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 The change in solute concentration or temperature produce only a small change in lattice 

parameter precise parameter measurements is needed to measure these quantities 

with any accuracy.  

 The parameter “a” of cubic substances is directly proportional to the spacing “d” of any 

particular set of lattice planes: 

𝑑ℎ𝑘𝑙 =
𝑎

√ℎ2 + 𝑘2 + 𝑙2
 

 Measuring Bragg-angle θ for this set of planesdetermining “d”  calculating “a”  

 But Sinθ not θ appears in Bragg law  precision in “d” or “a” depends on precision in 

sinθ (a derived quantity) and not precision in θ (measured quantity). 

 

 
Fig. 1 The error in sin θ cussed by a given error in θ decreases as θ increases 

 

 Angular position in more sensitive to a given change in plane spacing “d” when θ is large 

compared to small θ. 

In cubic system:  

∆𝒂

𝒂
=

∆𝒅

𝒅
= −𝒄𝒐𝒕𝜽 ∆𝜽 

If θ --> 90° (backward-reflected) then cot θ --> 0   

 
∆𝑎

𝑎
  is the fractional error in a 
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precision in parameter in the use of backward-reflected beam having 2θ at near 180° 

(not possible to see reflection at this angle of 180°) 

 Not possible to see reflection at 2θ = 180°   extrapolating to 2θ=180° on plot of  2θ vs. 

“a”  

 certain function of 2θ (sin2θ or cos2θ) with “a” will be linear 

 By selecting the parameter from highest-angle line  precision ~ 0.01Å since “a” for 

most substances is around 3-4Å then precision ~ 0.3 % 

 With a good experimental technique and extrapolation function the precision will be  

~ 0.001 Å or 0.03% without much difficulty. 

 The general approach in finding an extrapolation function: considering the various 

effects leading to errors in measured values of θ and how these errors in θ vary with the 

angle θ itself. 

 

 two kinds of errors are involved: systematic and random 

 Systematic errors: vary in a regular manner with some particular parameter 

 film shrinkage, incorrect radius, off-center specimen and absorption are all systematic 

errors 

they vary in regular way with 𝜃  

 Random errors: are the ordinary chance errors involved in any direct observation 

error in measuring the position of the various lines on the film  

they may be positive or negative and do not vary in any regular manner with the 

position of the line on the film. 

 The systematic errors in “a” approach zero as 𝜃 approach 90°  

 the magnitude of these errors is proportional to slop of the extrapolation line (see Fig 

2a)  

 The random errors are responsible for deviation of the various points from the 

extrapolation line (see Fig. 2b).  
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Fig. 2 The schematic of extrapolation curves.  (a): larger symmetric errors , small random errors. (b): small 

systematic errors, large random errors.  

The sources of error in θ are: 

 Film shrinkage 

 Incorrect camera radius 

 Absorption in specimen 

 The overall error is given by 

 

∆𝜙𝑆′,𝑅,𝐶,𝐴 = (
Δ𝑆′

𝑆′ −
Δ𝑅

𝑅
) 𝜙 +

Δ𝑥

𝑅
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙  

 

Where, 𝑆′ is the distance on the film between two corresponding back-reflection lines. 

2𝜙 is supplement of 2𝜃 and 𝜙 = 𝑆′/4𝑅 . Δ𝑥 is displacement of the specimen from the 

camera center in parallel to the incident beam. R is the camera radius.  

 

𝜙 = 90° − 𝜃 , Δ𝜙 = −Δ𝜃 ,   sin𝜙 =cos𝜃 and  cos𝜙=sin𝜃 

 After some calculation …. 

 

∆𝒅

𝒅
= 𝑲𝒄𝒐𝒔𝟐𝜽 

 

 where 𝐾 is constant  𝐾 = (
Δ𝑆′

𝑆′ −
Δ𝑅

𝑅
+

Δ𝑥

𝑅
) 

 Fractional error in “d” are directly proportional to  𝒄𝒐𝒔𝟐𝜽  

 In cubic system  
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∆𝑎

𝑎
=

∆𝑑

𝑑
=  

𝑎−𝑎0

𝑎0
= 𝐾𝑐𝑜𝑠2𝜃   

𝒂 = 𝒂𝟎 + 𝒂𝟎𝒌𝒄𝒐𝒔𝟐𝜽                                        (1) 

 The true value of “a” can be found by extrapolating the straight line to  𝑐𝑜𝑠2𝜃  =0 

 

 From various approximation involved in the derivation of this Equation (1) it is clear that 

this Equation is true for large values of  𝜃. (the angles larger than 60° should be used in 

extrapolation). 

 Nelson- and Riley analyzed the various sources of error, particularly absorption, and 

showed that the relation 

∆𝒅

𝒅
= 𝒌 (

𝒄𝒐𝒔𝟐𝜽

𝒔𝒊𝒏𝜽
+

𝒄𝒐𝒔𝟐𝜽

𝜽
) 

holds quite accurately down to very low values of 𝜃  and not just at high angles. 

the bracketed terms are called the Nelson-Riley function. 

 The value of “a0“ can be found by plotting “a” against the N-R function, which 

approaches zero as 𝜃 approaches 90°. 

 

Source of systematic errors:  

1. Misalignment; 2. Use of flat specimen instead of specimen curved to conform to the 

focusing circle; 3. Absorption; 4. displacement of the sample from diffractometer axis. 

Ab error in d given by :  

∆𝒅

𝒅
= (−

𝑫

𝑹

𝒄𝒐𝒔𝟐𝜽

𝒔𝒊𝒏𝜽
) 

 Where D is the specimen displacement parallel to the reflecting-plane normal and R is 

the diffractometer radius 

 

 The accuracy of measuring lattice parameter depends on the accuracy of a straight 

line drawing through a set of experimental points, each of which is subject to 

random errors. 

an analytical method is needed to find the best fitted line 

 method of least squares 

 If a number of measurements are made of the same physical quantity and if these 

measurements are subject only to random errors, then the theory of least squares 
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states that the  most probable value of the measured quantity is that which makes 

the sum of the squares of the errors a minimum.   

 Suppose: the various points have coordinates x1 y1, x2 y2,….and x and y are related by 

an Equation of : 𝒚 = 𝒂 + 𝒃𝒙  

The first experimental point has a value of y=y1  

the error in the first point:  e1=(a+bx1) - y1 

 the sum of the squares of these errors: 

∑(𝑒2) = (𝑎 + 𝑏𝑥1 − 𝑦1)2 + (𝑎 + 𝑏𝑥2 − 𝑦2)2 + ⋯ 

 The theory of least squares 

the best a from differentiating with respect to a 

𝜕 ∑(𝑒2)

𝜕𝑎
= 2(𝑎 + 𝑏𝑥1 − 𝑦1)1 + 2(𝑎 + 𝑏𝑥2 − 𝑦2)1 + ⋯ = 0 

∑ 𝑎 + 𝑏 ∑ 𝑥 − ∑ 𝑦 = 0 

the best b from differentiating with respect to b 

 

𝑎 ∑ 𝑥 + 𝑏 ∑ 𝑥2 − ∑ 𝑥𝑦 = 0 

These are normal equations.  

Simultaneous solution of these two Equations  give a and b  

 The normal equation are :  

∑ 𝑦 = ∑ 𝑎 + 𝑏 ∑ 𝑥 

 

∑ 𝑥𝑦 = 𝑎 ∑ 𝑥 + 𝑏 ∑ 𝑥2 

 

 


