{i}{\hbar} |\psi\rangle \langle \psi| \widehat{H}$$

 $\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] \quad \text{Liouville - Von Neumann eq.}$

For a two-level system:

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = -\frac{i}{\hbar} \left[\begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} - \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} \right] = \left[\begin{pmatrix} E_1 \rho_{11} & E_1 \rho_{12} \\ E_2 \rho_{21} & E_2 \rho_{22} \end{pmatrix} - \begin{pmatrix} \rho_{11} E_1 & \rho_{12} E_2 \\ \rho_{21} E_1 & \rho_{22} E_2 \end{pmatrix} \right]$$

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = -\frac{i}{\hbar} \begin{pmatrix} 0 & \rho_{12}(E_1 - E_2) \\ \rho_{21}(E_2 - E_1) & 0 \end{pmatrix}$$

$$\begin{array}{c} \rho_{11}' = 0 \\ \rho_{22}' = 0 \end{array} \right\} \quad \text{Populations are constant} \\ \end{array}$$

Out-of-diagonal
terms =
COHERENCES
$$\begin{cases} \rho_{12}' = -\frac{i}{\hbar}\rho_{12}(E_1 - E_2) \Rightarrow \rho_{12}(t) = \rho_{12}(0)e^{-i\omega_{12}t} \\ \rho_{21}' = -\frac{i}{\hbar}\rho_{21}(E_2 - E_1) \Rightarrow \rho_{21}(t) = \rho_{21}(0)e^{+i\omega_{12}t} \end{cases}$$

Coherences oscillate at constant frequency ω_{12} in antiphase!

At resonance, you start rotating at twice the frequency with one component and at zero frequency with the other: *ROTATING WAVE APPROXIMATION*

The Liouville super-operator \widehat{L}

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$$

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \hat{L} \hat{\rho}$$

Super-operator operates on another operator!!

The super-operator representation allows for the introduction of ...

DEPHASING FACTOR

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \hat{L} \hat{\rho} - \hat{\Gamma} \hat{\rho}$$

$$\bigvee_{\text{empirica}}$$

 $\rho_{12}(t) = \rho_{12}(0)e^{-i\omega_{12}t}e^{-\Gamma t}$ $\rho_{21}(t) = \rho_{21}(0)e^{i\omega_{12}t}e^{-\Gamma t}$ $\rho_{11}(t) = e^{-\Gamma t}$ $\rho_{22}(t) = e^{-\Gamma t}$

 Γ rises from collisions in an ensemble so it has no meaning on a pure state ψ

Hierarchy of representations:

Shroedinger
$$\longrightarrow \psi(t)$$
 Evolution of a pure state:
$$\frac{\partial |\psi \rangle}{\partial t} = -\frac{i}{\hbar} \widehat{H} |\psi \rangle$$

Liouville – Von Neumann $\longrightarrow [H, \rho]$ Evolution of a statistic ensemble:

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$$

Liouville \longrightarrow L, Γ Evolution including damping:

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \hat{L} \hat{\rho} - \hat{\Gamma} \hat{\rho}$$