
Structure of solids 
 
Solids are either amorphous or crystalline in structure, in many cases partial- crystalline.  
Crystals are homogeneous (in matter) and anisotropic (in physical properties) solids. 
 They are characterised by translational symmetry   
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Each point in an infinite crystal can be reached by symmetry operations such as translation,  
mirror planes, and  1,2,3,4 or 6 fold rotational axes. 5-fold or axes higher than 6 are 
impossible in homogeneous crystals, (but possible in “quasi-crystals”). Each crystal is 
composed by an infinite repetition of a unit cell in all three dimension of space. Note: the 
surface breaks this symmetry.  
All crystals can be classified into 7 crystal systems: triklin, monoklin, orthorhombic, 
tetragonal, trigonal (rhombohedral), hexagonal and cubic.  
The anisotropy of the crystal’s properties is completely determined by the symmetry of the 
respective crystal. On the other hand the choice of the unit cell is arbitrary.  By convention the 
unit cell should consider (a) the complete symmetry of the whole crystal and (b) minimum 
number of atoms (molecules) within the unit cell.    
 
Considering these requirements, complete filling of the 3D space by appropriate unit cells 
results in 14 Bravais lattices. The cubic system is compatible with 3 such Bravais lattices: 
cubic primitive (one atom), body centred cubic – bcc (2 atoms) and face centred cubic – fcc (4 
atoms per unit cell). In the tetragonal system, “fcc” is not necessary due to symmetry.   
  
The fcc lattice and hexagonal lattice – hcp – can be described by a stacking of 2D planes 
made up by dense packed rigid spheres: dense packing = „dichteste Kugelpackung“   
stacking in ABAB sequence results in hcp  stacking in ABCABC...  fcc. Both fcc and 
hcp are the most dense packed structures in nature. Most of the elements crystallize in fcc, 
hcp or bcc lattices.    
The lattice of many chemical compounds can be described by certain composition of these 
three Bravais lattices:   
 i.e. NaCl : Na -> fcc with origin in (0 0 0) , Cl  fcc with origin in ( ½ 0 0 ) 
        ZnSe : Zn  fcc with origin in (0 0 0) , Se fcc with origin in ( ¼ ¼ ¼  ) 
 
The Reciprocal lattice is related to the periodicity of the crystal lattice and can be considered 
as it’s Fourier-transformation. The basis vectors bi of the reciprocal lattice are related to the 
basis vectors ai of real space by the relation  
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The experiment of Laue, Friedrich and Knipping in 1912 was the beginning of modern solid 
state physics and crystallography. The Laue pattern has been interpreted by interference of an 
x-ray wave at a 3D periodic lattice of atoms within the crystal. For the case of orthorhombic 
crystal lattice the Laue equations are:   

          

c

N
b

N
a

N

z

y

x














0

0

0

coscos

coscos

coscos

             resulting in the condition:  
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That means distict Laue peaks appear only for certain ratio between wave length and lattice 
parameters. 
The Laue experiment has verified the wave character of x-rays and that a crystalline solid is 
composed by a 3D periodic arrangement of atoms. Max von Laue has explained the 
appearance of discrete spots in a diffraction pattern by the interference of x-ray induced 
fluorescence emitted by the atom which was not correct. End of 1912 William Lawrence 
Bragg explained the appearance of these peaks by diffraction at crystal lattice planes. The 
Bragg equation  
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presents a relation between the lattice distance d(hkl) of the diffracting lattice plane and the 
diffraction angle .  is the wave length. hkl are the Miller indices. The vector  
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is the normal of the diffracting lattice plane indexed by (hkl). In kinematic theory (diffraction 
at small crystals) the intensity of a Bragg reflection (see Laue Interference) is proportional to 
the size of a small crystal S² 
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where Ni are the number of unit cell along ai. In addition I is proportional to the square of the 
structure factors F: 
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where  xi, yi zi are the relative coordinates of atoms within the unit cell,  
The relative positions    in bcc are          (0,0,0) + ( ½  ½ ½ );  :  
                                      in fcc  are           (0,0,0) , ( ½  ½  0) , ( ½  0 ½) , (0 ½ ½ ),  
                                      in hcp are            (0 0 0) , (1/3 2/3 ½ ). 
Depending on the Bravais lattice type and indices hkl, the intensity of a certain Bragg 
reflection may become zero (extinction) although the Bragg equation is fulfilled. This 
extinction rules allow the identification of the crystal structure by x-ray diffraction x-ray 
crystal structure analysis.      


