Superconductance

In 1911 Kammerling Omnes discovered the appearance of vanishing electrical resistance in Hg at
temperature of liquid hydrogen. The resistance is so small that an induced electrical currentin a
superconducting ring will decay with time constant of years. As found for other metals as Nb (9.5K),
Pb (7.2K), or alloys as NbsGe (23.3K)or Nb;Al (17.5K) SC appears below a jump temperature (T.) In
1986 Miiller and Bednorz discovered the appearance of SC in ceramics as (LaSr),CuQ, (Tc=35K). Later
additional compounds have been synthesized with Tc above the temperature of liquid nitrogen
which are very challenging for future technical application.

Besides loss free current SC show several remarkable properties:

1) : Under cooping below Tc the magnetic flux applied to a SC becomes completely crowded out of
the SC specimen — Meissner —Ochsenfeld neffect. SC are ideal diamagnets with y=-1. As long the
external field is smaller than a critical field strength H. the inner field is

B=0=p,(H+M)

Above H, the magnetic flux penetrates into the sample and destroys the SC property. Hc depends on
temperature and decreases for increasing T up to T.. SC and normal conductor (NC) state can be
assumed to be two different phases with phase transition of second order..

2)Another phenomenon is that the SC current is limited up to critical current density, jc. Exceeding jc
Sc also breaks down. Jc is larger for metals and metal alloys compared to high temperature SC.

3) Third phenomenon is the appearance of a gap energy 2A of electronic ground state with respect to
the Fermi energy E; of the NC phase in the order of few meV. The energy is again a function of
temperature and decays as
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4) In contrast to the typical T2 dependence of specific head for NC, ¢y of SC below Tc shows a
different behavior. It increases like ~exp(-2A/kT) up to Tc and drops down to the curve known from
NC. Such behavior is typical for 2 level systems which means that the phase transition between SC
and NC state is continuous,( i.e. of 2. Order). At T=0 are all electrons SC, but for 0<T<Tc there is a
mixture of SC and NC electrons, where the number of NC increases with T.

Most of the phenomena can be described by the BCS theorie (Bardeen, Cooper and Schrieffer 1957).
They postulate the existence of “Cooper pairs” . Whereas the electrons in NC are fermions carrying a
spin, in SC phase two electrons are pairing such as their common spin S=0, i.e. they haves as bosons.
These Cooper pairs interact with crystal lattice inducing local distortions which explains the isotopy
effect and the contribution of electron —phonon interaction to specific heat. Because of bosonic
properties all Cooper pairs can occupy the same ground state. Their energy is 2A below E: of the one
electron band structure. On the other hand, 2A is necessary to break a Cooper pair into 2 individual
electrons.



Based on BCS the Cooper pair wave function is (1) =,/ o, exp(ip(r), where p, =[ ¥ |2 is the

density of Cooper pair. This density again depends on temperature and vanishes at T=Tc.
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The current carried by Cooper pairs is described by j, =q¥ (—)¥ =-p, —(AV @ —qA)
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where only the phase of the wave varies because of the constant pair density. The equation for j;
replaces Ohm’s law (j=cE) valid in NC. Applying rot() at both sides of j; equation yields.
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Solution of London equation starts from Maxwell equ. [, j = VXB followed by
K, VX = VX(VXB) =-V2B

Compared with London equation provides and equation for determining the spatial variation of the
magnetic field.
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This solution shows that B cannot be constant inside SC except the case B=0. The external field acting
at the surface of the SC decays in normal direction with the London penetration length A towards the
bulk. i.e. B, = B,exp(—x/1), Note also A is a function of T and diverge at T=T. as
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From BCS theory follows that A = and is in the order of 40nm.

One remarkable phenomenon is the quantization of magnetic flux through a SC ring. Suppose a SC
ring is exposed to an external magnetic field. All current vanishes inside the ring, i.e. j;=0. Therefore
the phase is to change along the ring. What means: #V @ = gA . However, after full revolution the

wave function has to be the same as in beginning, i.e. Ap = S27 Ad=s 2w, where s integer. One can

show that S27 = %CD which provides ® = S@ =s®, with ®, = 21 =2.0678x10 ' Tm2
e e

This property is applied in a SQUID (super conducting quantum interference device). Here two SC half

rings are applied to a sample carrying an unknown magnetic moment. Whereas for B=0 the

2e
difference of the two phases are zero , the difference ¢, — @, = ?(D therefore the total current
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through both half rings is J,.., = J,(Sin(e, +%CD) +sin(e, —%CD) =2], sm(q)o)cos(7) using
Pa =Py =P
js becomes a function of magnetic flux. In experiment one measures the oscillation of current as

e
function of B . j becomes maximum always if Eq) = Sz . SQUID is sensitive for small magnetic fields

down to 10° T.

In a tunnel junction two metals are separated by a thin isolating barrier. If the barrier thin enough
the electronic wave function of electrons can tunnel throughout the isolating barrier. In NC phase the
tunnel current | is linear proportional to the applied Voltage U. Is the metal in SC phase then the
electron first has to exceed the SC gap before it can penetrate into the barrier which increases the

2A
requested voltage by V = —. The value 2A represent the energy request to break a Cooper pair

into Fermions. In SC tunnel junction there is a minimum energy eV=A is required before a current
can be measured.
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Josephson effect: IN JD two SC are coupled via a thin isolator layer, due to tunnel effect both SC
wave function have certain probability in the respective other SC. The coupling between SC is given

VAR

by where K is coupling constant.
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Applying an external DC voltage the difference of total energyis A, = E; —E, =2eU . The

respective current to voltage relation shows operator behavior: It can be shown that already without
_ . . 28| ,
u there is a Josephson current: i (t) =I OSIn(;J. u(t)dt + ¢, ) . Applying u=U>0 the current
0



: . 2e
becomes i (t) =I 0Sln(?U -1+ ¢,), a constant AC voltage results in a sinus shape SC AC current of

2eU 2eU
amplitude 10 with frequency @ = (T) or f= (T) - Josephson Voltage-frequency relation.

In time average and for U>0 the AC current is <is(t)>=0. For U=0 there is a SC DC of i (t) =1 ,Sin(¢,)
- DC Josephson effect.

Applying an addition AC voltage of U(t) =U +Vvcosm,,t), the current changes to

. : 2e vV .
I (t) =l sin(w,t + z—sm @yt + @,) . The current can be expanded in Bessel-functions J,,
Dy

h
providing discrete plateaus of voltage U, u(t) =U, = 2— f\ N, with n=0,1,2....--> Zero current
e
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plateaus, with no-zero currentof Al =21,|J, (;—) l.
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This effect allows for a precise definition of voltage and is used as voltage normal in BAM.
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Current — voltage relation of Josephson contact



