
Contribution of Phonons to Specific Heat  
 

The energy of lattice vibrations is quantized (phonons). Phonons are thermally excited  

thermal phonons. The energy can be calculated based on the harmonic oscillator model.  
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(  nEn  with n=0,1,2,3….Total energy has to sum up over N oscillators. The question 

how many oscillators are excited and how large is the mean energy of all oscillators needs to 

calculate the mean n  <n>. After calculation one obtains the mean thermal equilibrium  

occupancy of a certain state n as function of the thermal energy kT: 
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which is Bose-Einstein distribution, valid for all quanta with an integer spin. Therefore the 

total energy of excited phonons is given by )()
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The question what is the density of states (DOS) of excited energy levels per unit volume for  

a system with propagating waves within a crystal of size L³=(Na)³  

is .)³2/()( constLq     The sum of spectral number densities Sj() over all the  

branches j within the phonon dispersion  pNdSdS j
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the number of atoms per cell p and number unit cells N. in 3D space the spectral density of 

states Sj() is given by 
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S  where dF is an area element with (q) = 

const. and gradqthe derivative d/dq in 3D. In general case, the last formula has no 

analytic solution. Therefore two models exit: 

 

A: Einstein model, where the optical branch is approximated by a constant 
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)(  where E is the Einstein frequency. 

B: Debye model, where the acoustic branches are approximated by =vs q with vs=const. as 

the sound velocity up to a certain qmax. Here ²
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S   for  < D, with D being the  

Debye frequency given by :
3

1
3

4)²2/(

3













L

Nvs
D 

 

Both approximations are helpful to calculate the specific heat contribution of phonons. Here 

one needs to calculate the temperature dependent part of the equ.(*) which is:  
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Using Einstein model for S() one gets kcv 3  for the case of high T, i.e. kT , as 

expected by Dulong-Petit law. but a wrong result for low temperatures. However, the artificial 

temperature which equals the Einstein frequency is namedEinstein – Temperature TE 

 

Alternatively the Debye model provides the correct relation for the low T case: 
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possible phonon modes are exited) and xD=D/T.  
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 is the Debye integral which 

cannot be solved analytical (data are tabulated or calculated numerical)The Debye model 

provides  the correct proportionality cV ≈ T³ as expected from experiment but Debye model 

fails for high temperatures.  

 

In summary, there is no close solution to calculate the contribution of phonons to specific heat  

 
Phonon contribution to thermal conductivity 

Heat transport depends on T- gradient dT/dx : )
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  . with <v> as mean particle velocity and   is mean 

path way between two particle collisions. Considering Phonons as “particles, the transport 

process can be understood in similar way as known from in kinetic gas theory. In this picture 

thermal conductivity will increase proportional to T³ for low temperature considering 

increasing population of phonon modes but will decrease proportional to T-1 for high 

temperature due to the increase number of collisions. The latter, the phonon-phonon 

interaction, can be described by elastic collisions considering conservation of phonon energies 

and phonon momentum.    
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Collisions taking place within the 1.BZ are normal processes, processes with final q> /2a 

gives rise to Peierls-Umklapp-processes, reflecting the final momentum back into the 1. BZ.   


