Rietveld Quantitative Phase Analysis (least-squares refinement procedure)

• The Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the measured profile.

Peak shape

• The shape of a powder diffraction reflection depends on the characteristics of the beam, the experimental arrangement, and the sample size and shape.

Their convolution produces almost exactly a Gaussian peak shape (Fig. 1).

Fig. 1 Comparison of a measured diffracted peak (dot curve) with a calculate Gaussian peak profile (solid curve)

• Assuming this Gaussian peak shape for each Bragg peak, its distribution to the measured profile y_i at position $2\theta_i$ is:

$$y_i = I_k \exp[\frac{-4\ln(2)}{H_k^2}(2\theta_i - 2\theta_k)^2]$$

where H_k is full-width at half-maximum, $2\theta_i$ is the calculated position of the Bragg peak, and I_k is the calculated intensity of the reflex (determined from the structure factor, the Lorentz factor, and multiplicity of the reflection)

• At very low diffraction angles, the peaks begin to show a pronounced asymmetry. This is mainly because of the use of finite slit heights together with finite sample heights.

 \rightarrow This vertical divergence effect causes the maximum of the peak to shift to lower angles, but does not affect the integrated peak area. Rietveld used a semi-empirical correction factor, A_s to account for this asymmetry

$$y_i = I_k \exp\left|\frac{-4\ln(2)}{H_i^2} (2\theta_i - 2\theta_k)^2\right| \times \{1 - P(2\theta_i - 2\theta_k)^2, s/\tan\theta_k\}$$

Where P is the asymmetry parameter and s=+1, 0, -1 depending on the difference $2\theta_i - 2\theta_k$ being positive, zero, or negative respectively.

- As can be seen from Fig. 2 this correction has two main effects: the peak is shifted to lower angles and the Gaussian peak shape is made slitly asymmetric.
- At a given position more than one diffraction peak may contribute to the profile. The intensity is simply the sum of all reflections contributing at the point 2θ_i

Fig. 2 Comparison of an asymmetric measured diffracted peak (dot curve) with a symmetric (dashed-line curve) and an asymmetry-corrected (solid curve) calculated profile

Peak width

• The formula given by Caglioti, Paoletti (1958) to express the angular dependence of the halfwidths of the diffraction peaks can be simplified to :

$$H_k^2 = Utan^2\theta_k + Vtan\,\theta_k + W$$

where U, V and W are the halfwidth parameters and may be refined during the fit.

- Width of the diffraction peaks are found to broaden at higher Bragg angles (Fig. 3).
- This simple formula also takes account of the peak broadening resulting from the particle-size effect.

Fig. 3 Variation of peak width with Bragg angle; measured halfwidths (dots), calculated curve (solid cline).

Preferred orientation correction

- In powder samples there is a tendency for plate- or rod-like crystallites to align themselves along the axis of a cylindrical sample holder.
- In solid polycrystalline samples the production of the material may result in greater volume fraction of certain crystal orientations (commonly referred to as texture).

 \rightarrow In such cases the reflex intensities will vary from that predicted for a <u>completely</u> <u>random distribution</u>.

• Rietveld allowed for moderate cases of the former by introducing a correction factor:

$$I_{corr} = I_{obs} \exp(-G \propto^2)$$

where I_{obs} is the intensity expected for a random sample, G is the preferred orientation parameter and is a measure for the half-width of the assumed Gaussian distribution of the normal about the preferred orientation direction. α is the acute angle between the scattering vector and the normal of the crystallites.

Least-squares Refinement

The principle of the profile refinement method (Rietveld Method) is best demonstrated by the form of the function M which has to be minimized with respect to the parameters.

$$M = \sum_{i} W_{i} \{ y_{t}(obs) - \frac{1}{c} y_{t}(calc) \}^{2}$$

- The counter measures at position $2\theta_i$ a number of counts Y_i .
- Background correction B_i for each intensity Y_i.
- To the corrected intensity y_i=Y_i-B_i is assigned a statistical weight W_i.

Approximated values for all parameters are required for the first refinement cycle. These are refined in subsequent refinement cycle until a certain convergence criterion has been reached.