Statistics and Spectroscopy

$$
C_{\mu \mu}(t)=<\mu(t) \mu(0)>\quad \begin{aligned}
& \text { Through correlation function we are looking at } \\
& \text { one single oscillator! } \\
& \text { The average is done on the } \mathrm{n} \text { states of } \\
& \text { the oscillator at thermal equilibrium }
\end{aligned}
$$

What if do we want to extend that statistics over all oscillators present in a condensed phase? How to take care about their interactions?

Introduction to the density matrix operator $\widehat{\rho}$

Pure state

$$
\psi(q, t)
$$

The wavefunction is a complex function that completely describes in terms of position q and time t the electrons of a molecular system.

$$
\psi^{*} \psi=<\psi \mid \psi>=\psi^{2} \quad \text { scalar }
$$

ψ^{2} is real and defines the probability of finding an electron with coordinates (q, t) in a dV of the space.
$\frac{1}{V} \int_{V} \psi^{*} \psi=1 \quad$ normalization
$\int \psi_{1} \psi_{2}=0 \quad \begin{aligned} & \text { Orthogonal waves } \\ & \text { in a same system }\end{aligned}$

The ensemble

$$
\rho=|\psi\rangle\langle\psi|
$$

$$
<\psi \mid=b r a \quad \text { Row vector } \quad \text { (c.c.part)* }
$$

$$
\mid \psi>=\text { ket } \quad \text { Column vector }
$$

$$
\binom{a}{b} \cdot\left(\begin{array}{ll}
a & b
\end{array}\right)=\left(\begin{array}{cc}
a^{2} & a b \tag{matrix}\\
b a & b^{2}
\end{array}\right)
$$

All pure states along the diagonal and all possible interactions term out of the diagonal.

$$
\rho=\text { "density" of quantic states }
$$

Properties of density operator:

- ρ is Hermitian: $\rho_{m n}=\rho_{n m}^{*}$
- $\rho_{n n} \geq 0$ is the probability of the pure state n
- $\operatorname{Tr}\{\rho\}=1$ normalization
- $\operatorname{Tr}\left\{\rho^{2}\right\} \leq 1$; it is 1 only for a pure state
- $\operatorname{Tr}\{\rho A\}=<A>$ value of expectation (average on n states of ψ) on N molecules

Pure state

resulting from a superposition of two states

$$
\rho=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Statistic average

 of two possible states in an ensemble$$
\rho=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

$$
\operatorname{Tr}\left\{\rho^{2}\right\}=1 / 2
$$

Free evolution of $\widehat{\rho}(t)$

$$
\left.\begin{array}{r}
\left.\frac{\partial|\psi\rangle}{\partial t}=-\frac{i}{\hbar} \widehat{H} \right\rvert\, \psi> \\
\left.\frac{\partial<\psi \mid}{\partial t}=\frac{i}{\hbar}<\psi \right\rvert\, \widehat{H}
\end{array}\right\} \quad \begin{array}{r}
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial t}(|\psi><\psi|)=-\frac{i}{\hbar} \widehat{H}|\psi><\psi|+\frac{i}{\hbar}|\psi><\psi| \widehat{H} \\
\frac{\partial \hat{\rho}}{\partial t}=-\frac{i}{\hbar}[\widehat{H}, \hat{\rho}] \quad \text { Liouville - Von Neumann eq. }
\end{array}
$$

For a two-level system:

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right)=-\frac{i}{\hbar}\left[\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right)-\left(\begin{array}{cc}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right)\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right)\right]= \\
{\left[\left(\begin{array}{ll}
E_{1} \rho_{11} & E_{1} \rho_{12} \\
E_{2} \rho_{21} & E_{2} \rho_{22}
\end{array}\right)-\left(\begin{array}{ll}
\rho_{11} E_{1} & \rho_{12} E_{2} \\
\rho_{21} E_{1} & \rho_{22} E_{2}
\end{array}\right)\right]}
\end{gathered}
$$

$$
\frac{\partial}{\partial t}\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right)=-\frac{i}{\hbar}\left(\begin{array}{cc}
0 & \rho_{12}\left(E_{1}-E_{2}\right) \\
\rho_{21}\left(E_{2}-E_{1}\right) & 0
\end{array}\right)
$$

$$
\left.\begin{array}{l}
\rho_{11}^{\prime}=0 \\
\rho_{22}^{\prime}=0
\end{array}\right\} \quad \text { Populations are constant }
$$

Out-of-diagonal
terms $=$
COHERENCES $\left\{\begin{array}{l}\rho_{12}^{\prime}=-\frac{i}{\hbar} \rho_{12}\left(E_{1}-E_{2}\right) \Rightarrow \rho_{12}(t)=\rho_{12}(0) e^{-i \omega_{12} t} \\ \rho_{21}^{\prime}=-\frac{i}{\hbar} \rho_{21}\left(E_{2}-E_{1}\right) \Rightarrow \rho_{21}(t)=\rho_{21}(0) e^{+i \omega_{12} t}\end{array}\right.$

Coherences oscillate at constant frequency ω_{12} in antiphase!

At resonance, you start rotating at twice the frequency with one component and at zero frequency with the other: ROTATING WAVE APPROXIMATION

The Liouville super-operator \widehat{L}

$$
\frac{\partial \hat{\rho}^{\prime}}{\partial t}=-\frac{i}{\hbar}[\widehat{H}, \hat{\rho}]
$$

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho_{12} \\
\rho_{21} \\
\rho_{11} \\
\rho_{22}
\end{array}\right)=-\frac{i}{\hbar}\left(\begin{array}{cccc}
E_{1}-E_{2} & & \ldots & \\
& E_{2}-E_{1} & & \\
& \ldots & 0 & \\
& \ldots & & 0
\end{array}\right)\left(\begin{array}{c}
\rho_{12} \\
\rho_{21} \\
\rho_{11} \\
\rho_{22}
\end{array}\right)
$$

$$
\frac{\partial \hat{\rho}}{\partial t}=-\frac{i}{\hbar} \hat{L} \hat{\rho}
$$

Super-operator operates on another operator!!

The super-operator representation allows for the introduction of ...
DEPHASING FACTOR

$$
\frac{\partial \hat{\rho}}{\partial t}=-\frac{i}{\hbar} \hat{L} \hat{\rho}-\hat{\Gamma} \hat{\rho}
$$

$$
\begin{aligned}
& \rho_{12}(t)=\rho_{12}(0) e^{-i \omega_{12} t} e^{-\Gamma t} \\
& \rho_{21}(t)=\rho_{21}(0) e^{i \omega_{12} t} e^{-\Gamma t} \\
& \rho_{11}(t)=e^{-\Gamma t} \\
& \rho_{22}(t)=e^{-\Gamma t}
\end{aligned}
$$

Γ rises from collisions in an ensemble so it has no meaning on a pure state ψ
collisions Elastic: oscillators change their phase
Anelastic: there is exchange of energy! It is a channel for non-radiative relaxation

Hierarchy of representations:

Shroedinger $\longrightarrow \psi(t) \quad$ Evolution of a pure state:

$$
\left.\frac{\partial \mid \psi>}{\partial t}=-\frac{i}{\hbar} \widehat{H} \right\rvert\, \psi>
$$

Liouville - Von Neumann $\longrightarrow[H, \rho]$ Evolution of a statistic ensemble:

$$
\frac{\partial \hat{\rho}}{\partial t}=-\frac{i}{\hbar}[\widehat{H}, \hat{\rho}]
$$

Liouville $\longrightarrow L, \Gamma$ Evolution including damping:

$$
\frac{\partial \hat{\rho}}{\partial t}=-\frac{i}{\hbar} \hat{L} \hat{\rho}-\hat{\Gamma} \hat{\rho}
$$

