Heterodyne detection of a weak signal:
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C (t) proportional to the intensity of
the pump but quadratic detector
makes the signal dependent to the
square of the pump intensity!
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%N“ E(t) The Signal

Correlation function of transition
Ct) =< u(®)u(0) > dipole moment (electronic dipole,

vibration...)
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Intrinsic Fourier Transformation

S(w) =——J . dte@t < pu()p(0) >

NB:<...> = average on all possible n states of the system at thermal equilibrium.



Statistics and Spectroscopy

Ct) =< A)A(0) >

Classical definitions:

<A>= f dAAP (4)

Expectation value

< A% >= j dAA*P(A)

Mean square

a generic observable A fluctuates stochastically over time

In solution: there is no way to deterministically preview
energy and position of all particles at each istant.

The correlation function describes for how long
fluctuations of A remains correlated.
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gieK_Tl Boltzmannn distribution at
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Variance 0% =< A% > —< A >?

Covariance Cpp =<AB >—< A><B >

Caa(t) =< A()A(0) >—< A(t) >< A(0) > =
A(t) = A(0)e™tt
= (< A(0)? > —< A(0) >?)e i@t

QM definition:

Casr® = ) palnlAGDADIn) >= ) ayln>

n
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Homogeneous and Inhomogeneous BROADENING

HOMOGENEQUS: very fast dynamic processes mix up oscillator frequencies within the
EM perturbation.

IN-HOMOGENEOQUS: the EM field probes a static distribution of slightly different
oscillator frequencies.
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You cannot

simultaneous defines
position and energy of
all electrons involved in

/f/ <=

Your detection time is
so long that you are not
able anymore to

diffusion

il

There are well
distinguished groups of
oscillators in your

distinguish differences sample
the dipole transition among your oscillators
Heisenberg uncertainty
— _
——

natural broadening
present even for a
single oscillator

homogeneous and inhomogeneous broadening
present for an ensemble of oscillators



Homogeneous broadening effects:
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Intra-molecular processes: Inter-molecular processes: Dipole reorientation:
POPULATION TIME PURE DEPHASING
1 1 1 Due to collisions or different Dipoles arefirst alligned to the EM
+ attractive/repulsive potentials of field then randomly change

Ty Traa  Thr their own environment, oscillators direction.
change phase.

Radiative processes gives a :
homogeneous broadening : :
because there isa WW/W

correlation.

Non radiative thermal

effects give the spectral /\/\/W\/\A/
diffusion . :




Staticinhomogeneousbroadening:

Several oscillator
frequencies

lsum

Damped oscillation

Homogeneous and

time domain frequency domain
0 MANAAAAAAA N
Qo Am

04 Second order moment of the

N‘x M, gaussian function relatedto

standard dev.
Oy

C(t) =< u®)u(0) >= exp__t/[c - exp_ZA;t_2

l 1 1 1 1 Convolution of several lorentzian bands

SIMOULTANEOUS CONTRIBUTIONS PRESENT!!!

inhomogeneous broadening are the two limit cases of the KUBO model!




Intenisuty (a.u.)

KUBO MODEL: A and T,

Central limit theorem for a normal distribution:

w(t) =< w > +Sw(t)
(bw(t))=0
@)= (w2 FWHM

Intensity of fluctuations: all posiible value
of frequencies that oscillator can explore

u(®) = p(0)e vt
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u(t) = u(0)exp [—i j w(T)GT] = u(0)exp
0
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u(@) = pu(0)exp [—i J w(T)GT] = u(0)exp
0
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\ _ Average on exp functions
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damping of oscillations

C,uu X C&u&u

C&u&u — A28—t/1’c




Tc >> A:  For long correlaction time of fluctuations, each family of oscillator does not
correlate anyhow with some other one and a static distribution of
frequencies is observed.

F(t) = exp(—A%t?/2)

Intenisuty (a.u.)

frequency

Te << A For short correlaction time, oscillators explore rapidly all possible
frequencies around the central mean value, so rapidly that the band appears

even narrower than the real frequency distribution probability: “motional
narrowing”

F(t) = exp(—t/T>)

w

Generally, the real caseis an intermediate case where SPECTRAL DIFFUSION is observed!!!



W pump

The spectral diffusion

v

w probe

W pump

What you really have is a Voigt profile
(weighted sum of a lorentzian and a gaussian profile)
And you are not able to disentangle on linear spectra
Homo- inhomo geneous contributions!

Expanding on a second dimension...

* Asignal tilted along the
T=2ps diagonal isinhomogeneously

broaden.

measure of the homogeneous
width.

* The tilt can evolve toward the
vertical in the presence of
dynamic processes: final

v

* Its antidiagonal bandwidth isa
homogeneous distribution.
w probe






Moments in statistics:

M, = J_Oo Sw f(w)dw = z&o Do

M, = j Sw? f(w)dw = Z(Sa)z Do
—oo l_

M, =f Sw? f(w)dw = Z(Sw3 Do
—o :

mean value

variance (fwhm)

simmetry of the band

fluctuations dw are equally probable
around the mean value: M5=0



