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 metals and alloys are produced and used is in the form of polycrystalline aggregates 

 composed of a great many individual crystals usually of microscopic size.  

 The properties of the material depend on the weather these grains are large or small, 
strained or unstrained, oriented at random or in some particular way. 

 X-ray diffraction photograph  semiquantitative information about grain size and 
craystal quality and orientation (see Fig. 1 ) 

 The number of grains which take part in diffraction is governing effect 

Fig. 1(a): grain size is quite coarse 

Fig. 1(b): Finer grain size 

Fig. 1(c): The grain size further reduced the Laue spots merge into a general 
background and only Debye rings are visible(these rings are spotty since not enough 
crystal are present in the irradiated volume of the specimen to refelct all parts of ring). 

Fig.1(d): a finer grain size smooth and continuse Debye rings 
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Fig. 1. Back-reflection pattern of recrystallized aluminum specimens, see text. (B. D. Cullity (1977)) 

 When the size of the individual crystal is less than about 0.1 μm (1000 Å) the term “ 
particle size” is used 

 Crystals in this range  broadening of Debye rings 

β =0.9λ/t cosθ 

(t = diameter of crystal particle, 𝛽 = FWHM) 

 So characteristic imperfection of the cold-worked of metals and alloys is nonuniform 
strain  
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 Schematic of tensile and compressive strain 

 

Fig. 2. Schematic illustration of a substrate with two mismatched layers. (a): free standing unstrained layers (b): 
the materials with different lattice constant are grown on the substrate (Paul Harrison, 2009) 

 See Fig. 3: 

Fig. 3(a): unstrained grain equilibrium spacing d0   

 Fig. 3(b): if the grain is given a uniform tensile strain their spacing become larger than d0 
corresponding diffraction line shifts to lower angle. 

Fig. 3(c): the grain is bent and the strain is nonuniform: on the top (tensile) side the plane 
spacing exceeds d0, on the bottom (compression) side it is less than d0 and somewhere in 
between is equal d0.  

 The relation between the broadening produced and the non-uniformity of the strain: 

∆2𝜃 = −2
∆𝑑

𝑑
 𝑡𝑎𝑛𝜃 

 
∆𝑑

𝑑
 includes both tensile and compressive strain and must be divided by two to obtain 

the maximum tensile strain alone, or maximum compressive strain alone, if these two 
are assumed equal. 
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Fig. 3 Effect of lattice strain on Debye-line width and position (B. D. Cullity (1977)) 

 

 How the mean size and strain within a powder can be calculated from the diffraction 
pattern when both are present simultaneously.  

 It relies on the principle that the approximate formulae for size broadening, βL , and 
strain broadening, βe , vary quite differently with respect to Bragg angle, θ:  

 The simplification of Williamson and Hall is to assume the convolution is a simple sum  

𝛽𝑡𝑜𝑡 = 𝛽𝑒 + 𝛽𝐿 = 𝐶𝜖 𝑡𝑎𝑛𝜃 + kλ/t cosθ 
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If we multiply this equation by cosθ we get:  

𝛽𝑡𝑜𝑡𝑐𝑜𝑠𝜃 = 𝐶𝜖 𝑠𝑖𝑛𝜃 + kλ/t 

by plotting βtotcosθ versus sinθ we obtain the strain component from the slope 𝐶𝜖  and 
the size component from the intercept kλ/t. Such a plot is known as a Williamson-Hall 
plot. 

 If the observed line profile (corrected for instrumental broadening) are expressed as 
Fourier series, then an analysis of the Fourier coefficients disclose both particle size and 
strain.  

 What is the effective depth of x-ray penetration? 

 No precise answer because the intensity of the incident beam does not suddenly 
become zero at any one depth but rather decreases exponentially with distance below 
the surface 

 The integrated intensity diffracted by an infinitesimally thin layer located at a depth x 
below the surface : 

𝑑𝐼𝐷 =
𝐼0𝑎𝑏

𝑠𝑖𝑛 𝛼
𝑒

−𝜇𝑥(
1

𝑠𝑖𝑛𝛼
+

1
𝑠𝑖𝑛 𝛽

)
𝑑𝑥 

 Where the incident beam has intensity I0 is 1 cm square in cross section, and is incident 
on the powder plate at angle 𝛼 and 𝛽 is exit angle. a is volume fraction of the specimen 
containing particles having the correct orientation for reflection of the incident beam, 
and b the fraction of the incident energy which is diffracted by unit volume 

 The total diffracted intensity is obtained by integrating over an infinity thick specimen: 

𝐼𝐷 = ∫ 𝑑𝐼𝐷 =
𝑥=∞

𝑥=0

𝐼0𝑎𝑏

2𝜇
 

 

 The unknown 𝐼0, 𝑎, 𝑎𝑛𝑑 𝑏 constants will be cancel out if we express the intensity 
diffracted by the layer considered as a fraction of the total integrated intensity diffracted 
by a specimen of infinite thickness. 
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𝐺𝑥 =
∫ 𝑑𝐼𝐷

𝑥=𝑥

𝑥=0

∫ 𝑑𝐼𝐷
𝑥=∞

𝑥=0

= [1 − 𝑒
−𝜇𝑥(

1
𝑠𝑖𝑛𝛼

+
1

𝑠𝑖𝑛 𝛽
)
] 

 The information recorded on the diffraction pattern (or, more precisely, 95 percent of 
the information) refers to the layer of depth x and not to the material below it. 

 In the case of diffractometer, 𝛼 = 𝛽 = 𝜃 and Eq. reduces to  

𝐺𝑥 = [1 − 𝑒(
−2𝜇𝑥
𝑠𝑖𝑛𝜃

)] 

 the more suitable for calculation for diffractometer 

  
2𝜇𝑥

𝑠𝑖𝑛𝜃
= 𝑙𝑛 (

1

1 − 𝐺𝑥
) = 𝐾𝑥 

 

𝑥 =
𝐾𝑥 𝑠𝑖𝑛𝜃

2𝜇
 

Values of 𝐾𝑥 corresponding to various assumed values of 𝐺𝑥 are : 

𝑮𝒙 0.50 0.75 0.90 0.95 0.99 0.999 

𝑲𝒙 0.69 1.39 2.30 3.00 4.61 6.91 

 


