

## Solid state physics (winter term 2015/2016)

Lecturer: Prof. Dr. Ullrich. Pietsch

Exercise tutor: Dr. Ali Abboud (ENC B-024)

Exercise sheet 8

#### Semiconductors

#### **Exercise 1: pn-Junction**

a) Find the built-in voltage for a silicon p-n junction at room temperature with doping concentrations  $N_A = 10^{16} cm^{-3}$  (*acceptor*) and  $N_D = 10^{12} cm^{-3}$ (*donor*).

b) Derive the width of the natural space-charge region and the maximum electric field  $\varepsilon_{max}$  for an abrupt p-n junction as a function of the doping concentration N<sub>A</sub> and N<sub>D</sub>. Calculate the width for a very highly doped (N<sub>A</sub>=10<sup>16</sup> cm<sup>-3</sup>) p-type junction on n-type detector-grade material with N<sub>D</sub>=10<sup>12</sup> cm<sup>-3</sup>.

#### **Exercise 2: Solar Cell**

A biased pn-junction is a basic element of silicon solar cells. It function can be understood by means of the I-V characteristics curve of a pn-junction shifted by



0

I<sub>L</sub> along the current axis (towards negative current), where I<sub>L</sub> is the radiation

induced current. Determine the effective working point (I<sub>w</sub>, V<sub>w</sub>) providing maximum power harvest of the solar cell (neglect any other losses).

# Exercise 3: Structure of Bands

(a) Draw a pn diode junction in thermal equilibrium with its parts separated. Indicate on the sketch the levels of the valance band energy, conduction band and

Fermi energy for both the p and n type semiconductors.

(b) Repeat part (a) when the two semiconductors are braught togather.

(c) For different doping concentration of the p and n type materials, plot the change of the electric field E, the potential V and the charge density p along the depleted area. Use figure below.



### **Exercise 4: Band Structure (Bonus)**

Below is the density of states and the electron dispersion relation of some crystal.

- a) What can you say about this material (metal, insulator or semiconductor?) And why?
- b) What is the crystal structure?
- c) What row of the periodic table is it in?



Please return on 06/01/2016