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 metals and alloys are produced and used is in the form of polycrystalline aggregates 

 composed of a great many individual crystals usually of microscopic size.  

 The properties of the material depend on the weather these grains are large or small, 
strained or unstrained, oriented at random or in some particular way. 

 X-ray diffraction photograph  semiquantitative information about grain size and 
craystal quality and orientation (see Fig. 1 ) 

 The number of grains which take part in diffraction is governing effect 

Fig. 1(a): grain size is quite coarse 

Fig. 1(b): Finer grain size 

Fig. 1(c): The grain size further reduced the Laue spots merge into a general 
background and only Debye rings are visible(these rings are spotty since not enough 
crystal are present in the irradiated volume of the specimen to refelct all parts of ring). 

Fig.1(d): a finer grain size smooth and continuse Debye rings 
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Fig. 1. Back-reflection pattern of recrystallized aluminum specimens, see text. (B. D. Cullity (1977)) 

 When the size of the individual crystal is less than about 0.1 μm (1000 Å) the term “ 
particle size” is used 

 Crystals in this range  broadening of Debye rings 

β =0.9λ/t cosθ 

(t = diameter of crystal particle, 𝛽 = FWHM) 

 So characteristic imperfection of the cold-worked of metals and alloys is nonuniform 
strain  
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 Schematic of tensile and compressive strain 

 

Fig. 2. Schematic illustration of a substrate with two mismatched layers. (a): free standing unstrained layers (b): 
the materials with different lattice constant are grown on the substrate (Paul Harrison, 2009) 

 See Fig. 3: 

Fig. 3(a): unstrained grain equilibrium spacing d0   

 Fig. 3(b): if the grain is given a uniform tensile strain their spacing become larger than d0 
corresponding diffraction line shifts to lower angle. 

Fig. 3(c): the grain is bent and the strain is nonuniform: on the top (tensile) side the plane 
spacing exceeds d0, on the bottom (compression) side it is less than d0 and somewhere in 
between is equal d0.  

 The relation between the broadening produced and the non-uniformity of the strain: 

∆2𝜃 = −2
∆𝑑

𝑑
 𝑡𝑎𝑛𝜃 

 
∆𝑑

𝑑
 includes both tensile and compressive strain and must be divided by two to obtain 

the maximum tensile strain alone, or maximum compressive strain alone, if these two 
are assumed equal. 
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Fig. 3 Effect of lattice strain on Debye-line width and position (B. D. Cullity (1977)) 

 

 How the mean size and strain within a powder can be calculated from the diffraction 
pattern when both are present simultaneously.  

 It relies on the principle that the approximate formulae for size broadening, βL , and 
strain broadening, βe , vary quite differently with respect to Bragg angle, θ:  

 The simplification of Williamson and Hall is to assume the convolution is a simple sum  

𝛽𝑡𝑜𝑡 = 𝛽𝑒 + 𝛽𝐿 = 𝐶𝜖 𝑡𝑎𝑛𝜃 + kλ/t cosθ 
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If we multiply this equation by cosθ we get:  

𝛽𝑡𝑜𝑡𝑐𝑜𝑠𝜃 = 𝐶𝜖 𝑠𝑖𝑛𝜃 + kλ/t 

by plotting βtotcosθ versus sinθ we obtain the strain component from the slope 𝐶𝜖  and 
the size component from the intercept kλ/t. Such a plot is known as a Williamson-Hall 
plot. 

 If the observed line profile (corrected for instrumental broadening) are expressed as 
Fourier series, then an analysis of the Fourier coefficients disclose both particle size and 
strain.  

 What is the effective depth of x-ray penetration? 

 No precise answer because the intensity of the incident beam does not suddenly 
become zero at any one depth but rather decreases exponentially with distance below 
the surface 

 The integrated intensity diffracted by an infinitesimally thin layer located at a depth x 
below the surface : 

𝑑𝐼𝐷 =
𝐼0𝑎𝑏

𝑠𝑖𝑛 𝛼
𝑒

−𝜇𝑥(
1

𝑠𝑖𝑛𝛼
+

1
𝑠𝑖𝑛 𝛽

)
𝑑𝑥 

 Where the incident beam has intensity I0 is 1 cm square in cross section, and is incident 
on the powder plate at angle 𝛼 and 𝛽 is exit angle. a is volume fraction of the specimen 
containing particles having the correct orientation for reflection of the incident beam, 
and b the fraction of the incident energy which is diffracted by unit volume 

 The total diffracted intensity is obtained by integrating over an infinity thick specimen: 

𝐼𝐷 = ∫ 𝑑𝐼𝐷 =
𝑥=∞

𝑥=0

𝐼0𝑎𝑏

2𝜇
 

 

 The unknown 𝐼0, 𝑎, 𝑎𝑛𝑑 𝑏 constants will be cancel out if we express the intensity 
diffracted by the layer considered as a fraction of the total integrated intensity diffracted 
by a specimen of infinite thickness. 
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𝐺𝑥 =
∫ 𝑑𝐼𝐷

𝑥=𝑥

𝑥=0

∫ 𝑑𝐼𝐷
𝑥=∞

𝑥=0

= [1 − 𝑒
−𝜇𝑥(

1
𝑠𝑖𝑛𝛼

+
1

𝑠𝑖𝑛 𝛽
)
] 

 The information recorded on the diffraction pattern (or, more precisely, 95 percent of 
the information) refers to the layer of depth x and not to the material below it. 

 In the case of diffractometer, 𝛼 = 𝛽 = 𝜃 and Eq. reduces to  

𝐺𝑥 = [1 − 𝑒(
−2𝜇𝑥
𝑠𝑖𝑛𝜃

)] 

 the more suitable for calculation for diffractometer 

  
2𝜇𝑥

𝑠𝑖𝑛𝜃
= 𝑙𝑛 (

1

1 − 𝐺𝑥
) = 𝐾𝑥 

 

𝑥 =
𝐾𝑥 𝑠𝑖𝑛𝜃

2𝜇
 

Values of 𝐾𝑥 corresponding to various assumed values of 𝐺𝑥 are : 

𝑮𝒙 0.50 0.75 0.90 0.95 0.99 0.999 

𝑲𝒙 0.69 1.39 2.30 3.00 4.61 6.91 

 


