O UTLI N ES of Time-Resolved Nonlinear Spectroscopies

Prerequisites:

« Linear spectroscopies: A = cel Lambert Beer law
e Shrodinger equation

* Born-Oppenheimer Approximation

* Electronic and vibrational molecular levels

We will go through:

* Wavefuction of a damped harmonic oscillator

* Linear and Non Linear Polarization terms in a two level system

* The correlation function

* Natural linewidth and broadening effects on linear spectra: the dephasing.
* Density matrix operator: a statistic ensemble

* Exempla of Time-Resolved Non-Linear experiments



What is SPECTROSCOPY ?

Spectro = image

Scopy= to observe, to see light — matter interaction
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Incoherent light sources
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Coherent light sources

e Collimated light: spatial coherence length up to hundred of kilometers
* Very small focus

* Monochromatic emission (L cavity)

* Polarized light

* High intensity
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Continuous laser * Pulsed laser *
Gas laser: He-Ne 632 nm Dye lasers: large gain bandwidth
CO, 10 um (far-IR) at different wavelengths;
Solid state laser: diode pumped lasers; Solid state laser: Ti:Saaround 800 nm.

Nd:YAG
Nd:YVO 1064 nm->532nm.
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slow rate

*light amplification by stimulated
emission of radiation




Focused laser = strong perturbation on matter

= 1 q dq ,
Enolec = Ae.e . 2 = kelr T—ZT continuous distribution of chargein a dielectricr
r<o
Atomic distances: r =10 A Take as example the electric field generated
Elementary charge:q=1.6 x101°C by a H* atom in water (acid solution) or a
Kej 120= 1.1 x 108 Nm?2/C? solvated electron e in H,O0.

. s Nm? 16-10719¢ o N
E ye = 1110° — + —mp = 177-10° =
Ipoynting € E¢ ~ 108 —5 = 1018 W/m?  Molecular electric field

200 nJ/pulse for a 35 fs pulse duration, focalised on a 100 um spot:

- 200 nJ p _
I j05er = ?fs = 5.7-10° W  Average power (higher peak power)
R 5.7 -10W

I =
focus (50 Mm)z

~ 10" W/m? Laser electric field



Sun light, : hv
colour vision weak perturbation
Uv-Vis absorbance ...
0009® @ 900

Redistribution of population on quantum states of the system

To play with light (change frequency, phase, polarization...) you need non-linear optic effects:

The external electric field couples to the molecular electric field
Quantum states of the system are (temporally) mixed up.

The superposition of states A
“answers you” (response signal) m/y
according to “your question” (probe) )/y

strong perturbation 7;—‘\5)"7—15""}




Electic Field

m——— Mg}[Hm EM field — matter
APPROXIMATIONS:

Matter = non-magnetic homogeneous dielectric, with no free-charges and internal currents.

1. We neglect the magnetic part of the EM field.

2. We treat light and matter in the semi-classical approximation.

3. We make use of the moment dipole approximation.

1st Approx.: NEGLECT MIAGNETIC FIELD: because you are operating on the electric
dipole moment of a (biological) molecule. In some cases you cannot neglect the
magnetic contibution and you have to consider both electric and magnetic dipole

moments, i.e. lanthanide solid state samples.



2nd Approx.: SEMI-CLASSICAL APPROX: used wavelengths are much longer than
molecular dimensions.

A>>d

Light EM field classical mechanics
Matter > molecule | guantum mechanics

3rd Approx.: DIPOLE APPROX: the spatial oscillating part of the electric field is neglected.
Only the time oscillating part is considered, which induces a separation of charge on the
molecule at a first approx. considered as a dipole.

E = Ejet*re @t 4 ¢ c. = E, [cos(wt) —isin(wt)] + c.c.

1 1
+-x%+-x3+



OPTICAL SPECTROSCOPIES — valence electrons

Franck-Condon principle —— Absorption is a vertical transition where there is the
largest overlap between vibrational wavefunctions

Born-Oppheneimer approximation —— Nuclear and electronic transition are on
different energy and time-scales so that they
can be considered independent from each
other

N.B.:in optical spectroscopies (UV-VIS-IR) only valence electrons are involved. External electrons
react “istantaneously” (10-1>-101¢ s) to applied E, while massive nuclea are stuck.
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Horizontal transitions:

Internal Conversion

Inter System Crossing ¢el — ¢r0t ) l/)vibr ) l/)el ) l/)Spin
(out of the B.O. approx — Fermi Golden rule) (B.O. approx — Einstein coefficients)

Vertical transitions
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Absorbance 1016-1015s
Fluorescence 10-12-10% s
Phosphoresc. 106-1s

Vibrational relax. 1012 s

T_’———j

HH |.C.10-14-10115
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Einstein coefficients for radiative transitions
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1 Spectral density of black body radiation



Reminder on the FERIM| Golden rule:

Bohr frequency condition

2T
kif = 7 < b xrlle - unldix; >° §(Ef — Ey)

\ Dirac delta =1

Horizontal transition possible only when Ef=Ei

< @rlteld >2 < xp lxi >2+ < xelunlxi >2 < ¢y | >?2

/ ~

Superposition integral of 2 vibrational Electronic wavefunctions of the same
wavefunctions of 2 different electronic excited state electronic hamiltonian: part of the same
They are not part of the same basis set: not basis set and orthogonal = 0 !!!!
orthogonal!!!
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Energia

Molecular orbital (MO=LCAO) transitions

Molecular orbital simmetry: o,n,
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Electronic selection rules

1. Induced dipole moment u # 0
2. Spin conservation before and after photon arrival: ASror = 0
3. Transitions within a shell (p,d..) are forbidden: AL =+/-1

I’Ti? :jl/)fﬁl/)ldv + ()  Transition moment

Transitions:

o — o transitions of C-C, C-H saturated bond (deep UV)

m — 1" insaturated bonds or conjugated system (VIS)

n-o"

n — mtypical in the presence of lone pair of ethero atoms C=0, N=N, C=N...
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